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Bloch theorem dictated wave chaos in microcavity
crystals
Chang-Hwan Yi1, Hee Chul Park 1,2✉ and Moon Jip Park1,3✉

Abstract
Universality class of wave chaos emerges in many areas of science, such as molecular dynamics, optics, and network
theory. In this work, we generalize the wave chaos theory to cavity lattice systems by discovering the intrinsic coupling
of the crystal momentum to the internal cavity dynamics. The cavity-momentum locking substitutes the role of the
deformed boundary shape in the ordinary single microcavity problem, providing a new platform for the in situ study
of microcavity light dynamics. The transmutation of wave chaos in periodic lattices leads to a phase space
reconfiguration that induces a dynamical localization transition. The degenerate scar-mode spinors hybridize and non-
trivially localize around regular islands in phase space. In addition, we find that the momentum coupling becomes
maximal at the Brillouin zone boundary, so the intercavity chaotic modes coupling and wave confinement are
significantly altered. Our work pioneers the study of intertwining wave chaos in periodic systems and provide useful
applications in light dynamics control.

Introduction
Light dynamics in optical microcavity1–6 provides the

prominent platform to study quantum-classical corre-
spondence, formally known as the field of quantum
chaos7–9. Understanding the chaotic signatures in this
transitional regime promotes future technological appli-
cations10–13 emerging at the interface between classical
and quantum mechanics realms or, equivalently, ray and
wave realms in optical microcavities1,2,14–16. Yet, in a
more general sense, the level statistics of the microcavity
mirror universal behaviors observed in various chaotic
physical systems, such as Rydberg atoms17–19, ultra-cold
atoms20–22, quantum dots23–25, and many-body
systems26–29.
The boundary deformation (BD) in microcavity has

been considered the most common approach for phase

space engineering to yield the desired optical properties.
The main idea is based on the observation that BD sen-
sitively reconfigures the underlying phase space trans-
portation30,31. Alternative approaches also have been
proposed, such as tailoring phase space by a defect32 or
including a circular hole inside the cavity33,34. Despite
these comprehensive efforts, previous approaches still
require a holistic device change at the fabrication stage,
which remains the main obstacle to further rapid pro-
gress. In this regard, developing a new platform on which
light dynamics can be studied by in situ experimental
control is genuinely appealing. Here, we propose a two-
dimensional periodic lattice structure consisting of mul-
tiple chaotic microcavities as a promising breakthrough.
We reveal that the external crystal momentum coupling
to the internal cavity dynamics can take over the role of
the BD by breaking and restoring the inherent symmetry
of the cavity. Both the direction and the amplitude of the
external momentum can be readily controlled by steering
the coherent excitation light sources. As a result, cavity
lattice systems promise a hold for feasible control of wave
chaos features such as dynamical localization and
tunneling35–39.
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In this work, we explore chaotic signatures in periodic
lattices dictated by the Bloch theorem for the first time.
We study the adiabatic change of the internal cavity states
due to the crystal momentum coupling as

Ψtot rð Þ ¼ eik�rψint rð Þ ð1Þ

where Ψtot rð Þ and k represent the total wave function over
the lattice and the crystalline momentum, respectively.
Here, ψint rð Þ describes the internal dynamics of the cavity
states, which we focus on. The coupling between the
internal phase space dynamics and the crystal momentum
is observed explicitly. In particular, the momentum-
induced coupling leads to the hybridizations of the wave
function from the scar states to the regular orbit states;
namely, we observe the crystal momentum-induced
dynamical localization transition of the internal dynamics.
On the lattice scale, we find that introducing the additional
deformation leads to the finite Berry curvature and Hall
effect triggered by skew scattering events. Our work firstly
promotes applications to topological optical transport
utilizing chaotic states. Finally, we discuss the possibility of
extending our studies to various lattice systems.

We consider a square lattice consisting of a single
dielectric cavity with a relative refractive index, nin=nout ¼
10, inside the cavity [see Fig. 1]. With this high refractive
index, we can find energetically well-isolated target modes
by suppressing undesired overlaps with other extra
modes. However, our result is generally applicable to the
broad range of the refractive index. The boundary of each
cavity is determined by the four-fold rotational symmetric
(C4) deformation, which can be represented as, r θ; εð Þ ¼
r0 1� ε cos 4θð Þ½ �, where ε denotes the deformation
strength. r0 ¼ R=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2=2

p
, where R is the radius of the

circle when ε= 0, is the normalization constant preser-
ving a cavity area under the variation of ε. The Helem-
holtz equation, �∇2~ψ ¼ n2 x; yð Þω2

c2
~ψ, is solved to obtain

resonant frequencies ω of the transverse-magnetic (TM)-
polarized modes ~ψ ¼ 0; 0;Ezð Þ½ �, where c is a speed of
light. For TM modes, the waves and their normal deri-
vative are set to be continuous across the cavity boundary.
The two lattice constants, where we impose a periodic
boundary condition accordingly, are given by |ax| = |ay|
= a= 2.2R. To numerically obtain the modes both in a
single cavity and a lattice, we implement the boundary
element method40–43.
Under a weak BD, invariant tori in the ray-dynamical phase

space of the integrable system are destroyed according to the
Kolmogorov-Arnold-Moser (KAM) and Poincaré-Birkhoff
theorems44,45. As the deformation increases, the regular and
chaotic regions fill the phase space before it becomes fully
chaotic and ergodic. Figure 2 shows the phase space in the
Birkhoff-coordinate ðq=L; p ¼ sin χÞ 2 0; 1½ � ´ �1; 1½ �46.
Here, q/L is the normalized boundary arclength where the

ray bounces off (L is a cavity perimeter), and χ is the incident
angle of the ray. The mixed phase space in the figure shows
the island structures of regular motions surrounded by a
chaotic sea. See Supplementary Materials for details.

Results
Two degenerate scar modes47, the non-trivial localiza-

tion on the unstable fixed points, are observed in the
single cavity case for ωR/2πc ≈ 0.375 at ε = 0.05. A series
of thick blue curves in Fig. 1c show the successive regular
and scar modes in which a similar sequence has been
analyzed48. The scar modes form a pair under the
underlying C4-symmetry. In the lattice, with the identical
cavity geometry, the spectra at zero momentum exhibit
very similar energy eigenstates (Fig. 1d). We observe the
pair of scar modes equally for almost the same energy as
the single cavity case. Figure 2a, b shows the Husimi
distributions of the two degenerate scar states, which are
localized on top of the distinct unstable fixed points.
These fixed points correspond to period-2 (i.e., two
bounces for one cycle of a classical orbit) unstable peri-
odic orbits shown in the leftmost panels in Fig. 2. The
black curves in Fig. 2 show the stable and unstable
manifolds of the period-2 unstable orbit, and the unstable
fixed points corresponding to this orbit are the crossing
points of those manifolds. Note that the Husimi dis-
tributions are obtained for the cavity boundary wave, and
the inside-incident version was employed49,50.
We now consider the inclusion of the finite crystal

momentum k ¼ kx; ky
� �

. In the presence of the non-zero
crystal momentum, we observe the degeneracy lifting of
the two scar modes. This lifting indicates the state
hybridization due to the C4-rotational symmetry breaking
of the internal wave function with the non-zero
momentum. The hybridized states are found to localize
prominently around the period-4 bow-tie orbit (see the
rightmost panels in Fig. 2), the satellite orbit of the central
period-2 island. Figure 2c, d exemplifies the Husimi dis-
tributions for these hybridized modes localized on the
bow-tie orbits. The mode evolution depending on the
crystalline momentum variations in cavity lattices can be
equivalently realized in single cavities by applying the
additional deformation perturbation. See Supplementary
Materials for detailed demonstrations.
In addition, Fig. 3b–e shows the hybridized states that

have strong directional anisotropy in the direction of the
crystal momentum. To be specific, the hybridization of
the two scar modes are numerically obtained and
described by the effective Hamiltonian, given as51,

HSO ¼ Δhyb

2
cos kx � cos ky
� �

σx þ V0 sin kx sin kyσz ð2Þ

where σ represent the Pauli matrices for the scar state
degree of freedom. Δhyb= 1.156 × 10−3 represents the
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hybridization strength between the two scar modes,
while V0= 0.213 × 10−3 represents the relative energy
shift of the two states, respectively. Since the two scar
states are energetically well-decoupled from other
states, we can consider the two scar states as the
effective spinor (|↑〉 and |↓〉). Under this spinor
representation, the spinor wind twice around the loop
encircling the zero momentum (Fig. 3a). This winding of
the spinor gives rise to the 2π-Berry phase: γ �
i
H
ψ kð Þ ∇kj jψ kð Þh idk ¼ 2π, where |ψ(k)〉 indicates one

of the scar states and i ¼ ffiffiffiffiffiffiffi�1
p

. The degeneracy of the
spinor scar states manifests as the topological quadratic
band touchings (QBT) protected by C4-symmetry in the
momentum space (see Fig. 4a)52. Here, the mode
hybridization due to the crystalline momentum is not
restricted in the scar modes and is valid for the general
modes that exhibit a degeneracy at time-reversal
invariant momenta.

Maximal momentum coupling
When the momentum becomes maximal near the

Brillouin zone (BZ) boundary [X= (π,0) and Y= (0,π)],
the wave function characteristics in the whole unit-cell
domain deviate significantly due to the change in the
boundary condition. For instance, at X point, the internal
wave function satisfies the anti-periodic boundary con-
dition on the unit-cell boundary: ψInt(x+ a, y) = −ψInt(x,
y) and ψInt(x,y+ a) = ψInt(x, y). The linear combination of
the two scar states forms two regular states depending on
its parity, [ψ(x,y) = ±ψ(−x,y)], due to C4-rotational sym-
metry. At the X point in BZ, there exist only two possi-
bilities that the resonant energy of the regular state can
adiabatically deform. First, even parity regular state,
ψE(x,y) (Fig. 4b), is incompatible with the anti-periodic
boundary condition unless the wave function vanishes at
the unit-cell boundary. The vanishing wave function
manifests as the flat band with zero group velocity (see the
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Fig. 1 Bloch theorem dictated scar lattice. a Conceptual illustration of a photonic crystal consisting of a deformed dielectric microcavities.
b Schematic diagram of a square lattice unit-cell with a lattice constant a. c Real part resonant frequencies in a single cavity as a function of the cavity
deformation ε. d Energy eigenvalues in a cavity array lattice as a function of ε at zero crystalline momentum k= 0 [Γ in Fig. 4a]. In c and d, successive
Demkov-type couplings56 for the stable regular modes and the scar modes are highlighted by thick curves. The arrows at ε= 0.05 mark the
degenerated scar modes (solid and dashed curves) we study
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upper band along the X-M interval in Fig. 4a). In addition
since ψE(x,y) is confined more densely inside the cavity,
where the refractive index is higher, the effective wave-
length is reduced, i.e., even parity states form higher
energy states (point “i” in Fig. 4a).
On the other hand, the odd parity regular state, ψO(x,y)

(Fig. 4c), shows the compensating intensity enhancement
at the unit-cell boundary since the even and odd wave
functions must form the complete basis of the two ori-
ginal scar modes. Hence, it results in lengthened effective
wavelength (i.e., more waves are outside the cavity, the
lower refractive index region) and manifests as the lower
energy resonant states (point “ii” in Fig. 4a). Finally, when
the momentum vector reaches the BZ corner [M= (π,π)],
the global C4-rotational symmetry is restored. In this case,
the hybridization disappears to form the degenerate QBT
again, which can be interpreted as a revived dynamical
localization of the spinor scar modes.

Skew boundary scattering in Chaotic states
At last, we consider the scar states in the presence of the

generic BD perturbation, which is given as δr(θ) = ϵ1
cos(Nθ+ ϕ0). For the even-number oscillating BD
[N∈ 2Z] [e.g., (N,ϵ1,ϕ0)= (2,0.01,0)], which preserves C2

symmetry, the rotational symmetry of the cavity is low-
ered from C4 to C2 symmetry, the topological protection
of QBT is lost. Correspondingly, the QBT-carrying 2π-
Berry phase can split into a couple of the Dirac linear
band crossings, which of each is associated with the π-
Berry phase. On the other hand, for odd-number oscil-
lating BD [N∈ 2Z+ 1], C2-symmetry breaking induces
the skew-symmetric scattering of the chaotic modes [see
Fig. 5b], which induces the non-zero Berry curvature
Ωxy kð Þ ¼ i ∇kxψ kð Þj∇kyψ kð Þ� �� y $ xð Þ� �	 


in the
momentum space. Figure 5c shows the calculated Berry
curvature for N ; ϵ1;ϕ0ð Þ ¼ 5; 0:01; π

10

� �� �
. Since the

underlying time-reversal symmetry ensures the
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Fig. 2 Phase space of deformed cavity. Husimi functions for modes in a cavity lattice superimposed on the ray-dynamical classical phase space
(underlying gray dots) in Birkhoff-coordinate ðq=L; p ¼ sin χÞ, where q/L is arclength normalized by a cavity perimeter L and χ an incident angle of
ray. In (a)–(d), the four large closed islands and the crossing points of stable and unstable manifolds (black curves) at p ~ 0 correspond to period-2
stable and unstable orbits, respectively. The orange dots in (c) and (d) represent the phase space points of the bow-tie orbit. a, b The Husimi
distributions for the scar states obtained when k ¼ kx; ky

� � ¼ 0; 0ð Þ, while (c) and (d) are for the bow-tie orbit states induced by couplings of the two
scar states when k ¼ π=2; 0ð Þ. The leftmost and rightmost panels show corresponding classical orbits in real space. The four vertical lines in (a–d)
indicate a quarter arclength interval L/4. When k = (0, 0) (a, b), the phase space (e.g., islands and manifolds) exhibits an L/4 translation symmetry, and
the Husimi functions in (a) and (b) are distributed mutually exclusively. On the other hand, when k = (π/2, 0) (c, d), the translation symmetry of the
phase space breaks, and the Husimi distributions in (c) and (d) have large overlaps around the vertical lines. Detailed correspondences between the
Bloch momenta k and the phase space deformation can be found in Supplementary Materials. The continuous evolution of the Husimi function and
the underlying phase space over the range [π/4≦ arc tan(ky/kx)≦ 9π/4] for |k| = π/2 is shown in the supplementary animations:
“Ani_supple_phc_hus1_series.mov” and “Ani_supple_phc_hus2_series.mov”
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antisymmetry of the local Berry curvature
Ωxy kð Þ ¼ �Ωxy �kð Þ� �

, the total sum (monopole) of the
curvature vanishes. Accordingly, the skew scattering by
the BD is characterized by the finite dipole moment of the
local Berry curvature53,54:

Dj ¼
X

k

∂kjΩxy kð Þ ð3Þ

where j= x,y.
Since the optical microcavity array can be excited by the

coherent beam source with a well-defined incident
momentum, the Berry curvature dipole can be measured
through the skew-symmetric beam transport. The semi-
classical transport equation55 describes the light dynamics
of the Mie regime, and the non-zero Berry dipole man-
ifests as the effective magnetic field as,

vk ¼ ∂Ek

∂k
þ _k ´Ωxy kð Þẑ; _k ¼ ∇n rð Þ ð4Þ

where vk is the group velocity vector of the scar states
having energy Ek, and n(r) is the slowly varying local
refractive index. The second term _k ´Ωxy

� �
in Eq. (4)

gives rise to skew-symmetric light transport that can be
captured by control of the incident beam momentum k.
The explicit demonstration of the skew-symmetric light
transportation can be found in Supplementary
Materials.

Discussion
To conclude, we have studied the wave chaos of the

deformed cavity coupled to the external crystalline
momentum in a periodic cavity array. The external

crystalline momentum now replaces the role of the
boundary shape deformation. By controlling the
momentum, we observe the dynamical localization tran-
sitions. Our work provides a new promising platform,
enabling the in situ study of various wave chaos phe-
nomena. For example, if the additional higher energy and
lower energy states are involved, it can induce crystal
momentum-induced dynamical tunneling phenomena.
This will be the topic of future study.
In addition, we note that, contrary to the previous stu-

dies of the topological photonic crystals (which mainly
focus on the Rayleigh regime), the governing dynamics of
the chaotic state in the Mie regime is described by the
semi-classical transport. In this work, we propose, for the
first time, the possibility of realizing Berry curvature-
induced transport phenomena that utilize the intrinsic
wave property of the chaotic states. The crossover
between Rayleigh and Mie regime of Berry curvature-
induced transport would pioneer a new aspect of wave-
particle correspondence in the field of wave chaos.
Our work can be generalized in a few different aspects.

Though we have considered the simple square lattice,
many other two-dimensional lattices are expected to show
qualitatively different behaviors. For instance, away from a
simple Bravais lattice, the deformed cavity in Lieb and
Kagome lattice is expected to produce a flat band. The
intrinsic localization properties would give rise to a
stronger coupling within a unit-cell. Further studies on
the various lattice systems and wave chaos would also be
an intriguing topic for future study.

Methods
We solve the Helmholtz wave equation, which is deduced

fromMaxwell’s equations without sources, for optical modes

iv

i

ii iii

a b c d e

Fig. 3 Coupling between the internal phase space dynamics and the crystal momentum. a Schematic illustration of the pseudo-spin evolution
along the encircling around the zero crystalline momentum ðkx ; kyÞ ¼ 0; 0ð Þ (Γ in Fig. 4a). b–e The upper and lower panels display the square
modulus |ψ|2 and the real part Re(ψ) of wave functions corresponding to, respectively, i–iv in (a). The directions of the crystalline momentum for (b),
(c), (d), and (e) are equivalent to the ones of ðkx ; kyÞ ¼ π;�πð Þ; π; 0ð Þ; π;πð Þ; and 0;πð Þ, respectively
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in single cavities and photonic crystals,

�∇2~ψ ¼ n2 rð Þω
2

c2
~ψ ð5Þ

where n(r) and ω= ck are, respectively, the refractive
index of the piecewise homogeneous medium and the
free-space temporal frequency with vacuum wavenumber
k and speed of light c. Given the cavity boundary shape,
R(θ;ε) = R0[1 − εcos(4θ)], where R0 ¼ ρ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2=2

p
, we

set n(r) = 10 for |r| < R(θ;ε) and n(r) = 1 otherwise. ρ is
the radius of a circle when ε= 0. The lattice constant is
given as |ax| = |ay| = a= 2.2ρ. We focus on the
transverse magnetic [TM; ~ψ ¼ 0; 0;Ezð Þ] polarization of
modes. The TM-polarized modes fulfill the dielectric
boundary condition that Ez and are continuous across the
boundary interface of two different refractive index
domains. Here, ~ν is an outward normal vector of the

boundary. Note that the transverse-electric [TE; ~ψ ¼
0; 0;Hzð Þ] modes satisfy a different boundary condition:
Hz and are continuous, yet, still the solution of the same
wave equation, Eq. (5). In addition to the dielectric
boundary conditions, we impose a two-dimensional
periodic condition at the unit cell boundary of the two-
dimensional periodic lattice. A pure outgoing wave
condition at infinity is applied for the modes in the
single cavities. To solve Eq. (5) numerically, we employ
the boundary element method (BEM)40,41 and further
implement the block Sakurai–Sugiura method42,43 to
compute the optical modes more efficiently.
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