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Photonic elementary cellular automata for
simulation of complex phenomena
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Abstract
Cellular automata are a class of computational models based on simple rules and algorithms that can simulate a wide
range of complex phenomena. However, when using conventional computers, these ‘simple’ rules are only
encapsulated at the level of software. This can be taken one step further by simplifying the underlying physical
hardware. Here, we propose and implement a simple photonic hardware platform for simulating complex phenomena
based on cellular automata. Using this special-purpose computer, we experimentally demonstrate complex
phenomena, including fractals, chaos, and solitons, which are typically associated with much more complex physical
systems. The flexibility and programmability of our photonic computer present new opportunities to simulate and
harness complexity for efficient, robust, and decentralized information processing using light.

Introduction
Modern digital electronic computers, which are based

on the von Neumann architecture, exhibit extreme
hardware complexity in their construction and are com-
posed of billions of transistors engineered in a hierarchical
and highly structured manner. Unlike the von Neumann
architecture, nature is abound with emergent phenomena
and complex systems containing many interacting com-
ponents following simple rules with no hierarchical con-
trol. For example, social insects like ants with only limited
local information can collectively self-organize to form
global structures1. This suggests that an alternative and
potentially more efficient way to simulate such phenom-
ena is to harness simple and decentralized physical
hardware that directly emulates the underlying rules of a
complex system.
One class of computational models that can benefit

from simple and decentralized physical hardware is cel-
lular automata (CA), which exhibits complex behavior
emerging from the local interactions of cells arranged on a

regular lattice2. CA were introduced in the 1940s to study
how self-replication and evolution can emerge in artificial
life3 and was later popularized in Conway’s Game of Life4,
which exhibits self-organizing patterns reminiscent of
biological systems. Subsequent landmark studies revealed
that CA are also capable of replicating other complex
behavior such as fractals5, chaos6, self-organized criti-
cality7, synchronization8, and universal computation9.
Consequently, CA have found utility in modeling a wide
range of natural phenomena in physics10,11, chem-
istry12–14, and biology15. Furthermore, CA have important
applications in real-world computational problems such
as cryptography16, data compression17, error-correction18,
simulating traffic flow19, and developing more robust
artificial intelligence20. Owing to their simple formula-
tions, certain CA of interest are computationally irre-
ducible21, i.e., there are no analytical shortcuts to evaluate
their state after an arbitrary time without resorting to
executing the sequential simulation in its entirety. On the
other hand, most CA are only implemented as high-level
software on conventional computers, resulting in unne-
cessary overhead. Therefore, it is desirable to seek out
physical hardware that better encapsulates the computa-
tional principles of CA to enable more efficient simula-
tion. Notable previous attempts to implement physical
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systems tailored to perform CA include self-assembling
DNA molecules22, arrays of nanomagnets23, memristor
networks24, and living slime molds25.
In this work, we propose and experimentally implement a

photonic computational platform capable of simulating
complex phenomena using CA. Compared to other
approaches, our photonic platform offers several distinct
advantages: (1) the inherently high bandwidth endowed by
computing using light offers potentially orders-of-
magnitude speed-up in clock rate over the simulation of
CA on conventional von Neumann computers, (2) rapid
reconfigurability for easy programming of a variety of CA
rules enables many different complex phenomena to be
observed in the same physical system, and (3) the kind of
sparse, local, and shift-invariant connections required for
CA are well-suited for this platform. We will demonstrate
how even simple photonic hardware can host a wide range
of complex emergent phenomena and is capable of
sophisticated (or even universal) computation. By exploiting
this complexity, we reveal a path toward the next generation
of more efficient or robust photonic hardware accelerators
for reservoir computing26,27 and deep learning20,28.

Results
We focus on the simplest types of CA called elementary

cellular automata (ECA)5. These are discrete-time dyna-
mical systems defined on a 1D lattice of cells with binary
states that evolve according to Eq. 1:

xi t þ 1ð Þ ¼ f xi�1 tð Þ; xi tð Þ; xiþ1 tð Þð Þ ð1Þ

where xi tð Þ 2 Z2 is the state (i.e., dead or live) of the ith

cell at time step t, and f : Z2ð Þ3 ! Z2 is the update rule.
Crucially, the rules specifying interactions among cells are
computed using only local nearest-neighbor information
without reference to the global pattern. Remarkably, not
only can the underlying rules be simple, but the initial
conditions can also be simple—consisting, for example, of
just a single live cell—and yet the collective behavior
produced can still be highly complex5. The 256 possible
ECA rules encapsulate a wide range of complex
phenomena and are representative of the four universality
classes of increasing complexity introduced by Wolfram29.
Here, we experimentally implement ECA in a time-

multiplexed photonic system, as shown in Fig. 1a. Cell
states are represented using pulses of light produced by a
mode-locked laser (MLL) with a fixed repetition rate TR.
The presence of a pulse indicates a live cell, while the
absence indicates a dead cell. In this way, the complete
pulse train from the MLL represents a synthetic 1D lat-
tice30, where each site in the lattice is encoded as a time
bin of width TR in the pulse train. The pulse amplitude/
phase representing the initial cell state is encoded using
an electro-optic modulator (EOM), and the pulse is then

split between three optical delay lines. These delay lines,
which are labeled 0TR and ± 1TR in Fig. 1a, are chosen
such that the þ �ð Þ1TR delay line is one pulse repetition
period longer (shorter) than the 0TR delay line. With this
choice of lengths, light in the 0TR delay line coherently
interferes with its nearest-neighbor time slots in the
temporal synthetic lattice. The coherent interference is
followed by optoelectronic thresholding to enforce the
binary constraint for the updated cell state in the ECA.
Finally, the optoelectronic signal is stored on a field-
programmable gate array (FPGA), which feeds back the
measured cell states by driving the input EOM for the
next iteration. By repeating this process for many cycles,
we observe the emergence of complex phenomena in the
cell states of the ECA. The desired ECA update rule, such
as ECA Rule 90 (following the Wolfram naming con-
vention) shown in Fig. 1b, is programmed by tuning the
thresholding value and variable optical attenuator (VOA)
in each delay line, which represents constant amplitude/
phase weights. As shown in Fig. 1c, this rule encoding can
be interpreted as an optical dot product followed by a
nonlinear thresholding function, which is akin to a single
perceptron in the context of artificial neural networks31.
Therefore, the dynamics of the abstract ECA rule are
exactly mapped to the physical time evolution of the
photonic simulator. We note that similar time-
multiplexing techniques with delay dynamics have been
used for photonic reservoir computing32, coherent Ising
machines33, simulating topological lattices34, and optoe-
lectronic oscillators with time-delayed feedback35. Ana-
logous results can be obtained using other multiplexing
methods, such as frequency or spatial multiplexing30.
First, one of the most striking patterns that emerge in

CA are fractals, which are often self-similar geometric
shapes that appear the same at any scale. Fractals are
ubiquitous in nature and occur in a diverse range of
physical phenomena, including the rings of Saturn36,
snowflakes37, and fault geology38. ECA Rule 90, defined in
Fig. 1b, provides a simple model for fractal formation and
self-replication. The local update rule can be expressed
succinctly in terms of Boolean algebra as xi t þ 1ð Þ ¼
xi�1 tð Þ � xiþ1 tð Þ, where⊕ denotes the exclusive-or (XOR)
logical operation. Thus, for this specific rule, the iterated
cell state depends only on the states of its two neighbors.
The fractal pattern is an emergent property of the

nonlinear dynamics in the photonic computer, rather than
being imposed on the system by an external ordering
influence such as explicit geometric constructions in
previous studies of photonic fractals39–42. We show the
experimentally measured space-time equivalent diagram
of ECA Rule 90, starting from a single live cell, in Fig. 2a.
The position of a cell in space (left-to-right) is represented
by the pulse number in the synthetic temporal dimension,
and the discrete-time step (top-to-bottom) is defined
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according to Eq. 1. The color of each cell is determined by
the normalized peak pulse intensity before thresholding.
We see that the space-time diagram is in the shape of the
well-known Sierpinski Triangle. This fractal can be con-
structed by recursively subdividing an equilateral triangle
into four smaller equilateral triangles and removing the
central triangle. It is characterized by a non-integer
Hausdorff or fractal dimension of log3=log2 � 1:585. The
self-similarity of the fractal shape persists down to the
cellular scale, as shown in Fig. 2b, and can be seen in the

time traces shown in Fig. 2c, where individual light pulses
represent each live cell. In this case, the middle optical
delay line (0TR in Fig. 1a) can be ignored since the iter-
ated cell state does not depend on its current state.
Experimentally, this allows us to achieve an excellent
extinction ratio between pulse peaks for live and dead
cells and indicates that the ECA Rule 90 is implemented
as intended.
Next, we investigate ECA Rule 30, defined in Fig. 3a,

which is categorized as a member of class 3 CA according
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Fig. 1 Photonic platform for simulating complex phenomena using elementary cellular automata. a Schematic of the experimental setup.
Cells are represented by pulses of light produced by a mode-locked laser (MLL) with a repetition rate of TR . The cell states are encoded by an electro-
optic modulator (EOM) and are split into optical fiber delay lines (blue lines) to induce local interactions of neighboring light pulses. Specific ECA rules
are programmed by tuning the variable optical attenuator (VOA) in each delay line. Optoelectronic thresholding is performed following the coherent
interference of light pulses, with the resultant cell states stored on a field-programmable gate array (FPGA) and reinjected (black lines) to drive the
input EOM for the next iteration. b Truth table showing the uniform and synchronous update for ECA Rule 90, with the top row in each case
representing the current states of the three-cell neighborhood and the bottom row showing the cell state during the next iteration. c Block diagram
showing the different stages of computation and flow of information in the photonic ECA implementation
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to Wolfram’s universal complexity classes. These are CA
that produce chaotic and seemingly random patterns,
although some small-scale structures are present29.
Remarkably, ECA Rule 30 is one of the simplest known
systems to exhibit chaos6. We experimentally demon-
strate such a chaotic behavior of ECA Rule 30 on the same
simple photonic hardware in Fig. 3b starting from a ran-
dom initial condition. In this case, there is greater varia-
bility in the peak pulse intensities compared to Rule 90
due to the lower interference visibility between three
optical delay lines. However, the optoelectronic thresh-
olding is still adequate to ensure the intended operation of
ECA Rule 30. A necessary (but not sufficient) condition
for chaos is sensitivity to initial conditions. Figure 3c
shows the space-time diagram starting from the same

initial condition as Fig. 3b but with one cell inverted. The
region of differences between the two patterns grows
linearly to the right with Lyapunov exponent λR ¼ 1 and
asymptotically linearly to the left with Lyapunov exponent
λL � 0:24, hence implying an exponential divergence in
the cell configurations over time and sensitivity to initial
conditions. Other necessary conditions for chaos, such as
non-periodicity and topological mixing, have also been
verified empirically6.
Due to the simplicity of ECA Rule 30, it can be used as

an efficient pseudo-random number generator. This can
be accomplished, for example, by taking the sequence
defined by the states of the central cell as it evolves in
time, i.e., the middle column of the space-time diagram.
Therefore, the initial condition acts as the seed.
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Fig. 2 Experimental result of ECA Rule 90 on the photonic hardware starting from a single live cell. a Zoomed-out equivalent space-time
diagram showing the emergence of the Sierpinski Triangle fractal. b Zoomed-in view showing the fractal self-similarity down to the cellular scale.
c Time traces (vertically separated for easier viewing) of the individual light pulses representing each cell separated by 4 ns
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Importantly, ECA Rule 30 is highly nonlinear and com-
putationally irreducible, unlike ECA Rule 90, which is
linear (modulo 2) and amenable to algebraic analysis43.
Indeed, detailed statistical analysis of the sequences pro-
duced by ECA Rule 30 shows that it is both a fast and safe
random number generator6. Unlike previous photonic
random number generators44–46 relying on quantum
processes or other continuous fluctuations, our system is
pseudo-random, which means it is deterministic and
repeatable given the initial seed. This is often useful in
practice to reliably reproduce results in applications such
as Monte Carlo simulations47, stream ciphers48, and
generative adversarial networks49. We note that ECA Rule
30 was previously demonstrated using free-space optics50;
however, this implementation encoded cells on pixels of
2D liquid-crystal screens, which introduced some redun-
dancy. In contrast, our approach more faithfully imple-
ments the 1D lattice for ECA, can be easily extended to an
arbitrary number of cells, and is easily programmable to
implement more than just a single rule.
Finally, we study class 4 CA, which involves a mixture of

order and randomness with localized structures that move
and interact in complicated ways51. A well-studied example
of this is ECA Rule 54, defined in Fig. 4a, which can be
interpreted as a discrete analog of excitations in an active
nonlinear medium with mutual inhibition52.
In this case, the mobile self-localizations called gliders

appear on a stable periodic background called the ether.
Gliders behave like solitons in many regards53. However,
while optical solitons usually arise due to a balance
between nonlinear and linear dispersive effects54, we have
demonstrated optical soliton-like behavior in a synthetic

temporal lattice with only simple binary rules. Despite its
simplicity, our system captures physically relevant fea-
tures since a reversible extension of ECA Rule 54 has
produced insightful results in non-equilibrium statistical
mechanics and generalized hydrodynamics55. By properly
programming ECA Rule 54 in our photonic simulator, we
experimentally demonstrated a glider collision, shown in
Fig. 4b, whereby gliders emerge after the collision with the
same shape and velocity but with a phase shift, which is
characteristic of soliton collisions56. Such glider collisions
can be used to construct logic gates57 and Universal
Turing Machines9 for unconventional computing. Fur-
thermore, we also observed a glider gun, shown in Fig. 4c,
in which a higher-order localization produces lower-order
gliders akin to the process of soliton fission58. Conversely,
a glider black hole, shown in Fig. 4d, looks like the process
of soliton fusion. Therefore, we have demonstrated a
diverse range of glider and soliton interactions in our
simple photonic computational platform, which can help
unlock new methods of optical information processing.

Discussion
In our current experiments, we performed the weighted

linear summations in the optical domain and applied
nonlinearity digitally for convenience in demonstrating the
photonic ECA concept. However, this incurs additional
overhead due to the optoelectronic and digital-to-analog
conversions performed. This overhead can be reduced by
using fully analog electrical circuits, but the photodetector
bandwidth still ultimately bottlenecks the clock speed of
CA. To overcome these electronic limitations, we propose
an integrated all-optical implementation of photonic CA so
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that the self-evolution of the CA occurs entirely in the
optical domain. An example on-chip implementation of
photonic CA is shown in Fig. 5. This implementation is
based on the same time-multiplexed architecture as our
current experiment, but it utilizes a monolithic thin-film
lithium niobate platform59 to increase computation speed
and energy efficiency by potential orders of magnitude. As a
measure of these speed and energy enhancements, we
consider the energy-time product, which captures both the
energy and speed of the device operation. All-optical rec-
tification and switching operations60,61 can be performed
using nonlinear waveguides in thin-film lithium niobate
with energy-time products on the order of 10�27 J � s, which
is more than three orders of magnitude better than the kind
of optoelectronic thresholding performed in the current
experiments. This can be followed by an optical feedback
loop to enable terahertz clock rates (Supplementary Infor-
mation Section 4) that are unattainable by digital electro-
nics. Moreover, the VOAs of our current implementation

can be replaced by static integrated EOMs to provide
greater control and reproducibility in setting amplitude
weights for specific rules. Similarly, other photonic com-
ponents in our system can be replaced by their simpler and
higher-performance integrated counterparts.
In summary, we have demonstrated a special-purpose

photonic computational platform utilizing a synthetic
temporal dimension and simple hardware components
capable of simulating a wide range of complex phenom-
ena. Simple rules based on local shift-invariant interac-
tions are used to effectively implement different ECA. Our
decentralized and non-von Neumann photonic computer
can be programmed to represent different rules and initial
conditions for the light pulses due to the flexibility and
rapid reconfigurability afforded by our hardware system.
A range of important complex phenomena, including
fractals, chaos, and solitons, are shown on the same
hardware. We focused only on three ECA rules (90, 30,
and 54) that exhibit some representative complex
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phenomena. However, a slight modification to the present
photonic hardware mapping can allow for the imple-
mentation of all 256 possible ECA rules (see Supple-
mentary Table IV). Future work can involve generalizing
the time-multiplexed photonic network to exploit spatial
or frequency multiplexing techniques30 for greater syn-
chronous parallel cell updates or implementing other
types of CA, including filter CA62, reversible CA55, and
stochastic CA63. This can enable the study of experi-
mentally challenging complex dynamics in kinetic critical
phenomena64, Ising models65, and lattice Boltzmann
models10. Furthermore, achieving complexity from simple
photonic hardware is an important first step toward
harnessing this complexity for efficient and robust artifi-
cial intelligence, for example, in reservoir computing26,27

and deep learning20,28. Our results can inspire a path for
special-purpose photonic computers enabling ultrafast
low-power operation for critical real-time and edge-
computing applications and new information processing
strategies using light.

Materials and methods
Experimental setup
For a more detailed picture of our experimental setup,

please see Supplementary Information Fig. 1. A mode-
locked laser (MLL) is used that outputs femtosecond
optical pulses with a center wavelength of 1550 nm and a
repetition period of TR ¼ 4 ns. Then, the pulses are
stretched to � 5ps with a 200-GHz Channel 34 filter to
reduce the effects of dispersion. After the pulses are
stretched, 10% of the power is tapped with a 90:10 optical

fiber splitter and sent directly to a 600-MHz bandwidth
photodetector. The RF output of the detector passes
through a 300-MHz low pass filter, which isolates the
250MHz component of the signal. This signal acts as a
clock for the FPGA (Zynq UltraScale+ RFSoC), which
generates the modulator driving signals for the EOM in
the experiment. Deriving the FPGA’s clock directly from
the optical pulse train eliminates any timing drift between
the optical path and electronic signals. The 90% of the
optical power that is not used to clock the FPGA is
instead sent through two consecutive intensity mod-
ulators (IMs). The first IM converts the uniform input
pulse train to a binary string that contains either an initial
condition or the previous state of the ECA under study.
The second IM helps to achieve a better extinction ratio
for the zeros in these binary strings. After exiting the
modulators, the binary pulse train passes through an
erbium-doped fiber amplifier (EDFA) and another 200-
GHz Channel 34 filter. Then, pulses are first split between
two paths at a 50:50 splitter. One of these paths leads to a
second 50:50 splitter, where the pulses are again divided
between another two paths. The paths after the second
50:50 splitter are labeled the ± 1TR delay lines. The
lengths of these lines are chosen to delay advance the
pulse train by one repetition period relative to the 0TR

delay line, which is the other line after the first
50:50 splitter. The result of delaying and advancing the
pulse train in this manner is coherent interference of
nearest-neighbor pulses once the delay lines are recom-
bined. To detect the state, the output pulse train passes
through another EDFA and 200-GHz Channel 34 filter.

Thin-film lithium niobate

Silica

Integrated photonic cellular automata

Silicon

Laser in

Electro-optic modulator

Nonlinear waveguide

Delay line

Gold

Periodically poled domains

Fig. 5 Lithium niobate nanophotonic cellular automata. The simplicity of the photonic hardware components for simulating complexity can be
maximized by on-chip integration with lithium niobate nanophotonic circuits. For example, integrated EOMs offer greater performance, and a
periodically-poled nonlinear waveguide can enable efficient all-optical thresholding and feedback. This simple nanophotonic circuit can yield orders
of magnitude improvement in the speed and energy efficiency for simulating complexity in CA
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The pulses are split at a final 50:50 splitter, and the signal
is then measured on a fast 5-GHz photodetector and a
slow kHz photodetector. The RF output of the slow
detector is sent to the stabilization electronics for the
delay lines, while the RF output of the fast detector is
recorded on an oscilloscope. The optoelectronic signal is
thresholded electronically to produce binary states, which
are then sent to and stored on the FPGA, which uses a
digital-to-analog converter (DAC) to convert the array
into an RF pulse pattern for the next ECA iteration.

Experimental procedure
Setting the desired ECA rule involves adjusting the

relative intensities and phases between the three delay
lines. VOAs are used to adjust the intensities in the lines
by detuning the coupling in the free space delays shown in
Supplementary Information Fig. 1, and the relative phases
are set to either 0 or π by changing the feedback signals
from the PIDs used to stabilize the ±1TR delay lines. A
relative phase of 0 represents constructive interference
between two delay lines, and conversely, a relative phase
of π represents destructive interference. Therefore, the
result of the ±1TR delay lines, tuning the VOAs, and
setting relative phases can be summarized as:

yi tð Þ ¼ a�1xi�1 tð Þ þ a0xi tð Þ þ a1xiþ1 tð Þ

where xi tð Þ 2 Z2 is the amplitude of the ith light pulse in
the tth iteration before being split into the delay lines, yi tð Þ
is the amplitude of the light pulse after recombining delay
lines, and a�1; a0; a1f g 2 �1; 1½ � are the losses set by the
VOAs and phases representing constant linear weights.
The light pulse amplitude yi tð Þ is converted to an intensity

yi tð Þ
�
�

�
�
2
after passing through the photodetector, and then

optoelectronic thresholding performs the function:

xi t þ 1ð Þ ¼ H yi tð Þ
�
�

�
�
2 � b

� �

where HðxÞ is the Heaviside step function, b2R is the
thresholding value, and xi t þ 1ð Þ is the output result to be
reinjected as the light pulse amplitude for the next
iteration. Therefore, any light intensity yi tð Þ

�
�

�
�
2
< b repre-

sents a dead cell, and conversely, any light intensity
yi tð Þ
�
�

�
�2 > b represents a live cell. The particular mappings

for each ECA rule studied in “Results” is given in
Supplementary Information Section 3.

In the present experiments, we considered effectively
infinite lattices by padding both sides of the initial condi-
tions with large numbers of zeros that exceeded the number
of measured iterations for each experiment. It is also pos-
sible to implement other types of boundary conditions, such
as closed boundaries, by imposing constant boundary cell
states that do not update or periodic boundary conditions
by turning the 1D lattice into a ring geometry.
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