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Abstract
Objects with different shapes, materials and temperatures can emit distinct polarizations and spectral information in
mid-infrared band, which provides a unique signature in the transparent window for object identification. However,
the crosstalk among various polarization and wavelength channels prevents from accurate mid-infrared detections at
high signal-to-noise ratio. Here, we report full-polarization metasurfaces to break the inherent eigen-polarization
constraint over the wavelengths in mid-infrared. This recipe enables to select arbitrary orthogonal polarization basis at
individual wavelength independently, therefore alleviating the crosstalk and efficiency degradation. A six-channel
all-silicon metasurface is specifically presented to project focused mid-infrared light to distinct positions at three
wavelengths, each with a pair of arbitrarily chosen orthogonal polarizations. An isolation ratio of 117 between
neighboring polarization channels is experimentally recorded, exhibiting detection sensitivity one order of magnitude
higher than existing infrared detectors. Remarkably, the high aspect ratio ~30 of our meta-structures manufactured by
deep silicon etching technology at temperature −150 °C guarantees the large and precise phase dispersion control
over a broadband from 3 to 4.5 μm. We believe our results would benefit the noise-immune mid-infrared detections in
remote sensing and space-to-ground communications.

Introduction
Mid-wavelength infrared (MWIR) as one of the most

important transparent atmosphere windows is less sensi-
tive to the interference from the background emission of
the sun, providing a high-transmission zone for the
finger-print spectra of various materials, and enabling the
communication channels between space and ground. As
fundamental characteristics of photon, wavelength,
polarization and their measurements are of great interest
in almost all areas of science and in remote sensing
technology. Traditionally, infrared detection techniques

are solely detecting the intensity, which can be easily
overwhelmed by the path loss, weather variation, as well
as the atmosphere turbulence. In comparison, the infor-
mation from wavelength and polarization dimensions can
reveal distinct features that are intuitively “invisible”1–3.
Owing to the merits of robustly identifying true targets
from the false and improving the contrast of captured
images, it is imperative to develop methods to detect
photon dimensions other than intensity, such as wave-
length (λ) and polarization (P).
A typical scenario for the onboard payloads which are

carried in satellites or airplanes to capture fine features of
targets on the ground [car (λ1, P1), man (λ2, P2), and
model (λ3, P3)] in a low-illumination background is shown
in Fig. 1a. In order to obtain the information from dif-
ferent wavelengths and polarizations, a series of efforts
have been paid. Since the undifferentiated integral
detection of the spectrum and polarization reported in
19174,5, complex optical systems with cascaded elements
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have been explored to separately acquire spectrum or
polarization information through rotating the discrete
filters/polarizers or segmenting the detecting focal plane
arrays from 1970s6–11. These configurations suffer from
bulky and redundant volume, low collection efficiency of
photons, etc. More importantly, they were realized at the
expense of decreasing spatial or temporal resolutions.
Metasurfaces that enable versatile nanoscale light con-

trol in manipulating multiple photon dimensions, such as
wavelength12–18, polarization19–25, and phase26–29, have
substantially shown great potential to replace the above
redundant and complex systems in an easily-integrated
and multifunctional way. Besides, multilayer configura-
tion provides another wonderful platform to flexibly and
efficiently construct metasurfaces. It allows more degrees
of freedom to manipulate dimension of photons. Some
significant advances have been reported based on multi-
layer metasurfaces30–34. Pioneering metadevices which
surpass the traditional architectures in areas such as light

splitting or polarization multiplexing have also been rea-
lized35–39. Notably, trichromatic hologram is achieved
through the full-phase control at three discrete wave-
lengths by independently changing the geometry of the
corresponding metaatoms17,27,28,40–44. Small crosstalk
between neighboring detecting wavelengths, variable
orthogonal polarization form over each wavelength, and
high efficiency are always desired.
Herein, to break the eigen-polarization constraint we

propose the dispersive Jones matrix method through
constructing wavelength-decoupled coherent pixel based
on all-silicon metasurface. Without spatial or time cost
and crosstalk, this method enables the independent phase
manipulations on any desired orthogonal polarization
channels at predefined discrete wavelengths. It broadens
the polarization applications from scientific research to
industry in an ultra-compact and integratable manner
which would require various cascaded elements in parallel
otherwise.
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Fig. 1 The principle of the polychromatic full-polarization control. a A typical scenario in which complex targets with different spectral and
polarization information in low-illumination background need to be distinguished by airborne or spaceborne payloads. b In traditional works based on
geometric phase control, different rotation angles θ of the metaatoms represent different eigen-polarization states (EPS). In the Poincaré sphere, EPS is
denoted by the precession axis OQ. The arcs in Poincaré sphere indicate polarization conversion paths and their lengths L determine the phase shifts φL.
c Schematic of a wavelength-decoupled coherent pixel. The architecture consists of four ordinary metaatoms with adjustable dimensions and orientations.
With this configuration, untraditional phase responses at different wavelengths can be simultaneously and independently harnessed, thus enabling desired
functionalities on any designated polarization state channels. The common geometric parameters of the metaatoms are: height 6 μm, period 1.55 μm. The
supercell period is 3.1 μm. d Schematic of a representative metadevice which achromatically focuses the incident light at three discrete wavelengths (3, 3.6,
and 4.5 μm)—each assigned with a pair of arbitrarily chosen orthogonal polarizations—onto two opposite vertices of the hexagon
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Results
Design principle
As shown in Fig. 1b, the EPS can be accordingly

adjusted through rotating the metaatoms at one single
wavelength. Together with propagation phase control, the
flexible metaatoms rotation enables the full phase
manipulation in ref. 19 over one pair of arbitrarily selected
orthogonal polarizations P1 and P1* at λ1. However, the
simultaneous full control over another pair of arbitrary
selected orthogonal polarizations P2 and P2* at λ2 further
requires that the metaatom with rotation angle θ2 should
satisfy two different phase shifts at λ1 and λ2 at the same
time. Although this constraint can be alleviated by opti-
mizing metaatom’s parameters other than the rotation
angle (e.g., out-of-plane height or in-plane long/short
axes), it would be challenging, if not impossible, to
simultaneously and independently control phase over two
(and more than two) pairs of orthogonal polarizations at
different wavelengths, since the conversion path (and its
related phase shift) for P1–P1* would differ from that for
P2–P2* as Fig. 1b shows. For more pairs of orthogonal
polarizations Pn and Pn*, the eigen-polarization restric-
tions on the phase control becomes more critical. Until
now, there is still no work reporting on the phase
manipulations over more than two different pairs of
orthogonal polarizations at multiple wavelengths.
In order to break the inherent eigen-polarization con-

straint for polarization control over different wavelengths,
we propose a dispersive Jones matrix method through
constructing wavelength-decoupled coherent pixel with
four coherent all-silicon metaatoms in Fig. 1c. Generally,
the zero-order diffraction efficiency would decrease with
period larger than the operation wavelength. The non-
uniform arrangement of metaatoms relieves this. More
importantly, to guarantee the high performance of super-
cells operating at all three wavelengths and six polarization
channels, the period the geometric parameters of the
metaatoms are accordingly optimized to maximize the
transmission and cover large phase controlling range
through algorithms. The first-order diffraction at 3 μm is
negligible. With this method, EPS of the pixel at different
wavelengths can be adjusted accordingly to the orthogonal
polarization control requirement.
To demonstrate this method, we start with the general

form of Jones matrix for an elliptic cylinder metaatom
given by26

JðλÞ ¼ R �θð Þ eiφxðλÞ 0

0 eiφyðλÞ

 !
R θð Þ ð1Þ

where R θð Þ¼ cos θ sin θ
� sin θ cos θ

� �
is a real unitary matrix

corresponding to the in-plane geometrical rotation
operation and determines the EPS of the metaatom. θ is

the rotation angle and keeps constant with wavelength
variation. The Jones matrix of our wavelength-decoupled
coherent pixel can be written as:

~J λð Þ ¼
X4
k¼1

R �θkð Þ eiφxðλÞ 0

0 eiφyðλÞ

 !
R θkð Þ

¼ be1 λð Þ; be2 λð Þ½ ��1 AðλÞ 0

0 DðλÞ

� � be1 λð Þ; be2 λð Þ½ �

ð2Þ
where k stands for the index of different metaatoms in one
supercell.
In this case, the original J(λ) in Eq. (1) has an EPS ê ¼

cos θ; sin θ½ �T , which is wavelength λ invariant. While the
new J (̃λ) has a wavelength related EPS be1 λð Þ; be2 λð Þ½ �,
where the connection between the EPS and λ is broken.
With this arrangement, the EPS of metaatoms over
wavelength dimension are accordingly broken on the right
side of Eq. (2). Relevant discussions on the constraint and
decoupling disposal of fixed EPSs over wavelength
dimension are shown in Supplementary Notes 1 and 2.
In Fig. 1d, a representative polychromatic full-

polarization control metadevice is demonstrated to gen-
erate achromatically focusing spots over three pairs of
arbitrarily chosen orthogonal polarizations on spatially
separated channels at three wavelengths. It mimics the
function of cascading filter, polarizer, and wave plate
placed in parallel in conventional setups. Three different
pairs of orthogonal polarization states at three wave-
lengths are linear polarization at 3.0 μm, elliptical polar-
ization (ellipse angle 30°) at 3.6 μm and circular
polarization at 4.5 μm. The distribution of phase retar-
dation for this case is as follows:

φ0 j; kð Þ ¼ � 2π
λk

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� a � cos ϑð Þ2þ y� a � sin ϑð Þ2þf 2

q
� f

� �

ð3Þ
where a is the distance of focus spots to the origin, ϑ ¼
3� j�1ð Þþk�1

3 π is the polar angle in focal plane, and j= 1, 2
represents the polarization state and its orthogonal
polarization state, respectively. k= 1, 2, 3 is the operation
wavelength. With this arrangement, the six-channel focal
spots would evenly distribute along the circle with radius
a at angle interval π/3.

Optimization and implementation of the metadevice
It should be noted that there are 12 planar degrees of

freedom in one wavelength-decoupled coherent pixel, i.e.,
the dimensions along long axes (ai), short axes (bi), and
rotation angle (θi; i ¼ 1; 2; 3; 4). The optimization space
is 4th power of that in one traditional metaatom. Therefore,
we develop an evolution algorithm combined with particle
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swarm optimization algorithm and genetic algorithm to find
the supercells which matches best to the desired phases
(more details can be found in Supplementary Note 3).
The objective function of optimization can be expressed

as:

fm ¼
X
j;k

Re
X
n

J k; nð Þ � q j; kð Þ
 !�( )T

�eiφ0 j;kð Þ � qðj; kÞ�
0
@

1
A
ð4Þ

where n= 1, 2, 3, 4 represents the four metaatoms. J and q
are the Jones matrix of a single metaatom and the desired
polarization states.
Three-dimensional phase coverage at designated wave-

lengths in the database is plotted in Fig. 2a. The color
indicates the average transmittance. The phase optimi-
zation process is to find the best values in the database to
approach the desired ones. To be more intuitive to eval-
uate the optimization, the density as function of optimi-
zation values is illustrated in Fig. 2b. The maximum value
of the optimization function fm is 24. Higher optimization
values indicate the better performance of the supercells.
More than 80% phase values with optimization value
larger than 14 are achieved here.
In order to have a straightforward comparison with

previously reported metadevices operating at more than
two wavelengths17,27,28,35,40–49, the function in Fig. 1d is
reproduced with reported methods based on the built all-
silicon metaatoms in this work. Figure 2c shows the effi-
ciencies comparison. Efficiency is defined as the average
optimal value divided by the theoretical maximum value.
For interleaved/segmented method, the maximum effi-
ciency is inversely proportional to the multiplexed chan-
nel. It can be seen that the efficiencies with our method are
higher than all those reported, especially for those at three
or even five wavelengths. Notably, we report the first
realization of arbitrarily selected polarization-multiplexing
over more than three wavelengths.
Isolation ratio is also used to demonstrate the merit of

the dispersive Jones matrix method. It is defined as Isoi;j ¼
Ii;i
Ii;j
; ði; j ¼ 1; 2; ¼ ; i≠jÞ, where I represent the intensity, i

is the focal spot of design polarization state, j is the rest. It
represents the ratio of the focal intensity on the desired
polarization state to the other polarization states in the
background, which directly indicates the decoupled
properties between different polarization channels. Here,
we averaged the isolation for all polarization channels in
Fig. 2d. Details can be found in Supplementary Note 4 for
the comparison of interleaved/segmented. Although there
is still some space for the performance improvement with
interleaved/segmented design methods, the inherent
limitation of multiplexing the polarization channels over
wavelength dimension makes it impossible to achieve high
efficiency and polarization isolation ratio like ours.

Experiments and characterization of the metadevice
Experimental results for measured intensity on the

image plane on each polarization channel are illustrated
in Fig. 3b, which coincide well with the design target. To
further evaluate the operating performance, full widths at
half maximum (FWHMs) derived from intensity dis-
tributions are shown in Fig. 3c, showing that they fit well
with the theoretical Airy profile. The measured focusing
efficiencies are 36% (x-pol at 3 μm), 58.4% (left-handed
elliptical polarization at 3.6 μm), 74.68% (left-handed
circular polarization at 4.5 μm), 36.47% (y-pol at 3 μm),
53.34% (right-handed elliptical polarization at 3.6 μm),
and 76.78% (left-handed circular polarization at 4.5 μm)
respectively. It reveals the well performance of the
designed metasurface. Though the metadevices are ela-
borately optimized to operate at single wavelength, in real
cases the devices have bandwidths. Therefore, for a given
wavelength range, the upper operation wavelength chan-
nel number is limited by the bandwidth. To illustrate this,
we calculate the bandwidths for the metadevice with size
200 μm× 200 μm and focal length 400 μm in Supple-
mentary Note 6. It’s also worth noting that more opera-
tion wavelength channels impose more restrictions on the
dispersion of individual supercells. The optimization and
searching for matched supercells would be more
complicated.
The decoupling property represented by the contrast

ratio is shown in Fig. 3d. For example, the red dot line
represents the ratio of the average intensity at (1, 2π/3)
(polar coordinate) to that of the other five positions
(θ= π, 4π/3, 5π/3, 0, π/3). It can be seen that all the
isolation ratios are greater than 10, with the highest one
up to 117, manifesting the excellent decoupling perfor-
mance of the six channels using our method. Compared
with reported works for circular polarization control
where the isolation ratio is less than 1050–52, our work not
only achieves a circular polarization isolation ratio up to
96. which is one order of magnitude higher. We can also
simultaneously engineer other arbitrarily selected ortho-
gonal polarizations over other wavelengths.
Though the method is based on the wavelength-

decoupled coherent pixel-each with only four conven-
tional linear EPS metaatoms, it still works at multiple
wavelengths and the form of polarization states are
arbitrary. As an example, a ten-channel metadevice is
realized as illustrated in Fig. 3e. The selected five pairs
of orthogonal polarization states are shown in the
Poincaré sphere. Simulation results on each polariza-
tion channel are respectively illustrated in Fig. 3f, which
agrees well with the design. As predicted theoretically,
ten focal spots on different polarization states are
projected to the same focal plane, as shown in Fig. 3g,
with the focal length almost unchanged at different
wavelengths.
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Polychromatic vortex beams generation
To illustrate the versatile engineering capability in

implementing complicated and non-degenerate function-
alities on each polarization channel, a polychromatic optical
vortex beams generator is presented. In this case, each
orthogonal polarization channel is endowed with a specified
topological charge as shown in Fig. 4a. Vortex beams car-
rying distinct topological charges on each orthogonal
polarization channel at different wavelengths are focused at
positions 1–6: 1 represents the topological charge l= 2

at 3 μm on x-polarization (blue), 2 represents the topolo-
gical charge l= 3 at 3.6 μm on left-elliptical polarization
(green), 3 represents the topological charge l= 4 at 4.5 μm
on left-circular polarization (red), 4 represents the topolo-
gical charge l=−2 at 3 μm on y-polarization (blue), 5
represents topological charge l=−3 at 3.6 μm on right-
elliptical polarization (green), and 6 represents the topo-
logical charge l=−4 at 4.5 μm on right-circular polariza-
tion (red). The polarization channels are also depicted on
the Poincaré sphere, as shown in Fig. 4b.
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Fig. 2 Optimization and comparison of the metadevice with reported works. a Three-dimensional phase dataset through sweeping the
geometric dimensions at selected three wavelengths. The colors represent the average transmittance at three wavelengths. Gray points on the side
and bottom surfaces represent the phases that simultaneously satisfy two wavelengths. b Merit function values after the evolution algorithm
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There are no works reporting more than three wavelengths. d Comparison of isolation ratio between neighboring polarization channels for our
metadevice and reported works in realizing functions in Fig. 1d
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The required phase modulations to fulfill the designated
functions on each polarization state can be expressed as

φ j; kð Þ ¼ � 2π
λk

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� a � cos θð Þ2þ y� a � sin θð Þ2þf 2

q
� f

� �
þ l �Θ

ð5Þ
where l ¼ �2jþ 3ð Þ � ðk þ 1Þ is the topological charge
number, and Θ ¼ arctan y

x is the azimuthal angle, with
ðx; yÞ as the spatial coordinate for the metaatom on the

metasurface plane. The evolution algorithm is also
adopted to optimize the geometric dimensions and
orientations of the metaatoms. Details on the optimiza-
tion values and simulation results of the metadevice can
be found in Supplementary Note 7.
Figure 4c illustrates the experimental results on the

predefined polarization channels, which are in well
coincidence with the designed functions in Fig. 4a.
Different doughnut-beams on the specified polarization

Max

Min

Max

Min

���= 3 µm ��= 3.27 µm

1

1

2

3

32

1

10

9 8 7

6

5

4

32

1 2 3

654

1

1 2 3 4 5 6 7 8 9 10

6 7 8 9 10

5432

4 5 6

4
5

6

7

8 9

10

2
3

4
5
6

��= 3.6 µm ��= 4 µm ��= 4.5 µm

5 µm100 µm

5 µm

120 µm

��= 3 µm ��= 3.6 µm ����= 4.5 µm

P
o

si
ti

ve
 P

o
l.

N
eg

at
iv

e 
P

o
l.

Max

Min

8.04 µm

-60
0

0.5

1

In
te

n
si

ty
 (

ar
b

.)

0 60
r (�m)

Experiment
Theoretic

9.44 µm

-60
0

0.5

1

0 60

12.43 µm

-60
0

0.5

1

0 60

7.32 µm

-60
0

0.5

1

In
te

n
si

ty
 (

ar
b

.)

0 60
r (µm)

9.52 µm

-60
0

0.5

1

0 60

12.32 µm

0

0.5

1

-60 0 60

x y

ISO

Focal plane

S1

S2

S3

0 50-50

x (µm)

0

50

100

z 
(µ

m
)

a

b

c

d

e

f

g

120

80

40

0

Fig. 3 Experimental results of the metadevice. a SEM images from different angles of view. The metadevice is manufactured on a 500-μm-thick
double-polished silicon wafer. b Captured images on the six polarization cannels numbered from 1 to 6. The experimental results are in consistent
with the designated ones in Fig. 1d. The size of the images is 120 × 120 μm2. c Normalized intensity profiles of the six focal spots along the radially
crossed lines. Measured FWHMs (solid blue) and theoretical Airy profiles (dashed black) are both depicted for comparison. d Isolation is utilized to
characterize the decoupling property of the desired polarization from the other polarization channels. The colors of curves indicate the operating
wavelengths, and the positions in the polar coordinate represent the locations of focal spots with specified polarization states. e Schematic of the
focused spots on the focal plane for five operation wavelengths. The designated five independent pairs of orthogonal polarization states
corresponding to five wavelengths are also depicted in the Poincaré sphere. f Focusing spots distributions on the focal plane for different
polarizations at the selected five wavelengths. The positions are in consistent with those indicated in (e). The insets show the corresponding
polarization states. g Intensity distributions on the cross-section planes

Chen et al. Light: Science & Applications          (2023) 12:105 Page 6 of 11



channel are observed on the designated positions. For
each incident polarization, only one optical vortex on
the conjugate polarization channel is attained on the
focal plane. Figure 4d shows the normalized intensity
profiles of the generated vortex beams on the cutting
lines along radial directions. Optical vortices are pro-
jected to the predefined positions along the circle, and
the hollow diameters vary with the topological charge
number and operating wavelength.

Polarization imaging with designed metasurface
To further explore the polarization imaging potentials

of the method, firstly, we elaborately designed an object as
the target image that consists of three subwavelength

gratings to selectively reflect the specified incident
polarization state at one wavelength while allow the other
two polarizations to transmit at other wavelengths. Three
key elements of the pattern are ‘stones’, ‘panda’, and
‘bamboo’, which respectively operate at wavelengths of 3,
3.6, and 4.5 μm. The full description of the scene is that a
panda sitting on the stones is eating a bamboo. The design
details on the pattern dimensions, fabrications, and
transmissions of the gratings can be found in Supple-
mentary Note 8. Accordingly, based on the dispersive
Jones matrix method a metadevice with diameters of
1 mm is fabricated. Focusing functions are endowed to the
designed polarization states at three desired wavelengths,
i.e., x-polarization at 3 μm (blue), y-polarization at 3.6 μm
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(green), and x-polarization at 4.5 μm (red). It should be
noted that the other three orthogonal polarizations are
deliberately designed to diverge. The optimization process
and the experimental characterization details of the
metadevice can also be found in Supplementary Note 8.
To demonstrate the imaging performance, we conduct

the measurement with the setup shown in Fig. 5a. The
experimental imaging results are illustrated with the order
of 3 μm x-p, 3.6 μm y-p, 4.5 μm x-p in Fig. 5b–d,
respectively. The color of the light indicates the operating
wavelength and polarization state. With the metadevice,
the underlying polarization information carried at differ-
ent wavelengths can be independently distinguished. For
example, only the bare stone shows up at the wavelength
of 3 μm. The panda also emerges at the wavelength of
3.6 μm. Moreover, the panda sitting on the stones is
carrying and eating a bamboo through the observation at
the wavelength of 4.5 μm. Without this polychromatic
polarization metasurface, series of conventional polarizers
and lens are required to recognize the complex informa-
tion. It is worth mentioning that this method also applies
to more complex polarization states and wavelengths.
This compact and versatile behavior of metadevices based
on the dispersive Jones matrix provides a powerful plat-
form to realize independent polarizations control. Besides,
more patterns are fabricated and measured to further
verify the feasibility of the metadevice, as shown in Sup-
plementary Note 9. Particularly, to reflect the capability of
generating holograms with our method, the three-
wavelength 6-channel holograms of the mid-infrared are
shown in Supplementary Note 10.
In the reported work53, authors introduce the engi-

neered noise to the solution of Jones matrix and thus
break the fundamental limit of polarization multiplexing
of metasurfaces. 11 independent holographic images are
demonstrated. Nonlocal metasurface designs provides a
rational method to independent control of quasi-BICs at
several discrete wavelengths54,55. This nonlocal paradigm
greatly broadens the scope of metasurface design and
enhances the capability to control both the spatial and
spectral properties of light. As to our work, we propose
the dispersive Jones matrix method through constructing
wavelength-decoupled coherent pixel. The metaatoms in
each supercell operates individually. The superposition of
four Jones matrices enables the breaking of eigen-
polarization and allows the realization of multiple func-
tions in six different polarization channels at three
wavelengths.

Discussion
In this work, we propose a dispersive Jones matrix

method through constructing wavelength-decoupled
coherent pixel based on all-silicon metasurface. Eigen-
polarizations at different wavelengths can be engineered.

This method enables the independent phase manipula-
tions on any desired orthogonal polarization channels at
predefined discrete wavelengths. We realized the full-
polarization control at multiple discrete wavelengths.
Remarkably, the diverse orthogonal polarization states are
experimentally demonstrated over more than three
wavelengths. Conventional metasurfaces constructed with
interleaved/segmented approaches can realize either
wavelength or polarization multiplexing. Neighboring
metaatoms have interactions which would lead to the
crosstalk between operating wavelength/polarization
channels and/or the decreases in efficiency. The polar-
ization forms at multiplexing wavelengths are the same
since the eigen-polarizations are the same at different
wavelengths. In this work, the adoption of supercells
allows the engineering of eigen-polarizations at different
wavelengths. Simultaneously arbitrary polarization mul-
tiplexing at multiple wavelengths are realized. Besides, the
optimized supercells help to improve the channel isola-
tions. Low-temperature deep silicon etching technology at
−150 °C guarantees the high aspect ratio and uniform
fabrication, allowing versatile and precise manipulation of
metaatoms in realizing complex functions. Immune from
complicated cascaded configurations, this method enables
multiple functions in one single metasurface and opens
possibilities to engineer the unconventional birefringent
phase profiles, i.e., simultaneously imparting any desired
and independent orthogonal polarization states to any
predefined discrete wavelengths. The versatility of the
dispersive Jones matrix method is beneficial for specific
applications in airborne/space-borne onboard payloads in
a low-illumination environment, for instance, the polar-
ization imaging at multiple wavelengths in an ultra-
integrated and multifunctional fashion.

Materials and methods
Sample fabrication
To experimentally demonstrate the designed metadevice,

an all-silicon metasurface is fabricated with electron beam
lithography at accelerating voltage 100 kV (Jeol 6300FS). A
50-nm-thick aluminum film is adopted as the hard mask on
one side of 4-inch double-polished silicon wafer. Remark-
ably, benefiting from the liquid nitrogen and helium back-
cooling control technology, metadevices with almost perfect
profiles are obtained with deep silicon etching machine
(Estrelas 100) operating at −150 °C. It guarantees the
highest aspect ratio up to 30 and ensures that metaatoms of
different aspect ratios are uniformly fabricated with perfect
sidewalls. The whole size of metadevice is 400 μm in dia-
meter, and the height of the metaatoms is 6 μm. The
minimum feature linewidth of structures is 250 nm with the
neighboring distance larger than 300 nm, as shown in
the scanning electron microscopes (SEM) images in Fig. 3a.
The tilted and cross-section views of the zoom-in
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metaatoms manifest the excellent homogenous fabrications,
especially for metaatoms with different aspect ratios.

Measurement setup
The measurement system to characterize the metade-

vice is shown in Supplementary Materials Fig. S6. The
blackbody which is a broadband thermal radiator, is
adopted as the light source. The linear polarizer and liquid
crystal retarder (LCC1113-MIR) are used to modulate the
polarizations of incident light. In the light path, the
sample is vertically fixed on the hollow acrylic sample
rack. It can be finely adjusted for alignment and focus
through tuning the six-axis translation and rotation stage.
The microscopic module is composed of a 4-mm aspheric
lens and a 25-mm lens to magnify the focal spots. The
transmitted light after interacting with the metadevice is
then captured by the mid-wave infrared camera which is
cooled at around 80 K with Stirling cryocooler. It’s worth
noting that narrow bandpass filters are adopted to keep
the coherence of blackbody radiation both in time and
space in the measurement.
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