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Silicon photonic Bessel–Gaussian beam generation
unlocks new possibilities for long-range sensing
Sangsik Kim 1✉

Abstract
Concentrically distributed silicon photonic grating arrays generate long-range Besse–Gaussian beams, enabling
rotational and range measurements over obstacles. This compact and mass-producible chip unlocks new potentials
for long-range sensing and applications.

Bessel beams, characterized by their field distribution
described by the first kind of Bessel function, exhibit
unique oscillatory field behavior in the radial direction,
providing a non-diffractive beam solution with an infinite
depth of focus1. Notably, Bessel beams are also known as
self-healing beams due to their ability to reconstruct their
beam shapes even when partially interrupted by obstacles.
These two distinct characteristics—non-diffractive and
self-healing—make Bessel beams exceptionally suitable for
long-range optical sensing applications, particularly in
environments with obstacles and scattering.
Nevertheless, generating a true Bessel beam is practically

limited by its radially unbounded oscillatory field, which
necessitates infinite energy. Consequently, approximated
Bessel beam solutions are predominantly employed in lieu
of a radially unbounded ideal Bessel beam. A good
example is the Bessel–Gaussian beam, where a Gaussian
envelope function rapidly attenuates the Bessel beam’s
slowly decaying oscillative radial components2. This
hybrid beam effectively combines the properties of both
Bessel and Gaussian beams and is more straightforward to
generate than an ideal Bessel beam, for example, by illu-
minating an optical axicon with a Gaussian beam3.
Various methods have been explored for generating

Bessel–Gaussian beams, including axicons3, holograms4,
and spatial light modulators5. These traditional techni-
ques rely on bulky optical elements, making them

cumbersome and impractical for many field applications.
To address these challenges, researchers have investigated
alternative approaches such as metasurfaces6, photonic
integrated circuits (PICs)7, and 3D-printed optical fibers8,
primarily aiming to miniaturize the required components.
However, these compact configurations have exhibited a
limited depth of focus, typically spanning from hundreds
of micrometers to tens of centimeters. Within these
propagation distance ranges, even PIC-generated Gaus-
sian beams with hundreds of micrometers in beam dia-
meter have also been developed and employed9,10. Thus,
for the practical use of a non-diffractive Bessel beam in
long-range sensing, the development of a compact device,
such as a PIC, capable of generating a Bessel–Gaussian
beam with a depth of focus extending over tens of meters
is crucial.
In this issue of Light: Science & Applications, Z. Zhi et al.

at Jilin University report a groundbreaking silicon photonic
chip capable of generating a Bessel–Gaussian beam with an
impressive propagation distance of ≈10.24 meters, far
surpassing previous approaches (Fig. 1)11. Their foundry-
fabricated silicon chip incorporates concentrically dis-
tributed conventional grating couplers that emit Gaussian
beams at the far-field, forming a Bessel–Gaussian beam
through the superposition of 64 Gaussian beams from each
grating. The device, with a footprint of ≈0.6mm2, achieves
a Bessel–Gaussian spot diameter (defined by the innermost
ring’s diameter) ranging from 0.41 to 2.45 cm at distances
between 1.55 and 10.24 meters from the chip. For a
comparison with a typical Gaussian beam, the Rayleigh
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range for a beam diameter of 0.87mm under the same
conditions is only about 0.4m. Distinctly, the researchers
refrained from using additional optical lenses for these
characterizations, and the reported operating wavelengths
spanned from 1500 to 1630 nm, constrained by their tun-
able laser bandwidth.
Moreover, to demonstrate the functionality of the

chip-generated Bessel–Gaussian beam, Z. Zhi et al.
showed simultaneous rotation speed and distance
measurements of a spinning object. They employed the
rotational Doppler effect to measure the object’s rota-
tion speed, characterizing different speeds of a bladeless
optical chopper in the range of 75 to 100 r/s (i.e., 471 to
628 rad/s) while achieving a maximum error of 0.05%.
To further highlight the self-healing characteristics of
the Bessel–Gaussian beam, the team conducted iden-
tical rotation measurements, introducing a 2 mm-dia-
meter copper wire as an obstacle between the source
and the rotating object. Despite the reduced power in
the signal, they successfully measured the object’s
rotational speed with remarkable accuracy, highlighting
the beam’s resilience.
This innovative method for generating long-range

Bessel–Gaussian beams, utilizing a low-cost and mass-
producible complementary metal–oxide–semiconductor
(CMOS) process, offers immense potential for various
long-range sensing applications beyond the laboratory
setting. With a few technical enhancements, such as
increasing power efficiency and introducing beam tun-
ability, this Bessel–Gaussian beam generation approach
could become even more versatile and suitable for

practical applications. Furthermore, in conjunction with
additional advances in photonic integrated circuits
(PICs), including integrated light sources, detectors, and
modulators, the on-chip generation of Bessel–Gaussian
beams is expected to transform a wide range of applica-
tions in optical sensing, communication, manipulation,
and beyond.
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Fig. 1 Illustration of the on-chip Bessel–Gaussian beam generation with long-range and self-healing characteristics for rotational and
distance measurements. a Overall scheme, b Zoomed-in device image, and c Simulated and d Measured Bessel–Gaussain beams
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