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Abstract
Recent breakthroughs in deep learning have ushered in an essential tool for optics and photonics, recurring in various
applications of material design, system optimization, and automation control. Deep learning-enabled on-demand
metasurface design has been the subject of extensive expansion, as it can alleviate the time-consuming, low-efficiency,
and experience-orientated shortcomings in conventional numerical simulations and physics-based methods. However,
collecting samples and training neural networks are fundamentally confined to predefined individual metamaterials
and tend to fail for large problem sizes. Inspired by object-oriented C++ programming, we propose a knowledge-
inherited paradigm for multi-object and shape-unbound metasurface inverse design. Each inherited neural network
carries knowledge from the “parent” metasurface and then is freely assembled to construct the “offspring”
metasurface; such a process is as simple as building a container-type house. We benchmark the paradigm by the free
design of aperiodic and periodic metasurfaces, with accuracies that reach 86.7%. Furthermore, we present an
intelligent origami metasurface to facilitate compatible and lightweight satellite communication facilities. Our work
opens up a new avenue for automatic metasurface design and leverages the assemblability to broaden the
adaptability of intelligent metadevices.

Introduction
The awakened wave of machine learning has swept across

a variety of scientific areas, ranging from the mainstream
applications of image recognition and language translation
to the emerging disciplines of neuroscience and quantum
mechanics1. In optics and photonics, we have been wit-
nessing the interaction of machine learning transforming
the way we design new photonic structures, unearth latent
physical laws, and develop intelligent photonic devices2–5.
Metamaterials and their planar equivalences, metasurfaces,
may be the most thought-provoking. By rationally designing
artificially subwavelength structures and spatiotemporal

layouts, metamaterials and metasurfaces can provide an
unprecedented ability to manipulate the electromagnetic
(EM) wavefront at will, and thus, facilitate a panoply of
exciting phenomena and novel devices6–9. Recently, a
growing interest has been fueled on inverse structural/
material design and forward EM response prediction10–14.
Conventionally, these tasks are executed by a large number
of EM numerical simulations. However, it necessitates
iterative and lengthy calculations of Maxwell’s equa-
tions15,16, and even worse, the ultimate design outcomes are
innately flawed in a trial-and-error manner. In this respect,
machine learning is heralded as a promising method to
unlock elusive light-metamaterial interactions with power-
ful nonlinear fitting and generalizability. We have seen
extensive literature across diversified metamaterials17,18,
plasmonic nanostructures19,20, and photonic crystals21,22,
spawning data-driven approaches complementary or
superior to conventional methods.
Two key problems must be deciphered in all machine

learning-based metamaterial designs, i.e., data collection
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and algorithm modeling23. Data to machine learning is like
the fuel to an engine. To enable a powerful driving force,
much effort has been inaugurated to enlarge the training
dataset. However, it was soon realized that such a method
is prohibitively time-consuming and computationally
expensive, especially with the increase in design dimension
and metamaterial scale24,25. To mitigate this dilemma, data
clustering, feature extraction, data denoising, and related
techniques have been extensively leveraged to augment the
data utilization efficiency. Meanwhile, scientists strive to
introduce novel network structures, such as transfer
learning, generative adversarial networks, and physics-
informed networks, to speed up network convergence and
relieve data reliance26–28.
Despite certain achievements, a major impediment

persistently exists; datasets and networks are only dis-
posable. That is, for each new task, all datasets and net-
works must be discarded, and new datasets and networks
must be reconstructed. To achieve the unified design of
various metamaterials, multiple “expert” networks have
to be trained in a one-by-one manner, each of which is
bound to an individual metamaterial2. Another “brute-
force” method is to train a single “generalist” network
using a larger dataset that covers various metamaterials3.
Either way, each metamaterial is physically separated, and
the data utilization efficiency is very low. Therefore, it is
highly desirable to exploit whether there are any physical
connections or network correlations among various
metamaterials that can robustly handle a broad range of
metamaterials.
Inspired by object-oriented C++ programming, for the

first time, we propose a knowledge-inherited paradigm to
break the stereotype that neural networks only work for
predefined and shape-bound metasurfaces. It offers a
fresh perspective that neural networks can also inherit the
knowledge from the “parent generation” and then become
freely assembled to construct an “offspring” neural net-
work; this process is similar to building a container-type
house. As a demonstration, we consider seven “parent”
metasurfaces and train their ‘parent’ neural networks for
the inverse design with an accuracy of over 93.8%. For a
given “offspring”metasurface, these “parent”metasurfaces
can be freely assembled in physical space, corresponding
to the synthesis of “parent” neural networks managed by
an assembled neural network. Different from transfer
learning, our “knowledge-inherited learning” is unique
and exclusive to metasurfaces (more details are discussed
in Supplementary Note 5). Due to the inimitable physical
character of metasurfaces, our knowledge-inherited net-
work is associated with the complex spatial information of
structures, which can further inherit the knowledge from
“parent” metasurfaces, and then freely assemble for “off-
spring” metasurfaces. In other words, the synthesis of
networks in the virtual space is inseparably correlated to

the metasurface assembly in physical space. We bench-
mark the universality of our approach by one aperiodic
metasurface and three periodic stretchable origami
metasurfaces; their accuracies are far beyond those of
conventional neural networks. Furthermore, we propose
and experimentally demonstrate an innovative technology
for spaceborne antennas in satellite communication, dri-
ven by intelligent origami metasurfaces. Our work opens
up a new horizon towards the metasurface inverse design,
excavating the inheritance feature to recycle the pre-
trained knowledge and enormously cut down the design
dimensionality.

Results
Inspiration and paradigm of the knowledge-inherited
neural network
The inverse design of metasurfaces has become a per-

vasive tool for numerous applications involving the direct
generation of metasurface candidates for user-defined
optical responses29. Such generation includes geometrical
structures, material parameters, phase distributions, and
spatiotemporal coding matrixs17–20. Existing machine
learning works can be vividly described as the “brick-by-
brick” paradigm because the input–output parameters of
neural networks are predetermined and fixed. This is very
similar to masonry buildings (Fig. 1a), where all bricks are
stacked together and joined with mortar. Once built up,
such a “brick-by-brick” masonry building is inseparable,
fossilized, and single-functional.
An alternative container-type building has been found

to be a profitable option due to the advantages of high
flexibility, free assembly, recyclability, time savings, low
cost, and labor savings. A clear-cut example is manifested
in the rapid construction of numerous quarantine sites
when human beings encounter the emergency public
health crisis of COVID-19. It naturally raises the ques-
tion of whether neural networks can also be freely
assembled and recyclable. We term this novel network
“panel-by-panel” or a knowledge-inherited neural net-
work. Analogous to building a container-type house with
high flexibility and free assembly, our method endows the
network’s recyclability and flexible assemblability. It also
breaks the stereotype that neural networks only work for
predefined and shape-bound metasurfaces, which is
similar to the fossilized masonry building. As schemati-
cally depicted in Fig. 1b, a knowledge-inherited neural
network is composed of two functional networks, i.e., an
inherited neural network (labeled INN) and an assembled
neural network (labeled SNN). The INN is responsible
for the inverse design of each “panel” metasurface, and
the SNN functions as a deployer to assign the task for
each INN. To clearly illustrate this point, we employ the
lower right inset of Fig. 1b as an example. The database
consists of seven “panel” metasurfaces, each of which has
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its own INN. For a given metasurface, such as a rectangle
and a diamond shape, we first construct it with these
seven “panel” metasurfaces in physical space, and then
synthesize the holistic neural network by using the
handy-prepared INN. In this procedure, the INN is
completely inherited and reserved, and instead, we only
need to dynamically adjust the SNN, enabling a green
and data-efficient metasurface inverse design. For
semantic description, we also term the “panel” meta-
surface the “parent”metasurface. Note that Fig. 1b is only
a schematic of our network for metasurface inverse
design. In the simulation and experiment, to verify the

feasibility of our method handily, each small panel is set
to be rectangular.

Architecture of the knowledge-inherited neural network
Specifically, we establish a dataset containing seven

“parent”metasurfaces with tilt angles of 0°, ± 10°, ± 20°, 30°,
and -45° (see Fig. 2a and Supplementary Note 6 for details).
Each “parent” metasurface has 8 × 8 unit cells and a phase
response can cover 2π while the reflection amplitude
remains almost in unity. The geometrical details and dis-
persion relations are displayed to the right of Fig. 2a. To
alleviate the coupling effect among adjoint unit cells, we
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Fig. 1 Schematic of the knowledge-inherited neural network for metasurface inverse design. a House building. In masonry buildings, all bricks
are stacked and fixed with mortar, while container-type buildings are built with detachable “panel-by-panel” assemblies. b Knowledge-inherited
paradigm for a metasurface inverse design. Similar to “brick-by-brick”masonry buildings, conventional neural networks are inseparable, fossilized, and
single-functional once built up. In contrast, the proposed knowledge-inherited neural network is oriented for multi-object and shape-unbound
metasurfaces. It is composed of two functional networks, the INN and the SNN. For a given “offspring” metasurface, we can synthesize the holistic
neural network by assembling the INN and dynamically adjusting the SNN
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segment the “parent” metasurface into 4 × 4 super unit
cells, i.e., each super unit cell has 2 × 2 uniform unit cells
(Supplementary Note 3). Note that no matter which divi-
sion strategy (that is, the size of the parent metasurface
blocks) is all suitable for our method. In other words, our
method has strong generality for any partition of the “off-
spring” metasurface (Supplementary Note 3).
INN is employed to comprehend the relationship from

the complex far-field F P1 to the phase distributionM of the
“parent” metasurface. The phase distribution M can be
easily mapped into the practical metasurface according to
the dispersion relation in Fig. 2a. Note that, although only a
regular single circular patch is used in this work, other user-
desired freeform style structure of meta-atoms (such as
I-type, H-type, and so on) can also be applied. Accom-
panied by the complex spatial information, INN is estab-
lished as a dual-input dual-output neural network, where
both input and output are set as two channels (real and

imaginary channels). Due to the existing nonuniqueness
problem (namely, a nearly identical far field can be induced
by multiple phase distributions)30, we attach a physical
auxiliary module behind the INN. For the convolutional
neural network (CNN) structured by the encoder-decoder
model, two input channels are concatenated for fusing
the processed features and further exporting the inter-
mediate phase distribution M (Supplementary Note 1). For
the physical auxiliary module, antenna theory25 is utilized to
create the forward mapping from phase distribution M to
the uniqueness and deterministic far-field F0

P1. To merge
these two modules, the difference between the target far-
field of each panel F P1 and the reconstructed far-field F0

P1
is taken as the loss function.
We then progress to the design of the SNN. Taking a

large-scale form-free aperiodic metasurface (“offspring”
metasurface) with a size of 539 × 572 × 60 mm3(56 × 56
unit cells) as an example, which is composed of 49
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Fig. 2 Design of the knowledge-inherited neural network. a Flowchart of the knowledge-inherited paradigm. To match the inheritance-to-
assembly scheme, two networks (INN and SNN) are established, where the INN is responsible for the inverse design of each “panel” metasurface, and
the SNN aims to explore the relationship between the global target EM response and the local EM response provided by each metasurface panel. For
simplicity, we select two cross sections (xoz, yoz) of the RCS as input. We build up a data library that contains seven local panels with different tilt
angles (tilt in the φ direction), including 0°, ± 10°, ± 20°, -30°, and 45°. The form-free aperiodic metasurface is composed of 49 local panels from Panels
A, B, F, and G, with the whole size of W= 539mm, L= 572 mm, and H ¼ 60mm. The geometrical details and dispersion relation of the meta-atom
are presented on the right side, where p ¼ 10mm and h ¼ 2mm. b The structure of the knowledge-inherited neural network. The SNN is a dual-
output network comprised of a CNN, and the INN is established as a dual-input dual-output network with two modules, i.e., a CNN module for the
inverse design and a physical auxiliary module for the forward mapping (Note that all digital subscripts represent the number of filters). They are
concatenated by the intermediate phase distribution. More details are discussed in the Methods
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“panel”/“parent” metasurfaces with the combination of
Panel A, Panel B, Panel F, and Panel G. Note that we use a
more general principle based on structural periodicity to
divide 3D metasurfaces here, rather than the periodicity of
phase distribution. The SNN aims to decompose the
holistic far field F to the far field contribution of each
“panel” metasurface F P1�P49. For simplicity, we select two
cross sections of far-field radar cross section (RCS), where
the azimuth angles are 0° (cross 1) and 90° (cross 2).
Conducted as a dual-output network, the SNN includes
an encoder and two decoders, as shown in Fig. 2b. The
dimension of the input is 4 × 91 × 2, corresponding to two
channels. One channel (4 × 91 × 1) represents the fre-
quency, which is presented by the same label, and the
other channel represents the RCS, where 4 represents the
number of azimuth angles (0° and 180°, 90°and 270°), and
91 represents the number of discrete points scanned over
the elevation angle 0°–90°. The dimensions of the two
outputs (one for the real part and the other for the ima-
ginary part) are both 4 × 91 × 49, representing two cross
sections of the RCS produced by the “offspring” meta-
surface. For these two outputs, the SNN is bifurcated in
the decoder module, and two mean square error (MSE)
loss functions are set, each possessing a weight of 0.5
(Supplementary Note 1). To further encapsulate the INN
and the SNN, we unite the output of the SNN and the
input of the INN in series. Specifically, the SNN outputs
the far field of 49 “panel” metasurfaces, each of which is
recommended with the corresponding INN of Panel A,
Panel B, Panel F, and Panel G. The intermediate layer M
of each INN is then extracted and synthesized into the
ultimate metasurface arrangement.

Results for aperiodic metasurfaces and a comparison with
conventional neural networks
We trained the INN and the SNN with 50,000 and

15,000 samples, respectively, at frequencies of 8.0, 8.1, and
8.2 GHz (more details are discussed in Supplementary Note
2). The data are split into training, validation, and testing
sets (80, 10, and 10%, respectively). Note that the testing set
is isolated from the pretrained network, meaning that the
data in a testing set has never been seen by the network. To
intuitively characterize the accuracy of the knowledge-
inherited neural network, we employ the Pearson correla-
tion coefficient31, which is defined as follows:

accuracy ¼ CovðX;Y Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var X½ �Var½Y �p ´ 100% ð1Þ

where X and Y represent the target RCS pattern and deep
learning prediction, respectively. Figure 3a, c show the
training results of the INN-1 and the SNN, where the
testing accuracies reach 95.7% and 97.1%, respectively.
The accuracies for the INN-2, INN-6, and INN-7 are

95.7, 94.3, and 93.8%, respectively (see Supplementary
Note 2). Three samples of Panel A, Panel B, and Panel G
are blindly picked in Fig. 3b. It is observed that each
target RCS agrees well with that of the deep learning
prediction for both cross 1 and cross 2. To further
evaluate the performance of our knowledge-inherited
paradigm, we expropriated terminal tandem accuracy
(TT-accuracy), defined as the accuracy between the
target pattern F and deep learning prediction induced by
fF 0

P1;F0
P2; ¼ ;F0

P49g. The TT-accuracy for this meta-
surface profile reaches 86.7%. Due to the cascade
characteristics of our network, there may be a certain
loss of the final accuracy. To further improve the
accuracy of the network, there are also many ways, such
as adjusting the network structure (number of layers,
size of each layer, and activation function), parameter
initialization, learning rate and batch size, or increasing
the difference and randomness of the dataset. For the
sake of intuition, we additionally extract the phase
distribution M to calculate the predicted RCS by
the knowledge inheritance paradigm, and three stochas-
tic testing samples are selected (Fig. 3d). The ground
truth and the predicted results are consistent with each
other, providing unambiguous evidence for the reliability
of our knowledge-inherited paradigm. Note that in our
case, the far-field radiation is also only one example to
prove the effectiveness of our network. More electro-
magnetic responses, such as transmission, band struc-
ture, and electric field, can also be extended.
As a comparison, we deal with the same design task with

a conventional neural network. It is constructed by two
modules: a CNN and a physical auxiliary module (Supple-
mentary Note 4). We can see that, even with 50,000 groups
of data at each frequency, the loss seems to be non-
convergent under a serious underfitting state, and the
accuracy is only 20.0% (Fig. 3e). This is especially evident
from the far-field comparison of the three test samples in
Fig. 3f. The grave inconsistency of the results strongly
indicates that the conventional neural network is com-
pletely invalid with the same training data. Further, we
increased the complexity of this conventional neural net-
work and found that there is no improvement in the
accuracy (Supplementary Note 4). This comparison further
illustrates the superiority and effectiveness of our strategy
compared with other “disposable” design techniques.

Knowledge-inherited neural network for periodic origami
metasurfaces
To further benchmark the generalization of our novel

design strategy, three periodic origami metasurfaces are
established with separate stretchable angles of ±20°, ±10°,
and 0°, termed offspring metasurfaces 1/2/3 (Fig. 4a).
Organized by Panel D/E, Panel B/C, and Panel A, each
offspring metasurface contains 16 “parent” metasurfaces
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(16 × 64 unit cells). For these new offspring, we only train
the SNNs with 15,000 samples at frequencies of 8.0, 8.1,
and 8.2 GHz. After hyperparameter optimization, these
three offspring achieve satisfactory training results
(Supplementary Note 2). The dimension of the input is
4 × 91 × 2, and that of the dual output is 4 × 91 × 16 (one
for the real part and the other for the imaginary part).
With one input (the user-defined far-field F ), the SNN is
bifurcated in the decoder module here for two outputs
and followed by two loss functions (Supplementary Note
1). Figure S2 presents the training results of each SNN,
where the testing accuracies are 99.7, 97.4, and 98.4%,
respectively. After reassembly with the corresponding
INN, the TT accuracies of the three newly synthesized
neural networks reach 94.5, 89.0, and 90.9%, respectively.
Moreover, by feeding the same input into the three
synthesized neural networks, the three offspring

metasurfaces can yield similar scattering characteristics,
as shown in Fig. 4b, c. The corresponding intermediate
outputs of the phase distribution M are also presented.
This remarkable performance means that by applying the
simple inheritance-to-assembly scheme, we can not only
robustly deal with a broad range of metasurface designs,
but also derive versatile functions for many potential
applications, such as satellite communication.

Experimental results and the application in satellite
communication
We emphasize that the flexible metasurface inverse

design of periodic stretchable origami metasurfaces holds
great potential in the application of satellite communica-
tion. Satellite communication has recently attracted grow-
ing interest due to the capability of global internet coverage,
precise localization, and navigation. However, improving
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the satellite communication quality with lightweight and
compatible communication facilities has been a major
challenge. Serving as the “loudspeaker” of satellites, a
spaceborne antenna is an indispensable part of satellite
communication. The traditional spaceborne antenna
technique has a considerably high hardware cost, energy
consumption, and computational complexity32. Even with
high accuracy, for inverse design, conventional electro-
magnetic solver usually depends on complicated numer-
ical simulations, which necessitates iterative and lengthy

calculations in a trial-and-error manner. In this respect,
machine learning is heralded as a promising trade-off
method to equipoise accuracy and computational effi-
ciency in satellite communication. Consequently, we
speculatively envision that intelligent origami meta-
surfaces can be formed (freely folded and stretched) on
the wings of satellites, as schematically delineated in
Fig. 5a. Not only is the volume greatly reduced before
launching, but the antenna can also be intactly expanded
and form a very large reflector after going into orbit.
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metasurfaces. Three “offspring” metasurfaces with separate stretchable angles (± 20°, ± 10°, and 0°) are organized by Panel D/E, Panel B/C, and Panel
A, abbreviated as offspring 1/2/3. Each “offspring” metasurface contains 16 panels (including 16 × 64 unit cells), with 8 extending along the y-axis and
2 extending along the x-axis. b, c Prediction labels and RCS results of three “offspring”metasurfaces. Given the same specified far-field input (the blue
cross), our knowledge-inherited paradigm for offspring 1/2/3 is capable of yielding similar on-demand scattering characteristics. The prediction labels,
i.e., the prediction arrangement of metasurfaces, are presented on the left
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Thus, it provides great possibilities for the originality and
forward-looking design of satellite communication.
Two typical communication situations are considered,

i.e., intersatellite communication (case 1) and satellite-
earth communication (case 2). For case 1, along the curved
orbit, satellites require different beamforming to transmit
signals between each other (Fig. 5b). Here, we employ
offspring 3 in Fig. 4a as an example to show that distinct
functions can be cushily achieved by our knowledge-
inherited paradigm with the identical metasurface con-
figuration. Conducted as the main section, the predicted

and experimental patterns of cross 2 are shown in Fig. 5c,
which are in accordance with three targets, especially for
the main lobe. To further quantify the experimental effi-
ciency, we define it as the efficiency ratio (the ratio of the
predicted pattern to the target pattern) of the energy at full
width at half maxima (FWHM):

efficiency ¼ EPre
FWHM=E

Pre
All

ETar
FWHM=E

Tar
All

´ 100% ð2Þ

where EPre
FWHM (ETar

FWHM) is the energy at FWHM and EPre
All

(ETar
All ) is the whole energy of the prediction pattern

Case 2: Satellite-earth communication

The identical beams generated by offspring 1 / 2 / 3Target beam

a

d e

Case 1: Intersatellite communication Cross 2 (simulation) Cross 2 (experiment)b c

Normalized gain
101

Cross 2 (simulation) Cross 2 (experiment)

Earth station

C
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e 
2
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Satellite 2

Satellite 2
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An fantasy of future satellite communication
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Fig. 5 A fantasy of future satellite communication and experiments for origami metasurfaces. a Schematic of satellite communication based
on intelligent origami metasurfaces. As a flexible, ultrathin, and low-cost competitor for free beam forming, the origami metasurfaces can be
confirmed on the wings of satellites, which can be freely folded and stretched. Two satellites and one earth station are depicted to illustrate
b intersatellite communication (case 1) and d satellite-earth communication (case 2). c Simulation and experimental results for case 1. For example,
for offspring 3 in Fig. 4a, we show that distinct functions can be easily achieved by our knowledge-inherited paradigm. Conducted as the main
section, only cross 2 is presented. e Simulation and experimental results for case 2. Considering that the satellites and receivers on Earth are relatively
static, satellites with an offspring of 1/2/3 are able to generate identical beams
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(target pattern). Therefore, the experimental efficiencies
for three distinct functions in Fig. 5c are 99, 94, and 85%,
respectively. For case 2, the satellite and the receiver on
Earth are relatively static. Hence, satellite-earth commu-
nication requires unique vertical transmitting (receiving)
beams (Fig. 5d). For example, satellites with offspring
1/2/3 can generate the identical beam, where the
predicted and experimental RCS are shown in Fig. 5e,
whose experimental efficiencies are 99, 92, and 95%,
respectively. Note that the experiments are conducted at
8.0 GHz. The consistent results may be conducive to
future satellite communication and other adaptive meta-
devices; see Supplementary Movie S1.

Discussion
In conclusion, to the best of our knowledge, we, for the

first time, have proposed a knowledge-inherited paradigm,
also termed “panel-by-panel”, to be competent for object-
oriented, large-scale, and shape-unset metasurface design.
Endowed with an inheritance-to-assembly mixture scheme,
the network can inherit the knowledge from the “parent”
metasurface, and then disseminate knowledge for the reas-
sembled “offspring”metasurface. It is the high flexibility and
free assemblability of this scheme that endows our method
with high generality. Such green and correlation metasur-
face design is different from conventional neural networks
that are disposable and inseparable. In other words, the
knowledge-inherited network considerably enhances the
adaptability and exponentially scales down the dimension-
ality; this is very obvious from the comparison in Fig. 3e. In
practice, by applying our inheritance-to-assembly strategy,
we can also achieve multi-stage network assembly for larger
or more complex models, such as an irregular bird-like
metasurface (Supplementary Note 7). Another point we
would like to emphasize is that the advantages of “panel-by-
panel” are extremely maximized in the application of
geometrical periodic metasurfaces, such as origami meta-
surfaces. Attached with external force stimulation, origami
structures can smoothly dominate their folding/unfolding
movement to form a “modular” metasurface with excellent
structural stiffness and adjustable periodicity, which firmly
coincides with our “panel-by-panel” policy. Its compatibility
and lightweight characteristics also appeal to underlying
applications in satellite communications. As a high coverage
communication system, satellite communication can flex-
ibly peruse multiple access communication and channel on-
demand allocation, offering terrific signals for every corner
of the world, even in remote mountainous areas or Mount
Everest32. Further, the design principles can be generalized
to higher frequencies and broadband by exploring novel
metasurface structures and unorthodox networks. Com-
bined with complex-amplitude metasurfaces, it is also pro-
mising to customize more kinds of scattering patterns for
complicated application scenarios.

Furthermore, we expect that the concept of the
knowledge-inherited network demonstrated here could be
deployed in many application areas where machine learning
is used, with compelling applications throughout, including
plasmonic structures, photonic circuits, imaging recogni-
tion, biomedicine, and quantum computing33–38. For
example, thus far, optical technologies have mainly used
photonic optimization in a restricted design space, largely
limiting the structural topology/geometry and shape3.
Associating with our generic and hierarchical network
strategy may inject new prospects for this challenge, and the
pipeline is as follows: first, we establish a “bank” that con-
tains a glut of well-trained ‘parent’ networks for diverse
restricted spaces, then attached to a “deployer” network for
seeking the potential interaction. Such a novel perspective
indisputably offers a fresh mentality for machine learning,
further alleviating its tension with big data and high-
performance central processing units (CPUs).

Materials and methods
Data generation
The far-field cross-section data of different metasurfaces

is generated through antenna theory, where each meta-
atom/unit cell is regarded as an independent radiation
source, and the far-field is calculated by accumulating the
contributions of all meta-atoms. In doing so, we can sig-
nificantly save computational time for data collection. To
reduce the coupling effect among adjacent meta-atoms, we
deploy a super meta-atom containing 2 × 2 equal-sized
units with the dimension of D. Under the normal incidence
of plane waves, the far-field function scattered by the
metasurface is expressed as follows:

f θ;φð Þ ¼
XM

m¼1

XN

n¼1

UmnexpfikD½ m� 1ð Þsinθcosφ

þ n� 1ð Þsinθsinφ�g
ð3Þ

where θ and φ are the elevation and azimuth angles of an
arbitrary direction, respectively, and Umn is the complex
voltage of the unit cell located at (m, n). M(N) is the
number of unit cells along the x(y) axis, and m(n)
represents the m-th(n-th) unit cell inside. k represents the
wavenumber. For tilted “panel” metasurfaces, assuming
the panel rotates at an angle of α in the −φ direction, as
shown in Fig. S10, the modified far-field function is
expressed as follows:

f u; vð Þ ¼
XM

m¼1

XN

n¼1

UmnexpfikD½ m� 1ð Þu

þ n� 1ð Þvcosα� ðn� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2 � v2

p
sinα�g

ð4Þ
where u ¼ sinθcosφ, v ¼ sinθsinφ.
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In this way, we first generate 50,000 datasets of each
“parent” metasurface by randomly setting the metasurface
distribution for INN training. Then, for an “offspring”
metasurface (assembled by “parent” metasurfaces), we
also follow a similar procedure to generate 15,000 samples
for SNN training.

Deep learning architecture
The INN is established as a dual-input dual-output

network that is divided into two modules, i.e., a CNN
module for the inverse design and a physical auxiliary
module for the forward mapping. For the CNN module,
there are 13 convolution layers and two deconvolution
layers, in which the seventh layer of the two input
channels are concatenated for fusing the processed fea-
tures and further exporting the intermediate phase dis-
tribution M. For the physical auxiliary module, antenna
theory is utilized to unfold the forward mapping and
further outputs both the real and imaginary parts of the
far field. Conducted as a dual-output network, the SNN
for the proposed form-free aperiodic metasurface con-
sists of two parts, an encoder and a decoder, by using five
convolution and 11 deconvolution layers, which are
bifurcated in the second deconvolution layer, as shown in
Fig. 2b. The detailed structure and operating process of
our knowledge-inherited paradigm (INN and SNN,
respectively) are provided in Supplementary Note 1. All
models are built under a CPU of Intel (R) Core (TM) i7-
8700K and a graphics processing unit (GPU) of NVIDIA
GeForce RTX 2080 SUPER.

Experimental measurement
The experiment was carried out in an anechoic

chamber, mainly including a transmitting horn antenna
and a receiving horn antenna. In the measurement, the
origami metasurfaces and the transmitting horn antenna
were fixed on a rotating platform at a distance of 1 m,
and the receiving horn antenna was placed 8 m away
from the rotating platform. Furthermore, the rotating
platform was digitally controlled to rotate within −90°
to 90°. The receiving horn antenna was connected to a
vector network analyzer (VNA) to detect the scattered
field, including the amplitude and the phase informa-
tion. In addition, when the rotating platform is turned to
0°, the transmitting antenna, the receiving antenna, and
the central point of the scatterer were kept in the same
vertical plane.
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