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Abstract
Recent years have witnessed significant progress in quantum communication and quantum internet with the
emerging quantum photonic chips, whose characteristics of scalability, stability, and low cost, flourish and open up
new possibilities in miniaturized footprints. Here, we provide an overview of the advances in quantum photonic chips
for quantum communication, beginning with a summary of the prevalent photonic integrated fabrication platforms
and key components for integrated quantum communication systems. We then discuss a range of quantum
communication applications, such as quantum key distribution and quantum teleportation. Finally, the review
culminates with a perspective on challenges towards high-performance chip-based quantum communication, as well
as a glimpse into future opportunities for integrated quantum networks.

Introduction
Quantum communication, which applies the principles

of quantum mechanics for quantum information trans-
mission, enables fundamental improvements to security,
computing, sensing, and metrology. This realm encapsu-
lates a vast variety of technologies and applications ran-
ging from state-of-the-art laboratory experiments to
commercial reality. The best-known example is quantum
key distribution (QKD)1,2. The basic idea of QKD is to use
the quantum states of photons to share secret keys
between two distant parties. The quantum no-cloning
theorem endows the two communicating users with the
ability to detect any eavesdropper trying to gain knowl-
edge of the key3,4. Since security is based on the laws of
quantum physics rather than computational complexity,
QKD is recognized as a desired solution to address the

ever-increasing threat raised by emergent quantum
computing hardware and algorithms.
Despite the controversy surrounding its practical

security, QKD is leading the way to real-world applica-
tions5. For example, fiber-based and satellite-to-ground
QKD experiments have been demonstrated over 800 km
in ultra-low-loss optical fiber6 and 2000 km in free space7,
respectively. The maximal secure key rate for a single
channel has been pushed to more than 110Mbit/s8. A
number of field-test QKD networks have been established
in Europe9–11, Japan12, China13,14, UK15, and so forth.
Furthermore, the security of practical QKD systems was
intensively studied to overcome the current technical
limitations5,16,17. Post-quantum cryptography has been
combined with QKD to achieve short-term security of
authentication and long-term security of keys18.
Beyond QKD, quantum teleportation has attracted

extensive attention, which exploits quantum entangle-
ment for transferring fragile quantum information in an
effectively unhackable manner19–21. Based on this, quan-
tum networks can be conducted to connect various
quantum devices, enabling unparalleled capabilities that
are provably unattainable using only classical information
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techniques22,23. Quantum secure direct communication
(QSDC)24–26, another important branch of quantum
communication, has also provided opportunities for
secure data transferring. This technique has been evolving
quickly in recent years27–33, enabling users to directly
transmit confidential information over secure quantum
channels without sharing encryption keys. For instance, a
QSDC network has been demonstrated with 15 clients32.
Combined with post-quantum cryptography, a QSDC
network with end-to-end security can be constructed
using existing technologies33.
Conventional quantum communication systems are

typically built using discrete optical devices. Generally,
these devices are separately assembled with optical glasses
(e.g., fused quartz and silica) and optical crystals (e.g.,
calcite, beta barium borate and lithium niobate) and
connected via free space or optical fibers. Although it is
convenient to optimize individual elements to fit with the
strict requirements such as ultra-low loss, high efficiency,
fast speed and high fidelity in quantum information
applications, interconnects and packaging have always
posed significant reliability and cost challenges for tradi-
tional discrete optical designs, especially when dealing
with large-scale networks linking hundreds of thousands
of users. For instance, high mechanical and thermal sta-
bilities are required to mitigate space and phase mis-
alignment over time due to environmental stresses and
temperature variations, which are yet difficult to achieve
in a complex discrete optical system by global stabiliza-
tion. Therefore, current bulky systems composed of dis-
crete optical components may struggle to meet the
growing demand for higher volume transmission cap-
ability, manifesting great merits of chip-scale quantum
communication systems34.
Quantum photonic chips are an ideal platform for new

generation of quantum technology35. In addition to min-
iaturization, two advantages over discrete optical systems,
i.e., scalability and stability are prominent. Scalability is
enabled because the chips, with all their components, are
printed as a unit by lithography rather than being con-
structed one component at a time. Stability is achieved as
the circuits built on a robust and compact solid-state
platform can minimize deviations due to vibrations or
temperature variations. These two advantages are critical
for achieving the level of integration and performance
required for quantum information processing and highly
efficient quantum communication. Moreover, quantum
photonic chips have a strong potential for low-cost pro-
duction. While the initial cost of fabricating the required
photomasks is high, the average cost per chip can be
greatly reduced through mass production.
After decades of effort, photonic integration has been

realized in all aspects of individual quantum commu-
nication systems, including photon sources, encoding and

decoding photonic circuits, and detectors34,35. In princi-
ple, integrated photonic chips can combine many desir-
able characteristics, such as efficiency, cost-effectiveness,
scalability, flexibility and performance, that are required
for quantum communication applications. Such char-
acteristics, along with wafer-scale fabrication processes,
make chip-based quantum communication systems a
compelling platform for the future of quantum
technologies.
In this review, we focus on the latest advances in

implementing quantum communication on quantum
photonic chips. We begin by discussing state-of-the-art
integration platforms used for quantum photonics, sum-
marizing their specific features and criteria that determine
their suitability for quantum communication applications.
Next, we examine the key elements of a chip-based
quantum communication system, namely integrated
photon sources, reconfigurable passive and active ele-
ments for manipulation of quantum states, and integrated
single-photon and homodyne detectors. We then review
progress in realizing on-chip systems for practical quan-
tum communication implementations, including QKD
and entanglement-based protocols such as entanglement
distribution and quantum teleportation. Finally, we con-
clude by discussing the remaining challenges and pro-
spects in this field.

Key technologies for quantum photonic chips
Photonic integration opens the path towards miniatur-

ized quantum communication systems with increasing
complexity and enhanced functionality. Figure 1 provides
an overview of the three aspects of integrated quantum
communication: photonic materials platforms for large-
scale integration36–38, quantum photonic components
such as quantum light sources39, high-speed modulators40

and highly efficient photodetectors41, and typical appli-
cations in QKD42,43 and quantum teleportation44. Since
the materials, preparation processes and structural
designs employed in photonic integration are con-
siderably different from those used in discrete systems,
essential photonic components in chip-level configura-
tions must be redesigned and optimized for specific
quantum information applications. The relevant technical
studies are summarized in this section, covering quantum
light sources, encoding and decoding elements, quantum
detectors and packaging techniques for integrated pho-
tonic systems.
Figure 2 highlights key milestones in the development

of integrated quantum communication. Early attempts in
this field can be traced back to the integration of photon
sources using periodically poled lithium niobate wave-
guides45 and interferometers using silica-on-silicon planar
lightwave circuits (PLCs)46–49. The high efficiency and
temperature-stabilized operation of these integrated
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elements demonstrated their inherent suitability over
discrete, bulky components. Subsequently, many other
materials were explored, and significant progress was
made in on-chip generation, manipulation, and detection
of quantum states of light for quantum communication
and other quantum information applications.
Prevailing materials platforms for chip-based quantum

communication implementations include silica waveguides
(silica-on-silicon and laser-written silica waveguides),
silicon-on-insulator (SOI), silicon nitride (Si3N4), lithium
niobate (LN), gallium arsenide (GaAs), indium phosphide
(InP) and silicon oxynitride (SiOxNy)

34,35,50. Table 1

summarizes the state of the art of these monolithic plat-
forms, indicating their advantages and disadvantages in
terms of waveguiding properties, available active compo-
nents, and compatibility with related technologies. For
example, SOI provides a great refractive-index contrast for
high-density integration, strong optical nonlinearity for
nonclassical state generation, and excellent compatibility
with advanced CMOS (complementary metal-
oxide–semiconductor) processes that have been widely
employed in the semiconductor industry. However, the lack
of lasing capability makes it challenging to fully integrate all
the required components of a quantum communication
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system. III–V semiconductor platforms (GaAs, InP, etc.)
allow for monolithic system integration, yet coming at the
expense of higher cost and lower integration level. The
inevitable weaknesses of each material and its fabrication
process indicate that no single platform can provide all the
desired features for quantum communication applications.
A viable solution is a hybrid integration that aims to com-
bine the advantages of different platforms50. Such efforts
have been made to realize heterogeneous quantum photonic
devices like integrated superconducting nanowire single-
photon detectors (SNSPDs)41 and integrated lasers for weak
coherent pulse generation51. Other important technologies
including semiconductor quantum dots (QDs) interfaced
with photonic nanostructures52 and diamond-on-
insulator53,54 have also emerged as competitive platforms
for on-chip implementation of quantum communication.

Quantum light sources
A photon source that generates designated quantum

states of light is a key element of a quantum optical sys-
tem. In general, single-photon states and entangled pho-
ton states are required in the architecture of quantum
communication networks16, which can be obtained either
deterministically using single-photon emitters or prob-
abilistically using parametric nonlinear processes.
QDs are considered one of the most promising candi-

dates for the on-demand generation of single photons or

entangled photon pairs by virtue of the deterministic
nature of their emission characteristics55. In particular,
the small footprint and compatibility with semiconductor
technology make them appealing for on-chip integra-
tion56. For single-photon generation, purity, extraction
efficiency, and photon indistinguishability of 99.1%, 66%,
98.5% and 99.7%, 65%, 99.6% have been achieved in a
single InAs/GaAs self-assembled QD (Fig. 3a)57 and an
InGaAs QD (Fig. 3b)58, respectively. However, these
micropillar-based QD single-photon sources present dif-
ficulty in waveguide integration due to their out-of-plane
emission feature. Alternatively, QDs can be embedded in
photonic crystal waveguides (Fig. 3c)59 or heterogeneous
waveguide structures60 for highly efficient coupling with
waveguides. Entangled photon pairs can also be obtained
using the biexciton-exciton cascaded radiative processes
in QDs61–63. By deterministically embedding GaAs QDs
in broadband photonic nanostructures, an entangled
photon pair source was demonstrated with a pair collec-
tion probability of 0.65, entanglement fidelity of 0.88, and
indistinguishability of 0.901 and 0.903 (Fig. 3d)64. In
addition to QDs, several other solid-state quantum
emitters, such as color centers in diamond53,54, silicon
carbide65, carbon nanotubes66, and defects in two-
dimensional materials67,68, have also been investigated
and shown great potential for on-chip generation of single
photons or entangled photon pairs.
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Integrated probabilistic quantum light sources typically
take advantage of spontaneous four-wave mixing (SFWM) or
spontaneous parametric down-conversion (SPDC) in optical
waveguides or other photonic structures (e.g., micro-disk
and ring resonators, and photonic crystals). Due to the tight
confinement of light, these nonlinear parametric processes
are greatly enhanced on a chip, enabling efficient generation
of high-quality photon states in miniaturized configurations.
In SFWM, two pump photons are annihilated to produce a
pair of signal and idler photons, where the frequencies of the
pump (ωp1, ωp2), signal (ωs) and idler (ωi) must obey
ωp1+ωp2=ωs+ωi to conserve the energy. Single-photon
or entangled photon sources based on this four-photon
process have been demonstrated in platforms with third-
order nonlinearity, such as Si69, SiO2 (Fig. 4a)70, and Si3N4

(Fig. 4b)71. In SPDC, one pump photon is split into a pair of
signal and idler photons, where the frequencies of the pump
(ωp), signal (ωs), and idler (ωi) must also satisfy ωp=ωs+ωi.
Photon sources based on this three-photon process have
been implemented in platforms with second-order non-
linearity, such as periodically poled LN waveguide circuits
(Fig. 4c)72 and a III–V semiconductor chip73. The major
issues for these photon sources are that they produce pho-
tons non-deterministically and the generation rates are
limited by the fundamental trade-off between brightness and
multi-photon probability. Multiplexing techniques offer a
promising way to solve the problems39,74–77. For instance, an
integrated spatially multiplexed heralded single-photon
source (HSPS) achieved 62.4% and 63.1% enhancement to
the single photon generation probability for two separately
pumped sources and two sources pumped through a com-
mon input, respectively74. Further improvement in efficiency
requires better delay lines with ultra-low loss and miniatur-
ized footprint, and faster switches with faster electronics to
synchronize the operations77.
In a practical quantum communication system, single-

photon sources and entangled photon sources are not
always required. According to the decoy-state proto-
col78–80, weak coherent pulses can be used as a credible
alternative to single-photon states for most prepare-and-
measure QKD applications. As such, integrated photon
sources can be achieved simply by attenuating the
coherent pulses produced by on-chip lasers. Such photon
sources have already been demonstrated in several chip-
based QKD systems42,51,81.

Reconfigurable quantum photonic components
Manipulation of quantum states of light is essential for

the processing of quantum information in quantum
communication, which can be readily implemented by
using off-the-shelf passive and active components of
integrated photonics. In a typical quantum communica-
tion system, photons are generally handled in polariza-
tion, phase, spatial, spectral, and temporal domains. Thus,Ta
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it requires building blocks that can influence these
degrees of freedom of the photons, such as polarization
splitters/rotators (Fig. 5a)82, phase shifters (Fig. 5b)83,
intensity modulators (Fig. 5c)84, directional couplers
(Fig. 5d)85, multi-mode interferometers (MMI) (Fig. 5e)86,
ring resonators (Fig. 5f)87, and delay lines (Fig. 5g)88. In
particular, phase shifters can be realized via the thermo-
optic effect for low-speed applications83,89 and the Pockels
electro-optic effect for high-speed applications40,84. Such
devices have been demonstrated in a variety of integrated
platforms, e.g., an ultraviolet-written silica-on-silicon
photonic chip for quantum teleportation with thermo-
optic phase shifters90, a GaAs quantum photonic circuit
with tunable Mach–Zehnder interferometer (MZI) relying
on the Pockels effect91, a reprogrammable linear optical
circuit comprising an array of 30 silica-on-silicon wave-
guide directional couplers with 30 thermo-optic phase
shifters (Fig. 5h)92, and a large-scale silicon photonics

quantum circuit integrating 16 SFWM photon-pair
sources, 93 thermo-optical phase shifters and 122 MMI
beam splitters93. On-chip modulators based on free-
carrier dispersion effect43,94 or quantum-confined Stark
effect81 can also be utilized for pulse generation and qubit
encoding with frequencies up to GHz. For polarization-
encoding protocols, modulators based on polarization
rotators and polarization beam splitters have been
designed and demonstrated for the generation of BB84
polarization states94–96.
Besides aforementioned elements, additional integrated

components are required for optical connection between
quantum photonic chips and optical fibers. One-
dimensional grating couplers and off-plane coupling can
be used when there is only one input or output polar-
ization97. Otherwise, edge couplers like inverted tapers for
butt coupling can be adopted instead in the case of more
polarizations and wider spectral range98. Moreover, two-
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waveguide mode. d An illustration of a circular Bragg resonator on a highly efficient broadband reflector with a single GaAs QD emitting entangled
photon pairs64. Panels reproduced with permission from: a ref. 57, APS; b ref. 58, Springer Nature Ltd; c ref. 59, APS; d ref. 64, Springer Nature Ltd
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dimensional grating coupler supporting multi-
polarization operation has been demonstrated to convert
path-encoded qubits to polarization-encoded qubits that
are more adapted for propagation in optical fibers99,100.

Single-photon detectors (SPDs) and homodyne detectors
Efficient single-photon detection is of great importance to

quantum communication applications. In particular, fully
integrated SPDs are highly desirable because interfacing
with off-chip detectors will lead to unavoidable coupling
losses. Recently, an integrated waveguide-coupled Ge-on-Si
lateral avalanche photodiode has been demonstrated for
single-photon detection with efficiency of 5.27% at 1310 nm
and a dark count rate of 534 kHz at 80 K (Fig. 6a)101.
However, such single-photon avalanche photodiodes are
often plagued with too many dark counts at high effi-
ciencies. As an alternative, SNSPDs offer significantly lower
dark noise with higher detection efficiency, reduced timing
jitter, as well as photon-number resolving (PNR) capability.
Waveguide-integrated SNSPDs have been reported in
platforms of GaAs102, Si41, Si3N4

103,104, LN105, etc., among

which the traveling wave SNSPDs embedded on Si wave-
guides have achieved detection efficiency up to 91% and a
dark count rate down to 50Hz (Fig. 6b)41, and on-chip
compatibility of reconfigurable components with SNSPDs
was demonstrated at cryogenic temperatures104,105. Wave-
guide PNR detectors are possible by patterning multiple
wires in series (Fig. 6c)106. In addition to direct deposition,
large-scale integration of SNSPDs fabricated on silicon
nitride membrane with silicon and aluminum nitride
waveguides was enabled by using the pick-and-place tech-
nique (Fig. 6d)107. Moreover, transition-edge sensor (TES)
detectors were implemented in a waveguide configuration
for the PNR detection with a resolution of up to five
photons108,109.
The balanced homodyne detector (or balanced zero-

beat detector), which has been widely exploited in
continuous-variable (CV) quantum information applica-
tions, is another crucial detection element for quantum
measurement. Recent developments have significantly
improved the performance of integrated homodyne
detectors, enabling enhanced levels of compact size, good
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stability, broad bandwidth, low noise, and a high degree of
common-mode rejection. As an illustration, a homodyne
detector with 150-MHz bandwidth and 11-dB clearance
was monolithically integrated onto a silicon photonics
chip110. However, discrete amplification electronics
greatly increase the device footprint. To reduce the size
and total capacitance, wire bonding was utilized to inte-
grate the germanium-on-silicon homodyne detector chip
with the amplifier chip111, which resulted in a 3-dB
bandwidth of 1.7 GHz and a shot-noise limited bandwidth
of up to 9 GHz. A similar approach has also been applied
to construct chip-level InGaAs homodyne detectors
comprising low-parasitic photodiodes and low-noise
high-speed transimpedance amplifiers112,113. Although it
is convenient to adopt commercial telecom transimpe-
dance amplifiers, they will typically bring suboptimal
electrical noise. Co-design and integration of a homodyne
detector with a customized transimpedance amplifier can
efficiently reduce the noise and significantly boost the
performance, allowing for a 20-GHz shot-noise-limited
bandwidth and a quantum shot noise clearance of up to
28 dB (Fig. 6e)114.

Chip packaging and system integration
While bare quantum photonic chips can be character-

ized using a probe station, they must be packaged into
durable modules to develop working prototype devices115.
To this end, numerous processes have been proposed to
package quantum photonic chips into compact systems
for real-world applications.
Generally, photonic packaging involves a range of

techniques and technical competencies needed to make
the optical, electrical, mechanical, and thermal connec-
tions between a photonic chip and the off-chip compo-
nents in a photonic module116–118. Fiber-to-chip coupling
is one of the best-known aspects. The main challenge
associated with coupling between an optical fiber and a
typical waveguide on the chip is the large difference
between their mode‐field diameters (MFDs)119. For
example, the MFD at 1550 nm is ~10 μm in telecom
single‐mode fiber (SMF), while the cross-section of the
corresponding strip silicon waveguide is usually only
220 × 450 nm. This mismatch can be mitigated by using
configurations that efficiently extract the mode from
waveguide97, such as inverted-taper edge couplers
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interfaced with lensed SMF fibers (Fig. 7a)120,121 or ultra-
high numerical aperture fibers122, and grating couplers
interfaced with SMF fibers (Fig. 7b)119,123. For the
approach harnessing grating couplers, coupling efficiency
up to 81.3% (−0.9 dB) can be achieved in a 260-nm-thick
SOI platform without the need for a back reflector or
overlayer124. Additionally, efficiencies over 90% have been
experimentally demonstrated using edge couplers fabri-
cated on 200-mm SOI wafers125. An alternative approach
for cost-effective and panel-level packaging is the eva-
nescent coupling scheme, which has been reported to
have a coupling loss of approximately 1 dB at a wave-
length of 1550 nm126.
To access the electrical components on quantum pho-

tonic chips, electronic packaging is required to route sig-
nals from electronic drivers, amplifiers, and other control
circuitry. This is often achieved by interfacing with dedi-
cated printed circuit boards (PCBs) (Fig. 7c)127. The con-
nection between PCBs and the bond-pads on the chip is
usually made using wire-bonds. When a very large number
of electrical connections or precise sub-nanosecond con-
trol on multiple channels is needed, 2.5-dimensional or
3-dimensional integration with customized electronic
integrated circuits (EICs) may be utilized (Fig. 7d)115,128.
This integration can be achieved using either solder-ball-

bump or copper-pillar-bump interconnects, providing a
robust electrical, mechanical, and thermal interface for the
photonic chips129,130.
Global thermal stabilization of quantum photonic devices

is essential for prototypes that require high accuracy and
repeatability or for field tests where seasonal temperature
swings are common. This can be achieved using passive
cooling techniques or a thermoelectric cooler (TEC). The
added global stability from the TEC allows for more effi-
cient and better reproducibility in the local temperature
tuning of individual photonic elements (e.g., micro-ring
resonators, thermo-optic phase shifters, etc.) on the
chip115. Additionally, liquid cooling can be installed to
further increase the cooling capacity of the system127.

Quantum secure communication systems
As the most developed quantum secure communication

technology, QKD based on bulk or fiber optic compo-
nents has already been used in banks and governments to
provide high-level security for data transmission. Never-
theless, wider applications require QKD systems that are
more robust, compact, and can be mass manufactured at a
lower cost. In the previous section, we have summarized a
variety of studies targeting integrated devices for the
realization of miniaturized and cost-effective quantum
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communication. In this section, recent efforts towards
fully chip-based QKD platform are described from a
system-level view. As an overview, the degree of integra-
tion for typical integrated QKD implementations is listed
in Table 2. Further comprehensive reviews of the QKD
protocols can be found in the refs. 16,17,131,132.

Quantum random number generators (QRNGs)
The security of encryption is determined by the quality or

unpredictability of keys, implying that a truly random
number generator is an essential part of a quantum secure
communication system. Although pseudo-random num-
bers are simple to create, their inherent deterministic
behavior prevents them from being regarded as truly
unpredictable. QRNGs have thus been developed to pro-
duce truly random numbers with characteristics of unpre-
dictability, irreproducibility, and unbiasedness, which are
guaranteed by the basic principle of quantum physics133.
The most commonly used protocols for QRNGs include

the quantum phase fluctuation scheme134–138 and vacuum
state scheme139–144. These schemes can easily achieve
random bit rates up to Gbps by employing photodetectors
instead of single-photon detectors. In addition to real-

time output speed, the module size is also a key parameter
of QRNG for practical applications. The emerging tech-
nology of integrated quantum photonics has exhibited
considerable benefits in terms of size reduction. Recently,
numerous integrated QRNG implementations have been
demonstrated, leveraging various integration technologies
with different levels of complexity. Utilizing multiplexed
detectors, a QRNG based on LiNbO3 platform144 has
reached a real-time rate of 3.08 Gbps, while a quantum
entropy source has been constructed in an InP plat-
form145. Since SOI platform has a higher integration
density and superior technical maturity compared with
III-V systems, QRNG implementations have also been
reported on SOI platform by measuring phase fluctua-
tions (Fig. 8a)146 and vacuum state110, respectively.
However, it is worth noting that germanium photodiodes
on SOI experience a significant dark current, which
degrades the performance of on-chip QRNGs and needs
careful optimization for mitigation. Alternatively, an
integrated QRNG based on InGaAs photodiodes was
constructed with a real-time output rate of 18.8 Gbps by
virtue of a high bandwidth trans-impedance amplifier
hybrid packaged with an SOI chip (Fig. 8b)112. Another

Table 2 Degree of integration for typical integrated QKD implementations

Reference Platform Protocol QRNG Source Encoding Decoding Detector

Sibson, P. et al. (2017)42 InP, SiOxNy BB84

COW

DPS

No Yes Yes Yes No

Paraïso, T. K. et al. (2019)153 InP DPS

BB84

Yes Yes Yes No No

Paraïso, T. K. et al. (2021)154 InP, Si Modified

BB84

Yes Yes Yes Yes No

Ma, C. et al. (2016)95 Si BB84 No No Yes No No

Sibson, P. et al. (2017)155 Si, SiOxNy COW

BB84

No No Yes Yes No

Bunandar, D. et al. (2018)157 Si BB84 No No Yes No No

Avesani, M. et al. (2021)158 Si BB84 No No Yes No No

Geng, W. et al. (2019)159 Si BB84 No No Yes Yes No

Dai, J. et al. (2020)160 Si COW

DPS

No No Yes Yes No

Ding, Y. et al. (2017)162 Si HD-QKD No No Yes Yes No

Semenenko, H. et al. (2020)81 InP MDI-QKD No Yes Yes No No

Wei, K. et al. (2020)94 Si MDI-QKD No No Yes No No

Cao, L. et al. (2020)96 Si MDI-QKD No No Yes Yes No

Zheng, X. et al. (2021)165 Si, NbN MDI-QKD No No No Yes Yes

Zhang, G. et al. (2019)43 Si CV-QKD No No Yes Yes Yes

COW coherent one way, DPS differential phase shift, HD-QKD high-dimensional QKD
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integrated QRNG has been demonstrated based on a
parallel array of independent single-photon avalanche
diodes, homogeneously illuminated by a direct-current-
biased light-emitting diode and co-integrated with logic
circuits for postprocessing147. The real-time bit rate of the
CMOS-based QRNG could reach up to 400Mbps.
Recently, through custom co-design of opto-electronic
integrated circuits and side-information reduction by
digital filtering, a record generation rate of 100 Gbps has
been reported using an SOI photonic chip co-packaged
with a GaAs transimpedance amplifier circuit148.

DV-QKD systems
In typical QKD implementations, secret keys are enco-

ded in discrete variables (DVs), such as the polarization or
phase of photons. A prominent example of such DV-QKD
protocols is decoy-state BB8478–80, which has been widely
adopted in state-of-the-art commercial applications.
According to the protocols, light sources, modulators,
single-photon detectors, and essential passive optical
components constitute the main framework of a DV-
QKD system. Photonic integration of these elements
began with the asymmetric PLC MZIs for differential-
phase-shift QKD experiments46–49. The on-chip inter-
ferometers showed much more precise and stable opera-
tion for phase decoding compared to their fiber-based
counterpart. Afterward, a series of compact QKD devices
were demonstrated. For example, a miniaturized QKD
transmitter was fabricated with a similar size to an
electro-optic modulator, which incorporated a distributed
feedback laser and a modulator149. The small-scale
transmitter can produce 1550-nm weak-coherent pulses
encoded in BB84 polarization states with decoy states.
Then, a client consisting of an on-chip LiNbO3 polariza-
tion rotator was realized for client-server reference-
frame-independent QKD150. The client integrated into a
handheld device received dim laser pulses from a QKD
server, and then attenuated and encoded each pulse with a

qubit of information for return transmission to the server.
In addition, the design and evaluation of a handheld QKD
transmitter module were put forward based on an inte-
grated optics architecture with an effective size of
25 mm× 2mm× 1mm151. In the module, four vertical-
cavity surface-emitting lasers coupled to four micro-
polarizers fabricated by focused ion beam milling were
used to generate polarization qubits. The qubits were
combined with a waveguide array fabricated in bor-
osilicate glass for ensuring spatial overlap.
The devices previously discussed show the viability and

feasibility of partially integrated QKD systems. Never-
theless, fully chip-based systems are essential for enhanced
performance, miniaturization, and increased functionality
necessary in practical deployments. A QKD system was
demonstrated with a high degree of integration (Fig. 9a)42.
The transmitter module on an InP chip and the receiver
module on a SiOxNy chip was integrated by using com-
ponents and manufacturing processes from the tele-
communication industry. The InP transmitter
monolithically incorporated a tunable laser, optical inter-
ferometers, electro-optic phase modulators and a p–i–n
photodiode, while the SiOxNy receiver consisted of thermo-
optic phase shifters and a reconfigurable delay line that
interfaced with off-chip single photon detectors. The
reconfigurability of the devices enabled the implementation
of multiple protocols, including BB84, coherent one-way,
and differential phase shift, with clock rates up to 1.7 GHz,
a quantum bit error rate (QBER) as low as 0.88%, and
estimated secret key rates up to 568 kbps for an emulated
20 km fiber link. Recently, the data rate of the chip-based
system has been increased through wavelength division
multiplexing (WDM)152. Such WDM-QKD system was
implemented using two InP transmitters and a single
SiOxNy receiver with on-chip asymmetric MZI filters for
wavelength demultiplexing. The combinedWDM channels
doubled the secret key rate to 1.11Mbit/s over a 20 km
emulated fiber. The aforementioned implementations of
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chip-based QKD systems relied on integrated modulators.
In fact, a modulator-free QKD transmitter chip can be
realized based on the direct phase modulation approach
recently introduced in bulk optics transmitters. Using the
modulator-free chip, secure key rates of 270 and 400 kbps
at 20 dB attenuation were achieved for the decoy state BB84
and distributed phase shift protocols, respectively (Fig.
9b)153. Recently, an entirely standalone QKD system has
been developed based on InP photonic integrated circuits
assembled into compact modules154. This system integrates
the quantum transmitter, receiver, and QRNG chips,
enabling quantum random number generation and key
distribution at gigahertz clock rates.
Silicon photonics is another attractive platform suitable

for fully chip-based QKD systems. Although integrating
light sources and SPDs remains challenging, several
proof-of-principle demonstrations of Si-based QKD

devices have been reported in recent years. One early
work showcased a Si optical transmitter for polarization-
encoded QKD (Fig. 10a)95. The chip incorporated a pulse
generator, intensity modulator, variable optical attenua-
tor, and polarization modulator in a 1.3 mm × 3mm die
area and executed the BB84 protocol with a QBER of 5.4%
and an asymptotic secure key rate of 0.95 kbps over a
5-km fiber link. Meanwhile, three implementations of
high-speed low-error QKD with silicon photonic devices
were demonstrated (Fig. 10b)155. Employing a combina-
tion of thermo-optic phase modulators alongside high-
bandwidth carrier-depletion modulators, they attained
estimated asymptotic secret key rates of up to 916 kbps
and QBERs as low as 1.01% over 20 km of fiber. Fur-
thermore, a silicon photonic transceiver circuit was con-
structed, capable of generating the four BB84 states with
>30 dB polarization extinction ratios and gigabit-per-
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second modulation speed156. On this basis, polarization-
encoded QKD field tests were demonstrated using a
similar silicon photonic encoder (Fig. 10c)157. The systems
achieved composable secret key rates of 1.039Mbps in a
local test (on a 103.6-m fiber with a total emulated loss of
9.2 dB) and 157 kbps in an intercity metropolitan test (on
a 43-km fiber with 16.4 dB loss). In addition, other
demonstrations using silicon photonics have also been
reported, including an integrated state encoder for free-
space daylight QKD158, a silicon photonic QKD trans-
ceiver based on time-bin protocol159, a silicon photonic
transmitter for high-speed distributed-phase-reference
QKD160 and an integrated QKD receiver for multiple
users161.

Recently, implementations of advanced QKD protocols
with chip-based systems have garnered more interest, as
these protocols would greatly benefit from photonic
integration. A noise-tolerant high-dimensional QKD
protocol based on space division multiplexing in multi-
core fiber was demonstrated using silicon photonic inte-
grated circuits (Fig. 11a)162. These circuits provided a
much more efficient way to create high-dimensional
quantum states, enabling low and stable QBER well below
both the coherent attack and individual attack limits.
Moreover, measurement-device-independent (MDI)
QKD, which eliminates all side channel loopholes in
detection, is well-suited for a chip-based client-server
scenario, where clients hold low-cost photonic chips, and

a

b

c d

Alice

VOA1 MZI1

6 mm
Ph. Enc

T. Enc

Alice

Bob

Bob

Alice

Laser Decoy state
MOD

Phase
MOD

Polarization
MOD

PPC

Electrical control circuit

Charlie

EPC

BS PBS SPD

I. Mod

1 mm

Beam
splitter

te
0

te
1

⎜ψ+〉

|A〉
|B〉 |C〉

|D〉

⎜ψ–〉

tl
0

tl
1

SPDs

EOPM

PDMMI

DBRSOADBR

MZI2

VOA2
VOA3
VOA4
VOA5

MZI4 MZI6
MZI7

Bob

MZI5

MCF

SPD1

SPD2

SPD3

SPD4

ϕ1
ϕ2

ϕ5

ϕ6
ϕ3

ϕ4

MZI3

Fig. 11 Different chip-based quantum communication systems for advanced QKD protocols. a Silicon-photonic-integrated circuit for noise-
tolerant high-dimensional QKD162. b InP transmitter chips used to generate the time-bin encoded BB84 weak coherent states for MDI-QKD81. c A packaged
silicon photonic MDI-QKD transmitter chip soldered to a compact control board94. d A silicon photonic chip-based MDI-QKD system comprising two
transmitter chips and one server chip interfaced with off-chip SPDs96. Panels reproduced with permission from: a ref. 162, under a Creative Commons licence
(https://creativecommons.org/licenses/by/4.0/); b ref. 81, under a Creative Commons licence (https://creativecommons.org/licenses/by/4.0/); c ref. 94, under a
Creative Commons licence (https://creativecommons.org/licenses/by/4.0/); d ref. 96, APS

Luo et al. Light: Science & Applications          (2023) 12:175 Page 13 of 22

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the server, acting as an untrusted node, incorporates the
most expensive elements that can be shared among
multiple users. The feasibility of using integrated photo-
nics for MDI-QKD was demonstrated in two independent
studies with the InP platform163 and the Si/III–V hybrid
platform51, respectively. In these studies,
Hong–Ou–Mandel interference, the key component of
MDI-QKD, was performed between weak coherent states
from the chips. High visibilities of 46.5 ± 0.8% and 46 ± 2%
were observed with two InP transmitters163 and two III–V
on silicon waveguide integrated lasers51, respectively.
Subsequently, five research groups implemented chip-
based MDI-QKD systems: a star-topology quantum
access network with an integrated server was built for
MDI-QKD164; secure key exchange up to 200 km was
presented using monolithically integrated InP transmit-
ters (Fig. 11b)81; a 1.25-GHz MDI-QKD system was
reported with two silicon photonic transmitters (Fig.
11c)94; an all-chip-based MDI-QKD system including two
client chips and one server chip was demonstrated using
silicon photonics (Fig. 11d)96; and a fully integrated relay
server for MDI-QKD was realized based on a hetero-
geneous superconducting-silicon-photonic chip165.

CV-QKD systems
In addition to DV-QKD, several QKD protocols166–168

have been proposed to encode key information into
continuous variables, such as the values of the quadrature
components of the quantized electromagnetic field. A
major technical difference is that CV-QKD implementa-
tion requires only homodyne detectors, rather than the
dedicated SPDs used in DV-QKD. This feature eliminates
the need for an additional cryogenic system and drama-
tically simplifies the detection setup. Consequently, CV-
QKD is naturally suitable for photonic integration and
compatible with chip-based coherent detection schemes
that have been used in classical high-bandwidth com-
munication systems. Indeed, a silicon photonic transcei-
ver design was proposed comprising all major CV-QKD
components as well as complete subsystems169; the fea-
sibility of a homodyne detector integrated onto a photonic
chip was demonstrated for measuring quantum states and
generating random numbers110. Recently, a stable and
miniaturized system was implemented for CV-QKD,
compatible with existing fiber communication infra-
structure by integrating all optical components (except
the laser source) on a silicon photonic chip (Fig. 12a)43.
The proof-of-principle characterization demonstrated
that the system was capable of producing a secret key rate
of 0.14 kbps (under collective attack) over a simulated
distance of 100 km in fiber. The performance of chip-
based CV-QKD systems can be improved by further
optimizing the detection module. As a possible illustra-
tion, a high-speed homodyne detector was realized by

interfacing CMOS-compatible silicon and germanium-
on-silicon nanophotonics with silicon-germanium inte-
grated amplification electronics (Fig. 12b)111. The detec-
tor has a 3-dB bandwidth of 1.7 GHz, a shot-noise limited
to 9 GHz, and requires only a miniaturized footprint of
0.84 mm2.

Entanglement distribution and quantum
teleportation systems
Quantum teleportation has been demonstrated with

many platforms ranging from superconducting qubits,
trapped atoms, nitrogen-vacancy centers, to continuous
variable states and so forth170. Among these imple-
mentations, photonic qubit is one of the most promising
candidates to build the quantum channel in a quantum
network since it is robust in a noisy environment and easy
to manipulate at room temperature23. Moreover, it can
tolerate longer propagation distances with minimal dis-
turbance from the surroundings. So far, photonic quan-
tum teleportation has been implemented experimentally
in many ways including free space and fiber systems170.
When quantum teleportation was first experimentally

verified, qubits were encoded in the polarization of pho-
tons generated from a BBO crystal in a free-space system
on an optical table20. Later, the record for free-space
teleportation was pushed up to over 1400 km between the
Micius satellite and a ground station171. This achievement
paved the way for an interconnected quantum network
globally. However, considering the challenges of beam
divergence, pointing, and collection for free-space tele-
portation, optical fiber systems are more promising for
cost-effective metropolitan quantum networks. Currently,
the longest fiber-based teleportation distance achieved is
102 km172.
One of the main challenges in photonic qubit tele-

portation is that the theoretical efficiency of Bell state
measurement is limited to only 50% when using linear
optics. To overcome this limitation, the continuous vari-
able optical mode can be adopted as an alternative for
realizing fully deterministic state teleportation. This
approach has already been demonstrated over a 6-km
fiber channel173. However, its fidelity still needs to be
improved, as this scheme is sensitive to channel loss. For
other types of material qubits, a record distance of 21 m
has been achieved using trapped atom systems174.
As quantum teleportation continues to make strides

toward real-world applications, the importance of integra-
tion as a key technology has become increasingly evident. In
a future quantum network, it will be possible to embed a
teleportation chip into stationary hardware (e.g., relays in
the station) or mobile hardware (e.g., drones175) to trans-
form these devices into lightweight and compact quantum
nodes. This would enable remote access to quantum
equipment for sharing quantum information or unlocking
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greater computational power. Such advancements have
been made possible owing to the ability to generate and
manipulate entangled photon pairs in different degrees of
freedom on chip176, such as the path-encoded entangled
states in MZIs93, polarization-encoded entangled states by
engineering birefringent structures177, and time-bin entan-
gled states in Franson interferometers178.
The first on-chip teleportation (Fig. 13a) was reported

with off-chip photon source and achieved a fidelity of
0.89, although it was performed within a single chip90.
Recent technological progress in integrated quantum
photonics has enabled the implementation of
entanglement-based quantum communication protocols
beyond a single chip. The first chip-to-chip entanglement
distribution was demonstrated with all key components
monolithically integrated on silicon photonic chips (Fig.
13b)100. On-chip entangled Bell states were generated,
and one qubit was distributed to another silicon chip by
converting on-chip path-encoded states and in-fiber
polarization states via the two-dimensional grating cou-
plers. Furthermore, more integrated quantum circuits

with on-chip sources have realized inter-chip teleporta-
tion with a fidelity of 0.88 (Fig. 13c)44. This chip-scale
demonstration of photonic qubit production, processing,
and transmission shows a promising way for the dis-
tributed quantum information processing internet. More-
over, entangled photon pairs across the visible-telecom
range were demonstrated on a Si3N4 chip with a delicately
engineered micro-ring resonator and further distributed
over 20 km71. High photon number purity and brightness
were achieved with low pump consumption of hundreds of
microwatts. Importantly, it provides an entangling link
between visible-band photons that can interface with
quantum memories and telecom-band photons that
feature low-loss transmission in optical fibers.

Challenges and perspectives
In this review, the rapid advances in chip-based quan-

tum communication relying on the development of inte-
grated quantum photonics are discussed. Photonic
integration not only provides a solid strategy for the
miniaturization and scaling of quantum communication
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systems but also fosters practical applications of quantum
communication and paves the way for future quantum
communication networks and the quantum internet.
Although considerable progress has been achieved, the

field of chip-based quantum communication is still in its
early stages and naturally faces many challenges. On the
component side, on-chip elements used in quantum com-
munication require more stringent specifications than those
used in classical optical communication to ensure high
fidelity and prevent decoherence of quantum states during
the process of preparation, manipulation, transmission, and
detection. Hence, the exploration of components with sui-
table characteristics is crucial. For example, high-key-rate
QKD calls for modulators that can operate at high clock
rates while maintaining an acceptable extinction ratio for
low crosstalk between different quantum states. However,
this demand cannot always be satisfied by conventional Si-
based modulators because carrier injection or carrier
depletion techniques induce non-ideal loss characteristics.
Fortunately, recent progress in ultra-high extinction
(>65 dB) Si modulators based on a cascaded MZI struc-
ture179 and LN180, Si-LN40, and Si-barium titanate181

modulators based on the electro-optical Pockels effect
provides possible solutions to this problem.
On the system side, fully integrated quantum commu-

nication systems with photon sources, photonic circuits,
and detectors have not yet been realized. The difficulties
in achieving full integration are due to two challenges:
(i) the first challenge is that no monolithic platform can

provide all the desired features for quantum commu-
nication applications. Hybrid integration, as discussed in
the section “Key technologies for quantum photonic
chips”, could be a viable solution to address this problem.
However, the technique is still under development and
requires more effort to achieve the final goal. Fortunately,
a detailed roadmap for realizing future large-scale hybrid
integrated quantum photonic systems has been sum-
marized50; (ii) the second challenge is that different parts
of an integrated quantum system may work in different
conditions. For example, QD single-photon sources and
single-photon detectors usually operate at cryogenic
temperatures. In contrast, conventional integrated mod-
ulators and thermo-optic phase shifters are designed for
room temperature applications and cannot function
properly under these extreme conditions. Photon
manipulation at cryogenic temperatures has thus become
a crucial factor for fully integrated systems. Recently, an
integrated cryogenic Si-barium titanate modulator182 and
microelectromechanical photonic circuits interfaced with
SNSPDs on the same chip104 have been demonstrated,
removing major roadblocks for the realization of
cryogenic-compatible systems. Furthermore, at a practical
level, targeting truly useful systems with potential for
industrial development will require the integration of both
optics and electronics. A recent demonstration has shown
the feasibility of integrating photonics with silicon
nanoelectronics to construct complete systems on a chip
for quantum communication183.
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On the security side, chip-based quantum commu-
nication faces potential loophole threats due to the spe-
cific imperfections of integrated photonic devices. For
instance, phase- and polarization-dependent losses are
significant problems in quantum photonic chips that, if
unchecked, could lead to an overestimation of the secret
key rate, compromising the security of QKD systems. To
solve these problems, a post-selection scheme has recently
been proposed that provides a high key generation rate
even in the presence of severe phase- and polarization-
dependent losses184. A decoy-state BB84 QKD experi-
ment considering polarization-dependent loss exploited
the proposal and successfully distributed secure key bits
over fiber links up to 75 km185. Additionally, the security
loopholes originating from the plasma dispersion effect of
free carriers186 and the integrated electrical control circuit
of the transmitter187 have been revealed and analyzed in
chip-based CV-QKD systems. Since there are still doubts
about practical QKD implementations from government
organizations like the National Security Agency (NSA) of
the USA and the National Cyber Security Centre (NCSC)
of the UK, further studies with comprehensive security
analysis are needed to close the gap between theoretical
models and practical integrated quantum communication
systems.
Beyond prepare-and-measure QKD, entanglement-

based QKD is another promising application for future
chip-based QKD systems. This has become possible since
time-bin entangled states were generated in GaAs188, Si189

and Si3N4
71,178 chips, and the chip-to-chip entanglement

distribution100 and quantum teleportation44 were
demonstrated between two programmable Si chips.
Combined with recent experimental progress190–192,
integrated photonics provide a viable way for the reali-
zation of compact entanglement-based systems that sup-
port device-independent QKD over kilometer-scale
distances. In addition, QSDC can also utilize the great
potential of quantum photonic chips in developing prac-
tical QSDC systems and networks as the protocol share a
similar setup with QKD27,31,32.
Currently, on-chip quantum teleportation is mostly

based on posterior and passive protocols. Future work
may include implementing feed-forward control by
upgrading a quantum communication system from pas-
sive to active so that the receiver can apply conditional
unitary operation in real-time to reconstruct quantum
states. Furthermore, long-distance entanglement dis-
tribution and quantum teleportation and large-scale
implementations of quantum networks rely on quantum
memories and quantum relays22,193. For example, quan-
tum memories in quantum nodes can generate entan-
glement between distant parties and therefore extend the
communication distance. However, the experimental
development of integrated quantum memory is still in its

infancy. There is still much work to be done to achieve
integrated quantum relays in the telecom band that are
compatible with fiber-based long-distance quantum
communication systems.
For practical applications of quantum communication,

the loss and decoherence in transferring photons between
different chips, either through optical fiber or free space,
can greatly limit the fidelity of the network. Several
solutions have been proposed to address the problem
originating from optical coupling. For instance, edge
coupling via a tapered silicon waveguide surrounded by a
SiO2 cladding cantilever structure was utilized, shrinking
the coupling loss to 1.3 dB/facet194,195. By engineering the
effective refractive index of the waveguides, sub-
wavelength waveguide grating-based edge couplings could
achieve coupling efficiencies as high as 0.32 dB/facet
(93%)196. For the packaging process of multiport coupling,
methods using intermediate mode transformation stages
waveguide such as ribbon layers197, photonic wire bond-
ing198, and 3D printing free-form lenses and mirrors199

were employed to reduce coupling loss. However, the
edge coupling strategy is frequently constrained by the
effective modal refractive index and mode-size mismatch
between the waveguide and fiber due to fabrication or
alignment deviation. The technique using evanescent
coupling between tapered waveguides and single-sided
conical tapered fibers could overcome this shortage and
produce highly effective coupling up to 0.13 dB/facet
(97%)200.
As another factor that drives the compact integration of

optical components, quantum computing on integrated
photonic chips has also attracted much attention in recent
years. There are two types of optical models201: specific
quantum computing models202,203 (e.g., boson sampling),
and universal quantum computing models204–209 (e.g.,
one-way or measurement-based). For specific quantum
computation, a variety of photonic systems were
demonstrated using quantum photonic chips210–217,
enabling a natural and effective implementation of boson
sampling. Gaussian boson sampling218,219, which can
dramatically enhance the sampling rate with the adoption
of squeezed light sources, was performed for the calcu-
lation of molecular vibronic spectra on a Si chip217 (up to
8 photons) and a SiN chip216 (up to 18 photons). Recently,
quantum computational advantage has been delivered by
photonic Gaussian boson sampling processors220,221,
paving the path for further development of integrated
specific quantum computers with potential applications
including graph optimization222, complex molecular
spectra223, molecular docking224, quantum chemistry225,
etc. For universal quantum computation, a number of
major functionalities have been demonstrated with on-
chip photonic components, such as controlled-NOT gate
and its heralding version92,226, and compiled Shor’s
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factorization227. Moreover, both architectural and tech-
nological efforts have been dedicated to photonic one-way
quantum computation. This approach employs cluster
states and sequential single-qubit measurement to per-
form universal quantum algorithms205,207,228 and can be
greatly enhanced by implementing resource state gen-
eration and fusion operation natively229–231. The relevant
circuit implementations include programmable four-
photon graph states on a Si chip232, path-polarization
hyperentangled and cluster states on a SiO2 chip233 and
programmable eight-qubit graph states on a Si chip234.
In conclusion, quantum photonic chips have rapidly

matured to become a versatile platform that proves to be
invaluable in the development of cutting-edge quantum
communication technologies. This review delves into the
advancements achieved in this particular field. Consider-
ing the remarkable outcomes, it is anticipated that pho-
tonic integration will eventually assume a crucial role in
building various quantum networks and potentially a
global quantum internet, reshaping the landscape of
future communication methodologies.
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