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Abstract
Multispectral imaging has been used for numerous applications in e.g., environmental monitoring, aerospace, defense,
and biomedicine. Here, we present a diffractive optical network-based multispectral imaging system trained using
deep learning to create a virtual spectral filter array at the output image field-of-view. This diffractive multispectral
imager performs spatially-coherent imaging over a large spectrum, and at the same time, routes a pre-determined set
of spectral channels onto an array of pixels at the output plane, converting a monochrome focal-plane array or image
sensor into a multispectral imaging device without any spectral filters or image recovery algorithms. Furthermore, the
spectral responsivity of this diffractive multispectral imager is not sensitive to input polarization states. Through
numerical simulations, we present different diffractive network designs that achieve snapshot multispectral imaging
with 4, 9 and 16 unique spectral bands within the visible spectrum, based on passive spatially-structured diffractive
surfaces, with a compact design that axially spans ~72λm, where λm is the mean wavelength of the spectral band of
interest. Moreover, we experimentally demonstrate a diffractive multispectral imager based on a 3D-printed diffractive
network that creates at its output image plane a spatially repeating virtual spectral filter array with 2 × 2 = 4 unique
bands at terahertz spectrum. Due to their compact form factor and computation-free, power-efficient and
polarization-insensitive forward operation, diffractive multispectral imagers can be transformative for various imaging
and sensing applications and be used at different parts of the electromagnetic spectrum where high-density and
wide-area multispectral pixel arrays are not widely available.

Introduction
Multispectral imaging has been an instrumental tool

for major advances in various fields, including environ-
mental monitoring1, astronomy2–4, agricultural sci-
ences5,6, biological imaging7–9, medical diagnostics10,11,
and food quality control12,13 among many others14–20.
One of the simplest ways to achieve multispectral ima-
ging is to sacrifice the image acquisition time in favor of
the spectral information by capturing multiple shots of a
scene while changing the spectral filter in front of a
monochrome camera21. Another traditional form of
multispectral imaging relies on push-broom scanning of a

one-dimensional detector array across the field-of-view
(FOV)22. While these multispectral imaging techniques
provide sufficient spectral and spatial resolution, they
suffer from relatively long data acquisition times, hin-
dering their use in real-time imaging applications23. An
alternative solution that allows simultaneous collection of
the spatial and spectral information is to split the optical
waves emanating from the input FOV onto different
optical paths each containing a different spectral filter,
followed by a 2D monochrome image sensor array24,25.
However, this approach often leads to more complex and
bulky optical systems since it requires the use of multiple
focal-plane arrays, one for each band, along with other
optical components.
Modern-day snapshot spectral imaging systems often

use coded apertures in conjunction with computational
image recovery algorithms to digitally mitigate these
shortcomings of traditional multispectral imaging systems.
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One of the earliest forms of coded aperture snapshot
spectral imaging used a binary spatial aperture function
imaged onto a dispersive optical element through relay
optics, encoding both the spatial and spectral features
contained within the input FOV into an intensity pattern
collected by a monochrome focal-plane array26. Since this
initial proof-of-concept demonstration, various improve-
ments have been reported on coded aperture-based
snapshot spectral imaging systems based on, e.g., the use
of color-coded apertures27, compressive sensing techni-
ques28–31 and others32. On the other hand, these systems
still require the use of optical relay systems and dispersive
optical elements such as prisms, and diffractive elements,
resulting in relatively bulky form factors; furthermore,
their frame rate is often limited by the computationally
intense iterative recovery algorithms that are used to
digitally retrieve the multispectral image cube from the
raw data. Recent studies have also reported using dif-
fractive lens designs, addressing the form factor limitations
of multispectral imaging systems33–35. These approaches
provide restricted spatial and spectral encoding cap-
abilities due to their limited degrees of freedom without
coded apertures, causing relatively poor spectral resolu-
tion. Recent work also demonstrated the use of feedfor-
ward deep neural networks to achieve better image
reconstruction quality, addressing some of the limitations
imposed by the iterative reconstruction algorithms typi-
cally employed in multispectral imaging and sensing36–38.
On the other hand, deep learning-enabled computational
multispectral imagers require access to powerful graphics
processing units (GPUs)39 for rapid inference of each
spectral image cube and rely on training data acquisition
or a calibration process to characterize their point-spread
functions33.
With the development of high-resolution image sensor-

arrays, it has become more practical to compromise
spatial resolution to collect richer spectral information.
The most ubiquitous form of a relatively primitive spec-
tral imaging device designed around this trade-off is a
color camera based on the Bayer filters (R, G, B channels,
representing the red, green and blue spectral bands,
respectively). The traditional RGB color image sensor is
based on a periodically repeating array of 2 × 2 pixels, with
each subpixel containing an absorptive spectral filter (also
known as the Bayer filters) that transmits the red, green,
or blue wavelengths while partially blocking the others.
Despite its frequent use in various imaging applications,
there has been a tremendous effort to develop better
alternatives to these absorptive filters that suffer from a
relatively high-cross-talk, low power efficiency, and poor
color representation40. Towards this end, numerous
engineered optical material structures have been
explored, including plasmonic antennas41, dielectric
metasurfaces42–46 and 3D porous materials47–49. While

the intrinsic losses associated with metallic nanos-
tructures limit their optical efficiency, multispectral ima-
ger designs based on dielectric metasurfaces and 3D
porous compound optical elements have been reported to
achieve higher power efficiencies with lower color cross-
talk40. However, these structured material-based approa-
ches, including various metamaterial designs, were all
limited to 4 or fewer spectral channels, and did not
demonstrate a large array of spectral filters for multi-
spectral imaging. Independent from these spectral filter-
ing techniques based on optimized meta-designs,
increasing the number of unique spectral channels in
conventional multispectral filters was also demonstrated,
which, in general, poses various design and implementa-
tion challenges for scale-up23,50.
Here, we introduce the design of a snapshot multi-

spectral imager that is based on a diffractive optical net-
work (also known as D2NN, diffractive deep neural
network51–60) and demonstrate its performance with 4
(2 × 2), 9 (3 × 3) and 16 (4 × 4) unique spectral bands that
are periodically repeating at the output image FOV to
form a virtual multispectral filter array. This diffractive
network-based multispectral imager (Fig. 1) is trained to
project the spatial information of an object onto a grid of
virtual pixels, with each one carrying the information of a
pre-determined spectral band, performing snapshot
multispectral imaging via engineered diffraction of
light through passive transmissive layers that axially span
~72 λm, where λm is the mean wavelength of the entire
spectral band of interest. This unique multispectral ima-
ger design based on diffractive optical networks achieves
two tasks simultaneously: (1) its acts as a broadband
spatially-coherent relay optics achieving the optical ima-
ging task between the input and the output FOVs over a
wide spectral range; and (2) it spatially separates the input
spectral channels into distinct pixels at the same output
image plane, serving as a virtual spectral filter array that
preserves the spatial information of the scene/object,
instantaneously yielding an image cube without image
reconstruction algorithms, except the standard demosai-
cing of the virtual filter array pixels. Stated differently, we
demonstrate diffractive optical networks that virtually
convert a monochrome focal-plane array or an image
sensor into a snapshot multispectral imaging device
without the need for conventional spectral filters.
We present different numerical diffractive network

designs that achieve multispectral coherent imaging with
4, 9 and 16 unique spectral bands within the visible
spectrum based on passive diffractive layers that are lat-
erally engineered at a feature size of ~225 nm, spanning
~43 µm in the axial direction from the first layer to the
last, forming a compact and scalable design. Our
numerical analyses on the spectral signal contrast pro-
vided by these diffractive multispectral imagers reveal that
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for a given array of virtual filter pixels (covering, e.g., 4, 9
and 16 spectral bands), the mean optical power of each
one of the targeted spectral bands is approximately an
order of magnitude larger compared to the average optical
power of the other wavelengths.

Furthermore, we experimentally demonstrate the suc-
cess of our diffractive multispectral imaging framework
using a 3D-printed diffractive network operating at ter-
ahertz wavelengths. Targeting peak frequencies at 0.375,
0.400, 0.425 and 0.450 THz, the fabricated diffractive
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Fig. 1 The schematic of a diffractive multispectral imager. The depicted diffractive optical network simultaneously performs coherent optical
imaging and spectral routing/filtering to achieve multispectral imaging by creating a periodic virtual filter array at the output. In this example, 3 × 3 =
9 spectral bands per virtual filter array are illustrated; Figs. 4–5 report 4 × 4 = 16 spectral bands per virtual filter array. In alternative implementations,
the diffractive multispectral network can also be placed behind the image plane of a camera (before the image sensor), transferring the multispectral
image of an object onto the plane of a monochrome image sensor
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network with 3 structured transmissive layers can suc-
cessfully route each spectral component onto a corre-
sponding array of virtual pixels at the output image plane,
forming a multispectral coherent imager with 4 spectral
channels. Although we focused on spatially-coherent
multispectral imaging in this work, phase-only dif-
fractive layers can also be optimized using deep learning
to create spatially incoherent snapshot multispectral
imagers, following the same design principles outlined
here. With its compact form factor and snapshot opera-
tion without any image cube reconstruction algorithms,
we believe the presented diffractive multispectral imaging
framework can be transformative in various imaging and
sensing applications. Since the presented diffractive
multispectral imagers utilize isotropic dielectric materials,
their virtual spectral filter arrays are not sensitive to the
input polarization state of the illumination light, which
provides an additional advantage. Finally, due to its scal-
ability, it can drive the development of multispectral
imagers at any part of the electromagnetic spectrum,
which would be especially important for bands where
high-density and large-format spectral filter arrays are not
widely available or too costly.

Results
Figure 1 depicts the optical layout and the forward

model of a 5-layer diffractive multispectral imager that
can spatially separate NB distinct spectral bands into a
virtual spectral filter array on a monochrome image sen-
sor located at the output image plane; in this illustration
of Fig. 1, NB = 9 is shown as an example, although it can
be further increased, as will be reported below. The input
FOV in Fig. 1 exemplifies a hypothetical object where the
amplitude channel of the object’s light transmission is
composed of intersecting lines, and each line strictly
transmits only one wavelength. Our multispectral imaging
diffractive network aims to spatially separate the optical
signal carried by each wavelength component on the
output sensor plane so that a simple demosaicing opera-
tion would reveal the wavelength-dependent images of the
input object. Such a forward optical transformation can be
defined using a linear spatial mapping (y = x) between the
input intensity describing the amplitude transmission
properties of the input object at a given wavelength and
the corresponding monochromatic pixels of the output
sensor assigned to that targeted spectral band. This
indicates that for a diffractive network-based spatially-
coherent multispectral imager, there is a phase degree of
freedom at the output image plane, making it easier to
learn the desired multispectral imaging task through, e.g.,
deep learning. For a diffractive multispectral imager, as
shown in Fig. 1, Ni and No indicate the number of effective
pixels at the input and output FOVs, respectively, which
are dictated by the extent of the input and output FOVs

along with the desired spatial resolution (within the dif-
fraction limit)55,56. The number of spectral channels (NB)
as part of the targeted multispectral imaging design
depends on the cross-talk among different spectral bands
of the virtual filter array created at the diffractive network
output, which will be quantified in our analysis reported
below. Although not demonstrated here, in alternative
implementations, the diffractive multispectral network
can also be placed right behind the image plane of a
camera, transferring the multispectral image of an object
onto the plane of the monochrome focal-plane array,
converting an existing monochrome imaging system into
a multispectral imager.
To train (and design) our diffractive multispectral

imager, we created input objects, where the transmission
field amplitude of a given object at each spectral band was
represented by an image randomly selected from the
101.6 K training images of the EMNIST dataset (see the
“Methods” section). The phase profiles of the five dif-
fractive layers (containing ~0.76 million trainable dif-
fractive features in total) were optimized through the
error-backpropagation and stochastic gradient descent
using a loss function based on the spatial mean-squared
error (MSE) that includes all the desired spectral chan-
nels; see the “Methods” section. This deep learning-based
optimization used 100 epochs, where the ground-truth
multispectral output images were generated using the
EMNIST dataset randomly assigned to different spectral
bands of interest. Figure 2a illustrates the resulting
material thickness profiles of a K = 5-layer diffractive
multispectral imager trained to operate within the visible
spectrum, evenly covering the wavelength range from
λ9 = 450 nm to λ1 = 700 nm based on the optical layout
shown in Fig. 1, i.e., λ9 < λ8 <¼< λ1. For simplicity and
without loss of generality, we assume the input light
spectrum to lie between 450 nm and 700 nm; modern
CMOS image sensors cover a slightly wider bandwidth
than considered here. The forward optical training model
of this diffractive network assumes a monochrome image
sensor at the output plane with a pixel size of
0.9 μm× 0.9 μm (~1.28λ1 × 1.28λ1), which is typical for
today’s CMOS image sensor technology widely deployed
in, e.g., smartphone cameras61. This diffractive design
spatially extends ~43 µm in the axial direction (from the
first diffractive layer to the last layer), and is optimized
to route NB = 9 distinct spectral lines (i.e., 700 nm,
668.75 nm, 637.5 nm, 606.25 nm, 575 nm, 543.75 nm,
512.5 nm, 481.25 nm, and 450 nm) onto a 3 × 3 mono-
chrome sensor pixel array, that is repeating in space for
snapshot multispectral imaging without any digital image
reconstruction algorithm. Without loss of generality, we
assumed unit magnification between the object/input
FOV and the monochrome image sensor plane (output
FOV); hence, the size of the smallest feature size of the
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input images was set to be 3 × 0.9 μm, i.e., equal to the
width of a virtual spectral filter array (3 × 3).
Following the deep learning-based training and design

phase (see the “Methods” section for further details), a
multicolor image test set with a total of 2080 distinct
objects (never seen during the training) was used to
quantify the multispectral imaging performance of the
trained diffractive network design. For each object in our
blind test set, the field amplitude of the object transmis-
sion function at each spectral band was modeled based on
an image randomly selected from the test dataset. An
example of the imaging results corresponding to a mul-
tispectral test object never used during the training is
shown in Fig. 2b. Based on the checkerboard-like output
intensity patterns synthesized by the diffractive multi-
spectral imager in response to the 2080 different test
objects, the spectral image contrast of the diffractive
network output can be quantified as shown in Fig. 2c;
each row of the matrix in Fig. 2c corresponds to a dif-
ferent illumination wavelength and all the rows sum up to
100% (optical power). Hence, the rows of this matrix
represent the percentage of the output optical power that
resides within the designated group of virtual pixels for a
given wavelength channel, calculated as an average of all
the 2080 blind test objects. The columns of the matrix in
Fig. 2c, on the other hand, illustrate the signal contrast
and the spectral leakage over a given array of virtual
spectral filters assigned to a spectral band. Our analyses
show that for a given set of virtual spectral pixels assigned
to a particular spectral band (a column of the matrix in
Fig. 2c), the power of the desired signal band is on average
(8.57 ± 1.59)-fold larger compared to the mean power of
the other spectral bands (leakage) collected by the same
array of virtual spectral filter pixels.
Based on the data shown in Fig. 2c, we see that the

performance of the diffractive multispectral imager is
inversely proportional to the wavelength. In other words,
the diffractive optical network designed using deep
learning can route smaller wavelengths onto their corre-
sponding virtual spectral filter locations better than larger
wavelengths. A similar conclusion can also be observed in
the spectral responsibility curves of the 3 × 3 virtual filter
array, periodically assigned to NB = 9 (see Fig. 3); the
responsivity curves of these virtual filter arrays get

narrower as the wavelength gets smaller, with the nar-
rowest filter response achieved for λ9 = 450 nm. These
observations can be explained based on the degrees of
freedom available at each wavelength: due to the diffrac-
tion limit of light, the effective number of trainable dif-
fractive features seen/controlled by larger wavelengths is
smaller than the total number of trainable features within
the entire diffractive network, N = 5 × 392 × 392. For
example, a given diffractive layer depicted in Fig. 2a
contains NL = 392 × 392 diffractive features, each with a
size 225 nm × 225 nm, i.e., λ9/2 × λ9/2, which also corre-
sponds to λ1/3.11 × λ1/3.11. Considering that our dif-
fractive network operates based on traveling/propagating
waves, the longer wavelengths experience reduced degrees
of freedom due to the diffraction limit of light, which
restricts the independent (useful) feature size on a dif-
fractive layer to half of the wavelength in each spectral
band.
Next, we further quantified the multispectral imaging

quality provided by the diffractive network design shown
in Fig. 2a using two additional performance metrics:
Structural Similarity Index Measure (SSIM) and Peak
Signal-to-Noise Ratio (PSNR); see the “Methods” section.
Figure 2d illustrates the average SSIM and PSNR values
achieved by the diffractive network as a function of the
desired spectral bands. These image quality metrics were
calculated between the diagonal images shown in Fig. 2b
(the ground-truth images on the left diagonal vs. the
diffractive network output images on the right diagonal).
Although there are some variations in the multispectral
imaging quality of the diffractive network depending on
the spectral band of the input light, the SSIM (PSNR)
values have a very high lower bound (worst case perfor-
mance) of 0.88 (19.8 dB). In addition, the mean SSIM and
PSNR values are found as 0.93 and 22.06 dB, respectively.
By summing up all the images in each column of Fig. 2b,
we can create an image that visualizes the impact of the
spectral cross-talk from the other NB − 1 = 8 spectral
channels on each target wavelength, which is shown at the
bottom of the image matrix in Fig. 2b, as a separate row.
Due to this spectral power cross-talk among channels
(quantified in Fig. 2c), the average values of the SSIM and
PSNR of the output multispectral image cube (computed
across all the bands) drop to 0.65 and 16.24 dB,

(see figure on previous page)
Fig. 2 Performance of a diffractive multispectral imager with NB ¼ 9 spectral bands. a The material thickness distribution of the diffractive
layers trained using deep learning to spatially separate 9 distinct spectral bands, creating a periodic virtual filter array. b Cross-talk image matrix
showing the output images at different illumination wavelengths. Off-diagonal images indicate that the level of spectral cross-talk is minimal. By
summing up all the images in each column, the impact of the spectral cross-talk from the other 8 spectral channels on each target wavelength is
visualized at the bottom of the image matrix, as a separate row. c Output optical power distribution as a function of the illumination wavelength.
Each row in this matrix adds up to 100%, and the off-diagonal optical power percentages indicate the level of spectral cross-talk between different
bands. d SSIM and PSNR values of the resulting images at the output of the diffractive network; these image quality metrics were calculated between
the diagonal images shown in (b) (the ground-truth images on the left diagonal vs. the diffractive network output images on the right diagonal)
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respectively. Also see Supplementary Fig. 1 for the cross-
talk matrix and multispectral imaging performance of a
diffractive multispectral imager designed for NB =
4 spectral bands in the visible spectrum. Due to the
reduced number of target spectral bands compared to the
NB = 9 case, the spectral power cross-talk is reduced for
the NB = 4 diffractive imager as quantified in Supple-
mentary Fig. S1b; as a result, the diffractive network can
synthesize multispectral image cubes with improved mean
SSIM (0.82) and mean PSNR (19.29 dB) calculated across
all the NB = 4 bands.
To demonstrate diffractive multispectral imaging with

an increased number of spectral channels, Fig. 4a
demonstrates the material thickness profiles of the dif-
fractive layers constituting a new multispectral imager
that was trained for NB = 16, evenly distributed between
λ16 = 450 nm to λ1 = 700 nm, mapped onto a 4 × 4
monochrome pixel array repeating in space for snapshot
multispectral imaging. Compared to the diffractive mul-
tispectral imager depicted in Fig. 2, this new diffractive
design targets a lower spatial resolution due to the trade-
off between NB and the spatial resolution of the snapshot
multispectral imager. Similar to Fig. 2b, the output images

on the diagonals of the multispectral image cube shown in
Fig. 4b closely match the ground-truth multispectral
images at the input, highlighting the success of the dif-
fractive imaging design. The off-diagonal images that are
dark (see Fig. 4b) further illustrate the success of the
spectral routing performed by the diffractive multispectral
imager, minimizing the cross-talk among channels. Figure
4c also illustrates the average spectral signal contrast
synthesized by the diffractive network at its output for
NB ¼ 16 spectral bands. Compared to the signal contrast
map of the previous diffractive network design (NB ¼ 9
shown in Fig. 2c), the values in Fig. 4c point to a slight
decrease in the average spectral contrast at the output of
this new diffractive multispectral imager with NB ¼ 16.
However, the output image quality of the diffractive
multispectral imager with NB ¼ 16 is still outstanding: the
output SSIM (PSNR) values have a very good lower bound
of 0.88 (19.62 dB), and the mean SSIM and PSNR values
are 0.92 and 22.0 dB, respectively (see Fig. 4d). Same as in
Fig. 2, these image quality metrics were calculated
between the diagonal images shown in Fig. 4b (left vs.
right). By summing up all the images in each column of
Fig. 4b, we can create an image that visualizes the impact
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of the power cross-talk from the other NB � 1 ¼ 15
spectral bands on each target wavelength, which is shown
at the bottom of the image matrix in Fig. 4b, as a separate
row. As a manifestation of the spectral power cross-talk
quantified in Fig. 4c, the average values of SSIM and
PSNR of the output multispectral image cube drop to 0.60
and 15.33 dB, respectively, calculated across all the NB ¼
16 target spectral channels. Furthermore, this diffractive
multispectral imager with NB ¼ 16 can route the input
spectral bands onto designated output pixels with an
average power contrast that is 11.06× larger with respect
to the mean power carried by the remaining NB � 1 ¼ 15
spectral channels. Figure 5b also reports the spectral
responsivity curves of the 4 × 4 virtual filter array at the
output image FOV of the diffractive network.
Next, to experimentally demonstrate the presented

diffractive multispectral imaging framework, we designed
a diffractive network that can process terahertz wave-
lengths. This terahertz-based diffractive multispectral
imager uses K ¼ 3 layers (see Fig. 6) to form a virtual filter

array at its output plane with periodically repeating
2 × 2 spectral pixels targeting 0.375, 0.4, 0.425 and
0.45 THz (i.e., NB ¼ 4). For the input object ‘U’ shown in
Fig. 6b, the demosaiced output images predicted by the
numerical forward model of our diffractive terahertz
multispectral imager are depicted in Fig. 7a. In the 4-by-4
image matrix shown in Fig. 7a, the diagonal images
represent the correct match between the spectral content
of the illumination and the corresponding demosaiced
pixels within each 2 × 2 cell of the virtual filter array; in
other words, they represent the channels of the multi-
spectral image cube, while the off-diagonal images show
the cross-talk between different spectral bands. To
quantify the performance of our diffractive multispectral
imager, we compared each spectral channel of the mul-
tispectral image cube predicted by the numerical forward
model of our diffractive terahertz multispectral imager
with respect to the ground-truth image of the input object
‘U’, which achieved PSNR values of 15.12, 14.93, 15.03 and
13.30 dB for the spectral bands at 0.375, 0.4, 0.425 and
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0.45 THz, respectively. To compare our numerical results
with their experimental counterparts, Fig. 7b illustrates
the experimentally measured multispectral imaging
results obtained through the 3D-printed multispectral
diffractive imager shown in Fig. 6c, which provided a
decent agreement between our numerical and experi-
mental multispectral images. Quantitative evaluation of
the experimental multispectral imaging results reveals
PSNR values of 13.02, 13.71, 13.02 and 12.64 dB PSNR at
0.375, 0.4, 0.425 and 0.45 THz, respectively. Compared to

our numerical results, these PSNR values point to
~1−2 dB loss of image quality which can be largely
attributed to the limited lateral resolution and potential
misalignments of the 3D-printed diffractive multispectral
imager shown in Fig. 6c.
Beyond the multispectral image quality, we also quan-

tified the spectral cross-talk performance of the experi-
mentally tested diffractive multispectral imager. Figure 7c,
d illustrate the spectral cross-talk matrices generated by
the numerical forward model of the diffractive
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multispectral imager shown in Fig. 6b and its experi-
mentally measured counterpart using the 3D-printed
diffractive design shown in Fig. 6c, respectively. For a
given virtual filter array designated to a particular spectral
band, the ratio between the mean power of the target
spectral band and the mean power of all the other 3
undesired spectral bands was found to be 2.42 (numerical)
and 2.21 (experimental) based on the matrices shown in
Fig. 7c, d, respectively, providing a decent agreement
between the numerical and experimental (3D-fabricated)
models of our diffractive multispectral imager.
In general, a key design parameter in diffractive optical

networks is the number of diffractive features, N, that are
engineered using deep learning since it directly deter-
mines the number of independent degrees of freedom in
the system55,56,62. Figure 8a–c compare the multispectral
imaging quality achieved by four different diffractive
network architectures as a function of N for NB ¼ 4, 9 and
16, respectively. For example, the diffractive multispectral
imager designs for NB ¼ 9 and NB ¼ 16 shown in Figs. 2

and 4, respectively, contain in total N ¼ 392 ´ 392 ´ 5
trainable diffractive features equally distributed over K ¼
5 diffractive layers, i.e., the number of diffractive features
per layer is, NL ¼ 392 ´ 392. While these two diffractive
multispectral imagers can achieve average SSIM (PSNR)
values of 0.93 (22.06 dB) and 0.92 (22.00 dB) at their
output images, respectively, the diffractive multispectral
imager architectures with fewer N cannot match their
performance. For instance, in the case of a diffractive
multispectral imager design based on NB ¼ 9, NL ¼
196 ´ 196 and K ¼ 3 (see Fig. 8b), the average output
SSIM and PSNR values drop to 0.7 and 15.38 dB,
respectively. Figure 8d further illustrates the impact of NB

on the multispectral imaging performance of diffractive
networks for four different combinations of NL and K.
One can observe in Fig. 8d that for a fixed NL and K
combination, the multispectral imaging performance is
inversely proportional to NB, which is expected due to the
increased level of spectral multiplexing. As a comparison,
the average SSIM (PSNR) values attained by the diffractive
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multispectral imager with the smallest N ¼ 196 ´ 196 ´ 3
increase from 0.7 (15.38 dB) to 0.78 (16.44 dB) when NB ¼
9 is reduced to NB = 4 spectral bands; this once again
points to the relationship between N and NB, indicating
that a larger NB would require additional diffractive
degrees of freedom (a larger N) in order to perform the
desired multispectral imaging task over a larger set of
spectral bands.
Another critical figure of merit regarding the design of

diffractive multispectral imagers is the power transmis-
sion efficiency of the optically synthesized virtual filter
array. Figures 3c and 5c illustrate the power transmission
efficiencies of the virtual filter arrays generated by the
diffractive multispectral imager networks with NB ¼ 9
and NB ¼ 16 distinct bands within the visible spectrum.
For example, based on the data depicted in Fig. 3c, the
highest and lowest transmission efficiencies for NB ¼ 9,
are found as 21.56% and 20.70% at 450 nm and 700 nm,
respectively. On average, this diffractive multispectral
imager can provide 20.96% virtual filter transmission
efficiency for NB ¼ 9 spectral bands targeted by the 3 × 3
repeating cell of the virtual filter array. However, the deep
learning-based training of this diffractive multispectral
imager shown in Fig. 2 focused solely on the quality of the
multispectral optical imaging, i.e., the output diffraction
efficiency-related training loss term (Le) was dropped in
Eq. 8 (see the “Methods” section). While this training
strategy drives the evolution of the diffractive surfaces to
maximize the multispectral imaging performance, the
associated virtual filter array transmission efficiency
reflects only a lower performance bound that can be
achieved by a diffractive multispectral imager with the
same optical architecture. To find a better balance
between the multispectral imaging quality and the power
efficiency of the virtual filter array, the loss function that
guides the diffractive multispectral imager design during
its deep learning-based training can include an additional
term, Le, penalizing poor diffraction efficiencies (see the
“Methods” section). The multiplicative constant, γ, in Eq.
8 determines the weight of the diffraction efficiency
penalty, Le, controlling the trade-off between the multi-
spectral imaging quality and the power efficiency of
the associated virtual spectral filter array. To quantify the
impact of Le and γ on the performance of diffractive
multispectral imagers, we trained new diffractive models
that share an identical optical architecture with the dif-
fractive multispectral imager shown in Fig. 2 (NB ¼ 9
within the visible spectrum), where each design used a
different value of γ. The results of this analysis are shown
in Fig. 9, which indicate that it is possible to create a
5-layer diffractive multispectral imager with NB ¼ 9,
achieving an average virtual filter transmission efficiency
as high as 79.32%. Furthermore, the compromise in
multispectral image quality in favor of this significantly

increased power transmission efficiency turned out to be
only minimal: while the average SSIM (PSNR) values
achieved by the lower efficiency diffractive networks
shown in Fig. 2 were 0.93 (22.06 dB), the more efficient
diffractive multispectral imager design with 79.32% aver-
age virtual filter array transmission efficiency achieves an
SSIM of ~0.91 and a PSNR of 21.42 dB (see Fig. 9).
In addition to diffraction efficiency, other practical

concerns that might significantly impact the performance
of the diffractive multispectral imagers include opto-
mechanical misalignments and surface back-reflections.
The former might be partially mitigated by using high-
accuracy 3D fabrication tools such as two-photon poly-
merization; the latter, on the other hand, could poten-
tially be addressed with anti-reflective coatings frequently
used in the fabrication of high-quality lenses. We should
also note that some of the earlier studies on multi-layer
diffractive networks showed that surface reflections, in
general, did not lead to a significant discrepancy between
the outputs predicted by the numerical forward models/
designs and their experimental counterparts51,57,63–65.
Furthermore, some of these error sources, e.g., layer-to-
layer misalignments, can directly be incorporated into the
optical training forward model as random variables to
drive and shape the deep learning-based evolution of the
diffractive surfaces towards robust solutions that exhibit
relatively flat performance curves within the possible
error ranges53. In fact, we used this approach to ‘vacci-
nate’ the fabricated diffractive multispectral imager
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shown in Fig. 6 against (1) lateral misalignments in both x
and y directions, (2) axial misalignments along the optical
axis and (3) in-plane diffractive layer rotations covering 4
different geometrical degrees of freedom. An important
aspect of these vaccinated diffractive optical networks is
that they can maintain their performance within the error
ranges modeled during their training. For instance, a
diffractive optical image classification network can pro-
vide a flat blind testing accuracy within the trained range
of misalignments; similarly, the fabricated diffractive
multispectral imager shown in Fig. 6 achieves relatively
flat SSIM and PSNR curves for the output images within
the error range that it was trained for. Although, this
diffractive network vaccination scheme can, in principle,
be extended to cover all 6 degrees of freedom, the
inclusion of the two remaining rotational variations (out
of the plane of each layer) brings a computational burden
on the forward training model of the diffractive networks
since they require the light diffraction between successive
layers be accurate for tilted planes66,67. Beyond these
sources of error discussed above, our experimental
results might have also been affected by the optoelec-
tronic detection noise and the deviation of the illumi-
nation wavefront with respect to a uniform plane wave
assumed during the training.

Discussion
In the forward optical model of the presented dif-

fractive multispectral imagers, the wave propagation in
between the diffractive layers was modeled using the
Rayleigh-Sommerfeld diffraction integral (see the
“Methods” section), which takes into account all the
propagating modes within the spatial band supported by
free space, including the waves at oblique angles with
respect to the optical axis; stated differently, the forward
model of the presented diffractive multispectral imagers
is based on a numerical aperture of 1 in air. This rich
design space provided by diffractive network-based
imagers optimized using deep learning opens up new
avenues, such as the engineering of spatially-varying
point-spread functions between an input and an output
field-of-view56,65. We should also emphasize that the
presented diffractive multispectral imager design fra-
mework using deep learning-based optimization of
phase-only diffractive layers can also be extended to
spatially incoherent illumination. One way to realize
such a design using deep learning is to decompose each
spatially incoherent wavefront at a given band into field
amplitudes with random 2D input phase patterns, and
the output image can be synthesized by averaging the
intensities resulting from various independent random
phase patterns for the same input field amplitude. The
downside of such an incoherent multispectral imager
design is that it would take much longer to converge

using deep learning since each forward operation during
the training phase would need many independent runs
with random input phase patterns for each batch of the
multispectral training input images. At the cost of a
longer one-time training effort, phase-only diffractive
layers can also be optimized using deep learning to
create a spatially incoherent snapshot multispectral
imager, following the same design principles outlined in
this work. Therefore, the extension of the presented
diffractive multispectral imager design to process spa-
tially incoherent light is an exciting future research
direction that can eventually enable the integration of
these diffractive networks with existing ambient light-
based camera systems for multispectral imaging and
information processing.
Another interesting aspect of the presented diffractive

multispectral imaging designs is that although the desired
spatial distribution of different spectral bands over the
output image sensor is periodic, this periodicity does not
apply to the diffractive surface profiles shown in Figs. 2, 4, 6
and Supplementary Fig. S1. Despite the relatively small
layer-to-layer distances used in our designs, the deep
learning-based training converges to nonperiodic surface
designs, one diffractive layer following another. Due to
the data-driven nature of our training, the evolution
of the diffractive surfaces is mainly affected by the spatial
profiles of the wavelength-dependent transmission of the
input objects. Stated differently, the topology of the dif-
fractive layer designs depends on the dataset used for
modeling the wavelength-dependent optical transmission
of the input objects.
Finally, our diffractive designs are based on isotropic

materials that do not exhibit any polarization-dependent
modulation such as birefringence; therefore, a given
modulation unit over a diffractive layer treats all the
polarization states carried by a wavelength component
equally, imposing the same phase delay regardless of the
input polarization state. Hence, the multispectral imaging
capability and the virtual spectral filter responses of the
presented diffractive optical networks are independent of
the input polarization state of the illumination light,
which provides an important advantage.
In summary, we demonstrated snapshot diffractive

multispectral imagers that can create a virtual spectral
filter array over the pixels of a monochrome focal-plane-
array or image sensor without the need for a conventional
filter array, while simultaneously establishing an imaging
condition between the input and output fields-of-view.
Owing to their extremely compact form factor, power-
efficient optical forward operation (reaching >79% filter
transmission efficiency) and high-quality spectral filtering
capabilities, the presented diffractive multispectral ima-
gers can be useful for numerous imaging and sensing
applications, covering different parts of the spectrum
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where high-density and wide-area multispectral filter
arrays are not readily available.

Materials and methods
Training forward model of diffractive multispectral
imagers
Optical forward model
D2NN framework uses deep learning to devise the

transmission/reflection coefficients of diffractive features
located over a series of optical modulation surfaces. The
modulation coefficient over each diffractive feature/
neuron is controlled through one or more physical
design variables. The presented diffractive multispectral
imagers in this work were designed to be fabricated
based on a single dielectric material and the material
thickness, h, was selected as the physical parameter for
controlling the complex-valued modulation coefficient
associated with each diffractive feature. For a given dif-
fractive layer, the transmittance coefficient of a dif-
fractive feature located on the lth layer at a coordinate of
ðxq; yq; zlÞ is defined as,

t xq; yq; zl
� � ¼ exp

�2πκh xq; yq; zl
� �
λ

� �
exp

�j2π n� nmð Þh xq; yq; zl
� �

λ

� �

ð1Þ
where n and κ denote the real and imaginary parts of the
refractive index of the fabrication dielectric material,
respectively, and nm ¼ 1 corresponds to the refractive
index of the propagation medium (air) between the layers.
In the case of the diffractive multispectral imagers designed
to operate at the visible wavelengths, the material of the
diffractive layers was selected as Schott glass of type ‘BK7’
due to its wide availability and low absorption68. Since its
absorption coefficient for the visible spectrum is on the
order of 10−3 cm−1, the imaginary part of the refractive
index was ignored, i.e., it was assumed to be absorption-
free; considering the fact that our diffractive designs extend
<45 µm in the axial direction, this is a valid assumption. For
the experimentally tested diffractive multispectral imaging
network shown in Figs. 6–7, on the other hand, the real
and imaginary parts of the diffractive materials were
measured experimentally using a THz spectroscopy
system, i.e., n ¼ 1:6524; 1:6518; 1:6512; 1:6502, and κ ¼
0:05; 0:06; 0:06; 0:06, at 0.375, 0.400, 0.425 and 0.450 THz,
respectively.
Each diffractive layer was modeled as a multiplicative

thin modulation surface in the optical forward model. The
light propagation between successive diffractive layers was
implemented based on the Rayleigh-Sommerfeld scalar
diffraction theory; since the smallest diffractive features
considered here have a size of ~λ/2 this is a valid
assumption for all-optical processing of diffraction-
limited traveling/propagating fields, without any evanes-
cent waves. According to this diffraction formulation, the

free-space diffraction is interpreted as a linear, shift-
invariant operator with an impulse response of,

w x; y; zð Þ ¼ z
r2

1
2πr

þ n
jλ

� �
exp

j2πnr
λ

� �
ð2Þ

where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Based on Eq. 2, qth diffractive

feature on the lth layer, at ðxq; yq; zlÞ, can be described as
the source of a secondary wave, generating the field in the
form of,

wl
q x; y; zð Þ ¼ z � zl

rlq
� �2

1
2πrlq

þ n
jλ

 !
exp

j2πnrlq
λ

 !
ð3Þ

where rlq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xq
� �2þ y� yq

� �2þ z � zlð Þ2
q

. These sec-

ondary waves created by the diffractive features on the
diffractive layer l propagate to the next layer, i.e., the

ðl þ 1Þth layer and are spatially superimposed. Accord-
ingly, the light field incident on the pth diffractive feature
at ðxp; yp; zlþ1Þ can be written as

P
q A

l
qw

l
q xp; yp; zlþ1
� �

,

where Al
q is the complex amplitude of the wave field right

after the qth diffractive feature of the lth layer. This field is
modulated through the field transmittance of the
diffractive unit at ðxp; yp; zlþ1Þ, i.e., t xp; yp; zlþ1

� �
, where

a new secondary wave is generated, described by:

ulþ1
p x; y; zð Þ ¼ wlþ1

p x; y; zð Þt xp; yp; zlþ1
� �X

q

Al
qw

l
q xp; yp; zlþ1
� �

ð4Þ

The outlined successive modulation and the secondary
wave generation processes continue until the waves
propagating through the diffractive network reach the
output image plane. Although the forward optical model
described by Eqs. 1–4 is given over a continuous 3D
coordinate system, during our deep learning-based
training of the presented diffractive optical networks,
all the wave fields and the modulation surfaces were
represented based on their discrete counterparts. For the
diffractive multispectral imager designs operating
at the visible bands, the spatial sampling rate was set to
be 0:5λNB ¼ 225 nm for both NB ¼ 4 and 9, which was
also equal to the size of a diffractive feature. For the
experimentally tested diffractive multispectral imaging
system, on the other hand, the sampling rate was selec-
ted as 0:375λNB and the size of each diffractive feature
was taken as 0:75λNB with NB ¼ 4.

Design of diffractive multispectral imagers operating at
visible bands
For a given dispersive object defined by the spectral

intensity image cube, i.e., the target/ground truth,
Iinðx; y; λÞ, located at the input plane, z ¼ zi, the
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underlying complex-valued field was assumed to be
Uinðx; y; λÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iinðx; y; λÞ

p
. In our forward model, we

assumed that the input light is spatially-coherent with a
constant phase front across the diffractive network input
aperture (spanning a width of ~72 λm) at each wavelength;
accordingly, the relative phase delays between different
spectral components are not important, i.e., can be arbi-
trary, without impacting the output multispectral image
intensities. Without loss of generality, diffractive multi-
spectral imagers, depending on the application of interest,
can be trained with any dispersive object model, including
different input phase functions.
The size of the input/output FOVs of the diffractive

multispectral imagers operating in the visible band was
set to be 61:71λ1 ´ 61:71λ1, defining a unit magnification
optical imaging between the object and sensor planes.
The unit magnification is not a necessary assumption
for our diffractive multispectral imaging framework,
and all the presented designs/methods can be extended
to work under a magnification or demagnification fac-
tor, for example, by placing the diffractive layers
between the image plane of a camera and a mono-
chrome focal-plane array or image sensor. The size of
each pixel at the monochrome image sensor array was
assumed to be � 1:28λ1 ´ 1:28λ1, corresponding to NS ¼
48 pixels in each direction (x and y). These 48 ´ 48 pixels
were grouped into 2 × 2, 3 × 3 and 4 × 4 blocks during
the training of the diffractive multispectral imagers
targeting NB ¼ 4; NB ¼ 9 and NB ¼ 16 spectral bands,
respectively. Based on these pixel grouping schemes, the
EMNIST images representing the intensity patterns of
the input objects were interpolated to a size 24 × 24,
16 × 16 and 12 × 12 pixels for the diffractive designs
with NB ¼ 4; NB ¼ 9 and NB ¼ 16 spectral bands,
respectively. Note that the original size of the images in
the EMNIST dataset is 28 × 28; hence, the ground-truth
images as well as the output spectral channels shown in
Figs. 2 and 4 have a slightly lower resolution than the
original EMNIST data.
Each of the diffractive layers shown in Figs. 2 and 4

contains NL ¼ 392 ´ 392 diffractive features, where the
physical size of each diffractive layer was set as
126λ1 ´ 126λ1. Since the diffractive feature size was kept
identical in all the models reported in Fig. 8, the mod-
ulation surfaces constituting the diffractive multispectral
imagers designed based on NL ¼ 196 ´ 196 features per
layer, occupy a smaller area of 63λ1 ´ 63λ1. The layer-to-
layer (axial) distances in all these diffractive multispectral
imagers were taken as 15:43λ1.
The input intensity patterns (ground truth) describing

the wavelength-dependent modulation function of the
input objects, sampled at a rate 0:5λNB ¼ 0:32λ1, were
represented as 3D discrete vectors of size 192 ´ 192 ´NB

denoted by Iin m; n;w½ � with m ¼ 1; 2; 3; ¼ ; 192,

n ¼ 1; 2; 3; ¼ ; 192 and w ¼ 1; 2; 3; ¼ ;NB. The resolu-
tion of an image representing the intensity pattern of a
given input object in a spectral band depends on the
number of spectral bands in the system. We used a two-
step interpolation to match the feature size of the input
images to the size of a virtual spectral filter array.
Assuming that we have NB many images from the
training dataset to represent an input object at different
spectral bands, i.e., I x; y;w½ �, each image of a given
spectral band was first interpolated to a size of
NS=

ffiffiffiffiffiffi
NB

p
´NS=

ffiffiffiffiffiffi
NB

p
. These NB low-resolution images,

IGT ;LR k; r;w½ �, represent the spectral channels of the
ground-truth multispectral image cube extracted
through the demosaicing step at the output image plane.
To generate input fields matching the spatial sampling of
our forward optical model, i.e., Iin m; n;w½ �, in the second
step, each low-resolution image was upsampled to a size
of 192 × 192 with each pixel corresponding to an
amplitude transmittance coefficient over a physical area
of 0:32λ1 ´ 0:32λ1 ¼ 225 ´ 225 nm2.
Based on these definitions, we used a spatial structural

loss function defined as:

L ¼ 1
NS

1
NS

1
NB

XNS

q¼1

XNS

p¼1

XNB

w¼1

IGT ½q; p;w� � σIS½q; p;w�j j2

ð5Þ

where, IGT refers to the 3D ground-truth image cube with
a size of NS ´NS ´NB, where for each spectral channel w,
there are zeros introduced into proper locations repre-
senting the virtual pixels assigned to NB � 1other spectral
channels for each virtual filter array period. The variable
IS in Eq. 5 denotes the optically synthesized 3D image
cube at the output plane of a diffractive network that is
being trained. To compute IS based on the output optical
intensity created by a diffractive optical network,
Iout m; n;w½ �, we applied a pixel binning based on the
average pooling operator with strides on both dimensions
equal to 4 (900 nm / 225 nm = 4, which refers to the ratio
of the image detector pixel size to the simulation pixel size
of the forward model). The multiplicative parameter, σ, in
Eq. 5 is a normalization constant that accounts for the
variations in the output optical power and it is updated for
every batch of the training image samples based on,

σ ¼
PNS

q¼1

PNS
p¼1

PNB
w¼1 IGT ½q; p;w�IS½q; p;w�PNS

q¼1

PNS
p¼1

PNB
w¼1 IS½q; p;w�2

ð6Þ

To increase the output power efficiency, an additional
loss term, Le, was utilized to balance the structural loss
term defined in Eq. (5). For the power-efficient designs
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depicted in Fig. 9, Le was defined as Le ¼ e�η, with

η ¼
P

m

P
n

P
w Iout½m; n;w�P

m

P
n

P
w Iin½m; n;w� ´ 100 ð7Þ

Therefore, the overall training loss function, L0, was
defined as a linear combination of Le and L, i.e.,

L0 ¼ L þ γLe ð8Þ
with the multiplicative constant γ controlling the balance
between the multispectral imaging performance and the
output power efficiency of the associated diffractive
network model.

For a given spectral channel, w0, the virtual filter array
transmission efficiency, Tw0 , presented in Figs. 3, 5 and 9
was calculated based on,

Tw0 ¼
P

k

P
r IS;LR½k; r;w0�P

k

P
r IGT ;LR½k; r;w0� ´ 100 ð9Þ

where IS;LR½k; r;w0� refers to an image of size
NS=

ffiffiffiffiffiffi
NB

p
´NS=

ffiffiffiffiffiffi
NB

p
created by the demosaicing of

IS½m; n;w0�. The image, IGT ;LR½k; r;w0�, on the other hand,
represents the NS=

ffiffiffiffiffiffi
NB

p
´NS=

ffiffiffiffiffiffi
NB

p
optical intensity at the

spectral channel w0, based on the demosaiced version of
the ground-truth image, IGT ½m; n;w0�.
During the training of a diffractive multispectral imager,

the evolution of the phase profiles of the diffractive layers
is guided through the gradients of the loss function with
respect to the learnable physical parameters of the system,
i.e., the material thickness values of each diffractive layer.
To limit the range of the material thickness values pro-
vided by the stochastic gradient descent-based iterative
updates, the thickness over each diffractive feature of a
given diffractive layer was defined as a function of an
associated auxiliary variable ha,

h hað Þ ¼ sin hað Þ þ 1
2

ðhm � hbÞ þ hb ð10Þ

where hm and hb denote the maximum modulation
thickness and the base material thickness, respectively.
For the presented diffractive multispectral imagers operat-
ing at the visible part of the electromagnetic spectrum, hm
was set to be 1.4 μm, while hb was taken as 0.7 μm.

Design of the experimentally tested diffractive multispectral
imager operating at terahertz bands
As shown in Fig. 6, the size of the input and output

FOVs of the experimentally tested diffractive multispectral
imager with NB ¼ 4 were set to be 37:5λ1 ´ 37:5λ1, where
λ1 � 0:8mm is the wavelength at 0.375 THz. It was
assumed that the THz output image plane has 100

(10 × 10) pixels of size 3:75λ1 ´ 3:75λ1. Since NB ¼ 4, these
10 × 10 pixels were divided into groups of 2 × 2 virtual
spectral filters repeating in space. The fabricated dif-
fractive multispectral imager was trained using randomly
generated intensity patterns, representing the amplitude
transmission of the input objects. The 3D-printed blind
test object is the letter ‘U’ designed based on a 5 × 5 binary
image with each pixel corresponding to an area of
7:5λ1 ´ 7:5λ1.
The size of each diffractive feature on the 3D-printed

diffractive layers shown in Fig. 6 equals
~0.5 mm × 0.5 mm. Each of the 3 fabricated diffractive
surfaces processes the incoming waves based on
100 × 100 optimized diffractive features, extending over
62:5λ1 ´ 62:5λ1. In the optical forward model of this
diffractive network, all the axial distances between (1)
the input FOV and the first diffractive surface, (2) two
successive diffractive surfaces and (3) the last diffractive
layer and the output FOV were set to be 40 mm, i.e.,
~50λ1. The variables hm and hb in Eq. 10 were taken to
be 1.56λ1 and 0.625λ1, respectively.
The fabricated diffractive multispectral imager shown in

Fig. 6 was trained based on L0 depicted in Eq. 8 with
γ ¼ 0:15. Based on this γ value, the K ¼ 3 layer diffractive
optical network shown in Fig. 6 provides 5.68%, 5.32%,
5.2% and 5.01% virtual filter array transmission efficiency
(T) for the spectral components at 0.375 THz, 0.4 THz,
0.425 THz and 0.45 THz, respectively.
The forward model of a 3D-printed diffractive network

is prone to physical errors, e.g., layer-to-layer misalign-
ments. To mitigate the impact of these experimental error
sources, such misalignments were modeled as random
variables and incorporated into the forward training
model so that the deep learning-based evolution of the
diffractive surfaces is enforced to converge to solutions
that show resilience against implementation errors53.
Accordingly, the diffractive network design shown in Fig.
6 was vaccinated against random 3D layer-to-layer mis-
alignments in the form of lateral and axial translations as
well as in-plane rotations. For this, we introduced 4 uni-
formly distributed random variables, Dl

x, D
l
y, D

l
z and Dl

θ,
representing the random errors in the 3D location and
orientation of a diffractive layer, l, i.e.,

Dl
x � Uð�Δx;ΔxÞ

Dl
y � Uð�Δy;ΔyÞ

Dl
z � Uð�Δz;ΔzÞ

Dl
θ � Uð�Δθ;ΔθÞ

ð11Þ

where Δx, Δy, Δz and Δθ denote the error range anticipated
based on the fabrication margins of our experimental
system. For the 3D-printed diffractive optical network
shown in Fig. 6, the range of the random errors for the
lateral misplacement of the diffractive surfaces was taken
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as Δx ¼ Δy ¼ 0:625λ1. The variable, Δz, which controls the
maximum axial displacement of each layer, was set to be
2:5λ1. The range of errors in the orientation of each layer
around the optical axis was assumed to be within ð�2�; 2�Þ
, i.e., Δθ ¼ 2�. During the training stage, Dl

x, D
l
y, D

l
z and Dl

θ
were updated for each layer, l, independently for every
batch of input objects, introducing a new set of random
misalignment errors into the forward optical model at
each error-backpropagation step.
The numerically computed and experimentally mea-

sured power cross-talk matrices shown in Fig. 7c, d, were
computed based on the images of the letter ‘U’ at 4 dif-
ferent illumination wavelengths: ~0.8 mm, ~0.75mm,
~0.7 mm and ~0.66 mm.

Details of the experimental setup
The schematic diagram of the experimental setup is

given in Fig. 6. In this system, the THz wave incident on
the object was generated through a horn antenna com-
patible with the source WR2.2 modular amplifier/multi-
plier chain (AMC) from Virginia Diode Inc. (VDI).
Electrically modulated with a 1 kHz square wave, the
AMC received an RF input signal that is a 16 dBm sinu-
soidal waveform at 11.111 GHz (fRF1). This RF signal is
multiplied 34, 36, 38 and 40 times to generate a
continuous-wave (CW) radiation at ~0.375 THz,
~0.4 THz, ~0.425 THz and ~0.45 THz, corresponding to
~0.8 mm, ~0.75 mm, ~0.7 mm and ~0.66mm in wave-
length, respectively. The exit aperture of the horn antenna
was placed ~60 cm away from the object plane of the 3D-
printed diffractive optical network so that the beam pro-
file of the THz illumination closely approximates a uni-
form plane wave. The diffracted THz light at the output
plane was collected using a single-pixel Mixer/AMC from
Virginia Diode Inc. (VDI). A 10 dBm sinusoidal signal at
11.083 GHz was sent to the detector as a local oscillator
for mixing so that the down-converted signal is at 1 GHz.
The 37:5λ1 ´ 37:5λ1 output FOV was scanned by placing
the single-pixel detector on an XY stage that was built by
combining two linear motorized stages (Thorlabs
NRT100). The scanning step size was set to be
1mm~1.25λ1. The down-converted signal of a single-
pixel detector at each scan location was sent to low-noise
amplifiers (Mini-Circuits ZRL-1150-LN+) to amplify the
signal by 80 dBm and a 1 GHz (+/−10 MHz) bandpass
filter (KL Electronics 3C40-1000/T10-O/O) to clean the
noise coming from unwanted frequency bands. Following
the amplification, the signal was passed through a tunable
attenuator (HP 8495B) and a low-noise power detector
(Mini-Circuits ZX47-60), and then the output voltage was
read by a lock-in amplifier (Stanford Research SR830).
The modulation signal was used as the reference signal for
the lock-in amplifier and accordingly, we conducted a
calibration by tuning the attenuation and recording the

lock-in amplifier readings. The lock-in amplifier readings
at each scan location were converted to a linear scale
according to the calibration.
The diffractive multispectral imager was fabricated

using a 3D printer (Objet30 Pro, Stratasys Ltd). The
optical architecture of the 3D-printed diffractive optical
network consisted of an input object and 3 diffractive
layers (see Fig. 6). While the active modulation area of
our 3D-printed diffractive layers was 5 cm × 5 cm
(62:5λ1 ´ 62:5λ1), they were printed as light-modulating
insets surrounded by a uniform slab of the printing
material with a thickness of 2.5 mm.

Training details and image quality metrics
The image quality metrics SSIM and PSNR were com-

puted based on the comparison between the low-
resolution ground-truth image cube, IGT ;LR k; r;w½ �, and
the output image cube formed through the demosaicing
of the optical intensity patterns collected by the image
sensor, IS;LR½k; r;w�. Both PSNR and SSIM metrics were
computed separately for each spectral channel. The PSNR
achieved by a diffractive multispectral imager for the
spatial information in a spectral band, w0, was computed
based on,

PSNRw0 ¼ 20 log10
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k

P
r IGT ;LR k; r;w0½ � � IS;LR½k; r;w0�		 		2

q
0
B@

1
CA

ð12Þ

To compute the SSIM metric, we used the built-in
tf.image.ssim() function in TensorFlow based on its
default parameters. Each data point in SSIM and PSNR
values shown in Figs. 2 and 4 represents the average value
calculated using 2080 blind test objects created in a way
that the amplitude channel of the spatial transmission
function at each spectral band was modeled based on an
image randomly selected from the 18.8 K test images of
the EMNIST dataset.
The deep learning-based training of the diffractive

networks was implemented using Python (v3.6.5) and
TensorFlow (v1.15.0, Google Inc.). The backpropagation
updates were calculated using the Adam optimizer69, and
its parameters were taken as the default values in Ten-
sorFlow and kept identical in each model. The learning
rates of the diffractive optical networks were set to be
0.001. The training batch size was taken as 8 during the
deep learning-based training of all the presented dif-
fractive multispectral imagers. The training of a 5-layer
diffractive multispectral imager network with 392 × 392
diffractive features per layer (for 100 epochs) takes
approximately 2 weeks using a computer with a GeForce
GTX 1080 Ti Graphical Processing Unit (GPU, Nvidia
Inc.) and Intel® Core ™ i7-8700 Central Processing Unit
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(CPU, Intel Inc.) with 64 GB of RAM, running Windows
10 operating system (Microsoft). Although the training
time for the deep learning-based design of a diffractive
multispectral imager is relatively long, it should be noted
that this is a one-time effort. Once the diffractive multi-
spectral imager is fabricated following the training stage,
its physical forward optical operation consumes no power
except the illumination beam.
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