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Guankui Long7, Libing Zhang5 and Xiyan Li 1,2,3✉

Abstract
Lead-free halide perovskite materials possess low toxicity, broadband luminescence and robust stability compared
with conventional lead-based perovskites, thus holding great promise for eyes-friendly white light LEDs. However, the
traditionally used preparation methods with a long period and limited product yield have curtailed the
commercialization of these materials. Here we introduce a universal hydrochloric acid-assistant powder-to-powder
strategy which can accomplish the goals of thermal-, pressure-free, eco-friendliness, short time, low cost and high
product yield, simultaneously. The obtained Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 microcrystals exhibit bright self-trapped
excitons emission with quantum yield of (98.3 ± 3.8)%, which could retain (90.5 ± 1.3)% and (96.8 ± 0.8)% after
continuous heating or ultraviolet-irradiation for 1000 h, respectively. The phosphor converted-LED exhibited near-unity
conversion efficiency from ultraviolet chip to self-trapped excitons emission at ~200 mA. Various ions doping (such as
Cs2Na0.9Ag0.1InCl6:Ln

3+) and other derived lead-free perovskite materials (such as Cs2ZrCl6 and Cs4MnBi2Cl12) with high
luminous performance are all realized by our proposed strategy, which has shown excellent availability towards
commercialization.

Introduction
Lead-free halide perovskite materials are considered as

one of the most competitive luminescence candidates for
greatly overcoming toxicity and instability of conventional
lead-based halide perovskites APbX3 (A=Cs, MA or FA,
etc. X=Cl, Br, I)1–6. The efficient broadband emission
induced by self-trapped excitons (STEs) empowers them
with unique characteristics in applications such as eyes-
friendly white light LEDs or background light sources of
LCD screens7–13. For example, the bright warm-white
light from single component Cs2Na1−xAgxIn1−yBiyCl6 can
greatly reduce the complexity of LED device structure and

avoid the inefficient reabsorption between multiple pow-
ders10,14–16. Furthermore, the flexible luminescence reg-
ulation supported by various ions-doping makes them
suitable for different application scenarios, such as indoor
lighting, bio-imaging and up-conversion anti-counter-
feiting10,17–21, etc. Lead-free perovskite materials are
expected to be commercialized due to their promising
luminescence performance and wide range of applicability.
A synthesis strategy that can realize excellent photo-

luminescence (PL) performance, eco-friendly low cost,
and rapid mass production is a prerequisite for achieving
the goal of industrial applications. However, conventional
strategies such as hydrothermal and solid-state reactions
cannot greatly meet the needs of industrialization due to
the considerable time cost (hour scale) and unsafe high
reaction temperature (over 180 °C) or high pressure (over
1MPa)18,22,23, etc. In contrast, the precipitation method is
more popular for preparing lead-free perovskites due to
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the rapid reaction rate and bright luminescence perfor-
mance of the products. Taking chloric double perovskite
Cs2(Ag/Na)InCl6 as an example, essential raw materials
such as CsCl, AgCl and NaCl are firstly dissolved in the
selected regents (e.g. hydrochloric acid, called HCl here-
after) separately to form precursors, and then the pre-
cipitations are produced by proportionally mixing
different precursors together12. The concentrated HCl is
thought as a decent solvent because of the Cl−-rich
environment for passivation of surface vacancies24,25.
Unfortunately, the solubility of some raw materials such
as AgCl, NaCl or ZrCl4 are limited in concentrated HCl
solution, leading to a large consumption of HCl with
limited yield of products (e.g. 30 mL concentrated HCl
was consumed for preparing only 1 mmol product)26. In
2017, Volonakis et al. increased reaction temperature to
115 °C to enhance the solubility of AgCl in concentrated
HCl27; Majher et al. and Wang et al. synthesized
Cs2NaBiCl6:Mn2+ and Cs2Ag0.4Na0.6InCl6:Bi

3+,Ce3+

microcrystals at 80 °C in 2019 and 2020, respectively7,25.
However, it should be noted that HCl gas may be vola-
tilized above the boiling point of concentrated HCl
(~45–48 °C), leading to decreased product yield and
inferior PL properties (Fig. 2g in the following text). In
addition, the introduction of condensing units and hour-
scale preparation may increase the economic costs, lim-
iting the commercialization. Up to date, there is still a lack
of preparation strategy that could satisfy the requirements
of thermal-, pressure-free, eco-friendliness, short time,
low cost, as well as high product yield, simultaneously.
Herein, taking Cs2Na1−xAgxIn1−yBiyCl6 as an example,

we would like to introduce a universal concentrated
hydrochloric acid-assistant powder-to-powder (HAAPP)
strategy for preparing lead-free perovskite microcrystals,
which can simultaneously satisfy the above-mentioned
requirements. The products can be obtained by simply
mixing the raw materials in a small amount of con-
centrated HCl solution, and the obtained uniform phase
structure and high luminescence performance, as well as
great alloying effect imply that complete dissolution of the
raw materials seems unnecessary in recrystallization
method. The firstly obtained intermediate product
Cs2In1-yBiyCl5·H2O would combine the gradually
released Na+/Ag+ from NaCl/AgCl to grow to the final
Cs2Na1-xAgxIn1-yBiyCl6 within several minutes. Benefited
from the Cl−-rich environment of concentrated HCl, the
products synthesized by HAAPP strategy showed
remarkable product yield of ~90% and near-unity PL
quantum yield (PLQY). Although synthesized at room
temperature, the product retained ~72.22% as intensity as
123 K while heating to 423 K. After continuous heating or
ultraviolet (UV) irradiation, the products still retained
(90.5 ± 1.3)% and (96.8 ± 0.8)% of PLQY, respectively. The
near-unity conversion efficiency from UV-LED chip to

STE emission indicated an excellent application value for
warm-white LEDs. Furthermore, our proposed HAAPP
strategy can be greatly applied to the other lead-free per-
ovskite structures, such as CsMnCl3, vacancy-order per-
ovskite Cs2ZrCl6, layered double perovskite Cs4MnBi2Cl12,
or Br-/I-based perovskites Cs2AgBiBr6/Cs3Bi2I9, etc. The
universal powder-to-powder synthesis strategy will pro-
vide a reliable way for the development of lead-free per-
ovskite materials and industrialization.

Results
Synthesis strategy
The lead-free double perovskite Cs2Na0.9A-

g0.1In0.95Bi0.05Cl6 with microcrystal morphology was suc-
cessfully synthesized by our proposed HAAPP strategy,
which was simply adding a small amount of concentrated
HCl to the mixed raw materials, as shown in Fig. 1a and
Video S1. After shaking and ultrasonication for ~5min,
the mixture emitted bright yellow light efficiently (Fig. 1b)
under 365 nm UV irradiation. X-ray diffraction (XRD)
(Fig. 2) and transmission electron microscope (TEM,
Supplementary Fig. S1) were conducted to confirm the
formation of the Cs2Na0.9Ag0.1In0.95Bi0.05Cl6. Specifically,
the ions from the raw materials are firstly released to the
solution, shown as Eqs. (1)-(5):

CsCl ¼ Csþ þ Cl� ð1Þ

InCl3 ¼ In3þ þ 3Cl� ð2Þ

BiCl3 ¼ Bi3þ þ 3Cl� ð3Þ

AgCl Ð Agþ þ Cl� ð4Þ

NaCl Ð Naþ þ Cl� ð5Þ

Among them, AgCl and NaCl actually show extremely
poor solubility in concentrated HCl, causing partially
dissolved Ag+ and Na+ ions in solution. Then, the final
product of Cs2ABCl6 (“A+” represents monovalent ions
Na+ or Ag+, while “B3+” represents triple valent ions In3+

or Bi3+) can be synthesized in one step in the Ag+/
Na+-rich area, which show local bright luminescence,
shown in Fig. 1c (Step-1), Eq. (6) and Supplementary
Fig. S2. Otherwise, the intermediate non-luminescent
(under 365 nm) product of Cs2BCl5·H2O is initially syn-
thesized which could be proved by the XRD pattern
(Step-2 in Fig. 1c and Supplementary Figs. S3 and S4), and
the final product Cs2ABCl6 are continuously generated
accompanied the gradual releasing of A+ ions from ACl
solid, shown in Fig. 1c (Step-3), Eqs. (7) and (8) and Video
S2. As the continuous consumption of Ag+/Na+ ions, the
chemical equilibriums in Eqs. (4) and (5) shift to the right
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side until the solids are completely depleted.

2Csþ þ Aþ þ B3þ þ 6Cl� Ð Cs2ABCl6 # ð6Þ

2Csþ þ B3þ þ 5Cl� þHþ þOH� Ð Cs2BCl5 �H2O # ð7Þ

Cs2BCl5 �H2Oþ Aþ þ Cl� Ð Cs2ABCl6 þHþ þOH� ð8Þ

The gradually enhancement of luminescence intensity
under 365 nm UV irradiation is obtained during the
stirring process (Fig. 1e, f), suggesting the phase transition

from non-luminescent (under 365 nm) intermediate
Cs2BCl5·H2O to bright Cs2ABCl6. During the actual
synthesis processes, the UV sources are not recom-
mended due to the reducibility of Ag+ ions, producing
some purplish-black Ag solids on the surface of AgCl
therefore hinders the reaction, shown in Fig. 1g (left).
Notably, the products cannot be obtained without any
solvents, suggesting the process from raw materials to
products must goes through the “solids (raw materials)-
free ions-solids (products)” rather than a direct “solid-
solid” process. Therefore, the whole growth processes of
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the proposed HAAPP strategy still could be depicted by
the LaMer model as reported by previous references
(Fig. 1d)28,29. However, different from the conventional

“dissolution in polar solvent - crystallization in poor sol-
vent”, in our proposed HAAPP strategy, three stages
(dissolution of raw materials-nucleation-growth) exist
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simultaneously, making it difficult to distinguish each
stage separately but endowing the HAAPP strategy an
attractive feature of “raw materials do not need to be pre-
dissolved”. Intriguingly, the HAAPP synthesis is a process
where the raw material is gradually dissolving and crys-
tallization in a small volume of HCl environment in a
short time, which makes it possible to prepare lead-free
double perovskite phosphors in large quantities. Figure 1h, i
shows an example of a mass preparation of Cs2Na0.9A-
g0.1In0.95Bi0.05Cl6 (~6 g) with uniform luminescence
characteristics.

Spectroscopic and mechanism investigation
A series of lead-free double perovskite samples such as

Cs2Na1-xAgxInCl6 and Cs2Na0.9Ag0.1In1-yBiyCl6 were syn-
thesized by using our HAAPP strategy. XRD patterns
shown in Fig. 2a confirmed the pure double perovskite
structures and reliable crystallization effect. The intensities
of the peaks at ~14.7°, ~28.2° and 29.5° gradually decrease
with the increase of Ag, proving the alloying process of Na
and Ag10. The actual ratios of Na and Ag have been con-
firmed by inductively coupled plasma (ICP), shown as
Supplementary Table S1, which are in line with our feeding
ratios. The products exhibit weak emission when x= 0 or
0.8–1.0 due to the dark STE caused by a strong inversion-
symmetry-induced parity-forbidden transition (Supple-
mentary Fig. S5)10,12,30. The brightest luminescence was
achieved by alloying 10% of Ag to break the strong inver-
sion symmetry of [NaCl6] octahedrons

31,32. The successful
alloying effect was further confirmed by the enhanced STE
emission intensity, broadened photoluminescence excita-
tion (PLE) band, varied lifetime and band gap (Supple-
mentary Figs. S5 and S6). Similarly, Cs2Na0.9Ag0.1In1-
yBiyCl6 samples were also prepared by changing the feeding
ratios of InCl3 and BiCl3. With the increase of larger sized
Bi3+, the XRD peaks shift to the smaller degrees, with the
observed phase transition process at y= 0.4–0.7 (Fig. 2b).
Raman shifts can be also observed during the In/Bi alloying
process33–35, shown in Supplementary Fig. S7. Meanwhile,
the red-shifted PL band is observed with the increase of
Bi3+ content (Fig. 2e and Supplementary Fig. S8), which is
induced by the phase transition from direct band gap of
Cs2NaInCl6 to indirect band gap of Cs2NaBiCl6

36. With 5%
Bi3+ alloying, the brightest emission with PLQY of
(98.3 ± 3.8)% is achieved, and the central emission wave-
length shifts from ~586 to ~600 nm (Fig. 2e). Meanwhile,
another excitation band at ~340 nm is introduced (Fig. 2e
and Supplementary Fig. S9), which should be assigned to
the contributions of Bi3+ orbitals in the band edges (s-p
transition)7,11,17,26,36–40, endowing their promising appli-
cation value in commercial UV chip-based LEDs24. Scan-
ning electron microscope (SEM) images shown in Fig. 2c
and Supplementary Fig. S10 exhibit the microcrystals
morphology of the Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 products

with mainly 0.4–1.2 μm of size distribution (Supplementary
Fig. S11). The contents of elements obtained from energy
dispersive spectrometer (EDS) (Supplementary Fig. S12)
and ICP profiles (Supplementary Table S2) agree with our
feeding ratios. Uniform distribution of all elements is also
confirmed by line scanning profiles (Fig. 2d and Supple-
mentary Fig. S13). Furthermore, no obvious shift of emis-
sion peak is found from the microsecond transient
emission spectra (Fig. 2f and Supplementary Fig. S14). All
of these results greatly demonstrate the pure phase and
uniform luminescence of products synthesized by the
HAAPP strategy.
In addition to directly mixing all of raw materials in HCl

solution, the prepared products can be used as the new
raw materials for secondary reaction. For example, we
have added AgCl solids into the prepared Cs2NaInCl6 (in
HCl solution). A secondary product Cs2(Na/Ag)InCl6
with bright STE luminescence can be obtained after
stirring for several minutes, shown in Supplementary
Fig. S15. No patterns of AgCl can be observed in XRD
pattern, indicating a complete alloying effect of Na and
Ag, and the PL spectrum exhibits broad STE emission
with central wavelength of ~588 nm, which is similar to
the PL behavior of directly synthesized Cs2(Na/Ag)InCl6.
Furthermore, the alloyed products Cs2(Na/Ag)InCl6 can
be also obtained by mixing Cs2NaInCl6 and Cs2AgInCl6 in
HCl solution, shown in Supplementary Fig. S16. The
successful alloying effect in secondary reactions further
demonstrate the products could achieve uniform dis-
tribution of all ions through Eqs. (1–6) in HCl solution.
The HAAPP strategy was conducted repeatedly for
Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 in 5 days to further confirm
the repeatability. The XRD patterns and PL spectra of
them exhibit consistent diffraction and emission beha-
viors, respectively, shown in Supplementary Fig. S17.
Based on the ICP results, the ratio of Ag/(Ag+Na) was
calculated to be 0.11 ± 0.03, which is close to the original
feeding ratio (0.1), shown in Supplementary Table S3.
Then, we can conclude that the products synthesized by
our HAAPP strategy possess excellent uniformity and
repeatability.
Next, to gain deep insights into the effect of con-

centrated HCl on the HAAPP strategy, we investigated
the influence of HCl concentration on product yield
(purple dot line) and PL intensity (orange dot line), which
are shown in Fig. 2g, respectively. Firstly, the product yield
gradually declines with the decreased concentration of
HCl and sharply drops to ~12% at 5 wt% of HCl con-
centration. It is noted that the Cs2Na0.9Ag0.1In0.95Bi0.05Cl6
product can be greatly dissolved in diluted HCl compared
to concentrated HCl (Supplementary Fig. S18), which is
reasonable since the product prefers to exist in diluted
HCl in form of free ions instead of precipitation,
explaining the reason of low product yield in diluted HCl.
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The as-mentioned results show that a large amount of Cl−

in concentrated HCl strongly pushes Eq. (6) to the right
side, providing a poor dissolution environment so that
more products precipitate out, inducing a remarkable
product yield of ~90% (Fig. 2g, Supplementary Figs. S5d
and S8d); Secondly, the emission intensities of products
gradually decrease with the dilution of HCl solution
(Fig. 2g), indicating a worse passivation effect of the sur-
face halogen vacancies compared to the concentrated
HCl. Meanwhile, similar experiments by using other sol-
vents (such as CH3COOH, CH3OH and NH3·H2O) were
also conducted (Supplementary Fig. S19). Compared with
concentrated HCl, the products synthesized in other
solvents exhibit extremely weak emissions, suggesting
Cl−-rich environment is preferred for preparing chlori-
nated double perovskites, which can effectively passivate
the Cl− vacancies on the surface to suppress the non-
radiative transitions thus greatly enhance the lumines-
cence performance. Thirdly, as shown in Supplementary
Fig. S20, the XRD results show that hybrid structure
phases appear with the dilution of HCl, suggesting the
crystallization trend of free ions could be controlled by
the provided Cl−-rich environment, which is thought to
be one of the main factors for the preparation of pure
product such as Cs2Na0.9Ag0.1In0.95Bi0.05Cl6. In addition,
we found that the products could be successfully syn-
thesized with a wide range of volume of concentrated HCl
solution (Supplementary Fig. S21a), indicating that the
HAAPP method does not strictly limit the proportion
between the sample quantity and concentrated HCl
volume. Furthermore, the concentrated HCl solution can
still be used for the preparation even after 5 cycle
experiments (Supplementary Fig. S21b), suggesting that
the HCl is not really consumed during synthesis process,
but only provide a Cl−-rich environment with poor
solubility and precise guidance for products. The products
can be also obtained with the saturated NaCl and KCl
solutions (Supplementary Fig. S22), which can further
prove that the Cl−-rich environment is one of the pivotal
factors for the proposed HAAPP strategy. However, the
obvious impurities (such as NaCl, KCl or Cs2KInCl6) can
be observed in Supplementary Fig. S22a due to the excess
Na+ or K+ ions in the solution. By contrast, the excess of
H+ ions provided by concentrated HCl solution seem to
have a negligible effect on the components of products.
Therefore, the concentrated HCl solution is considered as
the best option for the HAAPP strategy.

Stability performance of products
Stability tests were conducted to examine the property

of the samples synthesized through the proposed
HAAPP strategy. XRD patterns for the fresh and aged
Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 shown in Fig. 3a exhibit
unshifted peak position, suggesting there is no

decomposition or secondary reaction even storage for
8 months. Under continuous heating or UV irradiation
(20W, 365 nm) for 1000 h, the PLQY of products can still
maintain (90.5 ± 1.3)% and (96.8 ± 0.8)%, respectively
(Fig. 3b, c), without obvious decomposition or phase
transition (Supplementary Fig. S23). Temperature
dependence of PL spectra recorded in Fig. 3d show that
the shape and peak position do not change significantly in
the range of 123–473 K, and the PL intensities remain
94.21% and 72.22% at 298 and 423 K, respectively (Fig. 3e
and Supplementary Fig. S24), suggesting remarkable
thermostability and photostability of the products with
the HAAPP strategy. After 10 cycles of heating and
cooling processes, the Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 still
maintains ~92.2% as intensity as the first cycle (Fig. 3f),
consistent with the as-mentioned thermal-stability results
(Fig. 3b), exhibiting a remarkable endurance resistance
property. The remarkable resistance to the thermal- and
photo-stress of products may greatly owe to the defect-
free lattice guaranteed by Cl−-rich environment of con-
centrated HCl solution10. By taking advantage of the
additional excitation band introduced by Bi3+ dopant,
broadband emission across the entire visible region, high
PLQY characteristic and excellent thermal- and photo-
stability, the phosphor converted-LED (pc-LED) device
was fabricated based on the 365 nm commercial UV chip
and Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 phosphor for efficient
warm-white light source, shown as inset in Fig. 3g. The
optical powers of STE light and total irradiation increase
with input current and reach maximum values of ~48.07
and ~49.64 mW, respectively, at 250 mA. Further
increasing the input current, the optical powers of STE
light and total irradiation decrease due to the high tem-
perature and heat dissipation-free measurement condi-
tions. Figure 3h shows the emission spectra of the
fabricated pc-LED device, which exhibits unshifted STE
emission band, in line with the results of Fig. 3d. Intri-
guingly, the conversion efficiency from UV chip to STE
light (η1) even reaches near-unity at 200mA due to the
near-unity PLQY performance of Cs2Na0.9Ag0.1In0.95
Bi0.05Cl6, suggesting almost all photon energy from the
UV chip is used for the STE emission (Fig. 3i). It is noted
that, due to the limited optoelectronic conversion effi-
ciency of UV chip (η2 in Fig. 3i, voltage in Supplementary
Fig. S25), the conversion efficiency from input power to
STE light (η3) reaches maxima of ~7.13% at 100mA.

Generality verification of the HAAPP strategy
To verify the generality of the proposed HAAPP strat-

egy, a series of proof-of-concept experiments have been
performed. We initially attempted doping Ln3+ ions into
Cs2(Na/Ag)1(In/Bi)1Cl6 system since Ln3+ ions were
always doped as the luminous centers for designing
advanced materials41–45. Taking Tb3+ dopant as an
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example, the XRD phase of the product gradually shifts to
a smaller degree with the increase of Tb3+ (Fig. 4a),
indicating the Tb3+ ions (R= 0.92 Å, CN= 6) have been
successfully doped into the matrix of Cs2Na0.9Ag0.1InCl6
and substitute In3+ ions (R= 0.80 Å, CN= 6)38. Under
260 nm excitation, the products exhibit narrow emission
peaks at ~494, 547 and 622 nm, attributing to the
5D4→

7F6,
5D4→

7F5 and 5D4→
7F3 intrinsic transitions

of Tb3+ ions, respectively (Fig. 4b). Similar to other
synthesis methods19,38,46, the PL intensity of Tb3+ can be
tuned by tailoring the feeding amount of Tb source
(Fig. 4c). SEM image and EDS mapping shown in Fig. 4d
and Supplementary Fig. S26, together with the line scan-
ning profiles in Fig. 4e and Supplementary Fig. S27 indicate
a uniform distribution of all elements. ICP measurement

was further conducted for confirming the precise content
of Tb3+ due to the sensitivity limitation of EDS instrument,
shown in Supplementary Table S4. Obviously, the actual
doping contents are much lower than feeding ratios, which
is similar as the previous reports17,22, indicating a cation
exchange-based doping process (Supplementary Note S3).
Furthermore, a series of metal ions, such as Sb3+, Cr3+,
Mn2+, Yb3+, Er3+, Tm3+, etc. have been proved success-
fully doped into the double perovskite microcrystals with
the same HAAPP strategy, which are shown in Supple-
mentary Figs. S28–S31 and Table S5.
Besides the general double perovskites Cs2ABCl6

(A=Ag/Na, B= In/Bi), a uniform vacancy-ordered halide
double perovskite Cs2ZrCl6 with bright blue emission
was also successfully synthesized (Fig. 5a, Supplementary
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Figs. S32–S36 and Video S3). Similar to the above-
mentioned double perovskite Cs2Na0.9Ag0.1In0.95Bi0.05Cl6,
the emission intensity of Cs2ZrCl6 gradually decrease with
dilution of concentrated HCl (Fig. 5c), and the product
yield declined to zero at 15 wt% of HCl concentration.
Meanwhile, poorly passivated surface halogen vacancies
increase the ratio of non-radiation transition, resulting in a
gradual decrease in the lifetime from 14.40 to 12.87 μs
while diluting HCl solution from 35wt% to 20 wt%
(Fig. 5b)47,48. Concentrated HCl solution is proved again as
an ideal solvent for synthesis of products (Supplementary
Fig. S37), and the wide range of HCl volume and the
repeatability are still retained in this extended experiment
(Supplementary Fig. S38). The similar thermostability
measurement was also conducted for Cs2ZrCl6, which
exhibited unchanged XRD patterns and ~79.1% of PLQY
after continuous heating for 1000 h (Supplementary
Figs. S39 and S40). Additional regulations such as red,
near-infrared emissions and UVB excitation were all rea-
lized by doping Sb3+, Cr3+ and Bi3+ ions, respectively
(Supplementary Fig. S41). Compared with the

Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 and Cs2ZrCl6 synthesized by
conventional hydrothermal method (Fig. 5d, e and Sup-
plementary Fig. S42), the products with similar structure
by the HAAPP strategy have shown comparable crystal-
linity, higher product yield and brighter luminescence
while achieving rapid mass production under room tem-
perature and normal atmospheric pressure.
Furthermore, other lead-free perovskites such as stan-

dard perovskite structure represented by CsMnCl3 or
layered perovskites represented by Cs4MnBi2Cl12 have
been also successfully obtained by the same HAAPP
strategy (Supplementary Fig. S43). In addition, a novel
afterglow material of Cs2Na0.9Ag0.1InCl6:3%Mn2+ has
been developed by the HAAPP strategy. As shown in
Supplementary Fig. S44, after shot by a 4W, 254 nm UV
lamp, the product exhibited red afterglow emission, which
could last for more than 150min. More intriguingly, the
HAAPP strategy can be also extended to the preparation
of Br- or I-based lead-free perovskite materials by using
corresponding concentrated haloid acid, such as Cs2Ag-
BiBr6 and Cs3Bi2I9, etc., shown in Supplementary Fig. S45,
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suggesting that the HAAPP strategy can be applied not
only to luminescence, but also to solar cells, photo-
detectors, ferroelectricity, magnetism and so on5. These
series of proof-of-concept results prove the success of
the proposed HAAPP strategy which could be comparable
with conventional reported methods, and can be greatly
applied to the industrialization for development of lead-
free perovskite materials.

Discussion
We have introduced a universal HAAPP strategy to

achieve a series of lead-free perovskite materials. The
continuous crystallization accompanies the gradual
release of free ions from raw materials with low solubility,
promoting the chemical equilibrium of the reversible
reaction continuously to the free ions’ direction until the
raw materials are exhausted. This powder-to-powder
transition provides a new train of thought about the
mechanism understanding of the conventional recrys-
tallization method, that is, complete dissolution of the raw
materials seems not strictly necessary. As the only used

regent, the effects of concentrated HCl solution with Cl−-
rich environment are concluded: Providing a liquid con-
dition for rapid reactions; Giving a poor solubility for
products thus improving the product yield; Enhancing the
luminous performance of products by passivating the
surface defects; Guiding the growth direction of free ions.
Besides the advantages of thermal-, pressure-free, eco-
friendliness, short time, low cost and high product yield
for industrialization, the HAAPP strategy is also beneficial
for the scientific research such as fluorescence investiga-
tion, afterglow regulation and photochromic, etc.

Methods
Raw materials
CsCl (99.99%), NaCl (99.99%), AgCl (99.99%),

InCl3·4H2O (99.99%), BiCl3 (99.99%), ZrCl4 (99.9%),
MnCl2·4H2O (99.9%), CrCl3 (99.9%), SbCl3 (99.9%) and
corresponding LnCl3 or LnCl3·xH2O (99.9%) were directly
used as the raw materials without further purification.
Among them, AgCl and NaCl are recommended to be
filtered through a 150-mesh sieve.
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Preparation of lead-free Cs2Na1−xAgxIn1−yBiyCl6
microcrystals
Taking the preparation of 1 mmol Cs2Na0.9A-

g0.1In0.95Bi0.05Cl6 as an example, 2 mmol CsCl
(0.3367 g), 0.9 mmol NaCl (0.0526 g), 0.1 mmol AgCl
(0.0143 g), 0.95 mmol InCl3·4H2O (0.2785 g) and
0.05 mmol BiCl3 (0.0158 g) were weight and mixed in a
centrifuge tube. 1–2 mL of concentrated HCl (35 wt%)
was then added and shook for 5 min. The product was
centrifuged at 5000 rpm for 10 s and washed by 6 mL
ethanol for twice. The final sample was transferred to a
60 °C oven to dry for ~2 h and collected for the following
measurements. It is noted that, AgCl and NaCl in
powder state are recommended, otherwise additional
sonication and vigorous stirring for more than 15 min
are required (The specific time greatly depends on the
block size). Furthermore, the ultraviolet light should be
avoided in the preparation processes, because it can
easily induce the reduction of AgCl, leading to the
obvious purplish-black byproduct (that is Ag solid).

Preparation of other lead-free perovskite microcrystals
Similar as the preparation profile of Cs2Na0.9A-

g0.1In0.95Bi0.05Cl6, the Cs2ZrCl6, Cs4MnBi2Cl12 and
CsMnCl3 can be easily prepared by adding mixed stoi-
chiometric raw materials with a small amount of con-
centrated HCl (35 wt%) and shaking for ~1 min. The
products were centrifuged at 5000 rpm for 10 s and
washed by ethanol for twice. The final precipitates were
transferred to a 60 °C oven to dry for ~2 h and collected
for the following measurements.

Preparation of Ln3+-doped lead-free perovskite
microcrystals
Take the preparation of 1 mmol Cs2Na0.9A-

g0.1InCl6:10%Tb
3+ as an example. Tube A: 2 mmol CsCl

(0.3367 g), 0.9 mmol NaCl (0.0526 g), 0.1 mmol AgCl
(0.0143 g) and 1 mmol InCl3·4H2O (0.2932 g) were
weight and mixed in a centrifuge tube. Tube B: 0.1 mmol
TbCl3·6H2O (0.0373 g) was dissolved in 100 μL pure
water, and added into 1–2 mL concentrated HCl (35 wt
%). The mixed solution in Tube B was then added into
the Tube A and shook for 5 min. The final products
were centrifuged at 5000 rpm for 10 s and washed by
ethanol for twice. The final precipitates were transferred
to a 60 °C oven to dry for ~2 h and collected for the
following measurements.

LED fabrication
The pc-LED was fabricated by the Cs2Na0.9A-

g0.1In0.95Bi0.05Cl6 phosphor and 365 nm UVB LED chip
(3W). The mass ratio of curing glue and phosphor is ~1:1,
and the corresponding curing condition was irradiated by
a 5W, 365 nm light source for ~30 s.

Hydrothermal preparation
The Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 and Cs2ZrCl6 were also

prepared by hydrothermal method for comparison.
2 mmol CsCl (0.3367 g), 0.9mmol NaCl (0.0526 g),
0.1mmol AgCl (0.0143 g), 0.95mmol InCl3·4H2O
(0.2785 g) and 0.05mmol BiCl3 (0.0158 g) were weight and
transferred into a 25mL Teflon vessel and added 5mL
concentrated HCl (35 wt%) for Cs2Na0.9Ag0.1In0.95Bi0.05Cl6
preparation. Similarly, 2 mmol CsCl (0.3367 g) and 1mmol
ZrCl4 (0.2330 g) were weight and transferred into a 25mL
Teflon vessel and added 5mL concentrated HCl (35 wt%)
for Cs2ZrCl6 preparation. The vessels were transferred into
the steel reactors and heated at 180 °C for 12 h. The
cooling rate was set as 30 °C/h. The final products were
wash by ethanol for twice and dried at 60 °C for ~2 h.

Characterization
The XRD pattens of samples were confirmed by the

Ultima X-ray diffractometer (Rigaku, Japan), with Cu Kα
(λ= 1.5405 Å) as the irradiation source under 40 kV–40
mA power, and the scanning rate was set to 15 degrees
per minute. The particle size and elements mapping were
measured by the scanning electron microscope (SEM,
JSM-7800F, Japan) equipped with an energy dispersive
spectroscopy (EDS). The PL spectra, PLE spectra, PLQY,
PL decay curves, persistent emission spectrum and
afterglow decay curves were measured by a spectro-
fluorometer FLS-1000 (Edinburg, England) and further
confirmed by another spectrofluorometer FS-5 (Edinburg,
England). In the PL comparison measurements, the
samples were accurately weighed and confined to the
same sample tank, and the quartz glass was used to cover
the surface to ensure consistency of the thickness and
surface roughness of all samples. The measurement sys-
tems were calibrated by commercial YAG:Ce3+ phosphor
with a standard PLQY of ~80% under 460 nm excitation.
The absorption spectra were measured by a UV–Vis
spectrophotometer (UV-2600, Shimadzu, Japan). The
inductively coupled plasma (ICP) measurements were
conducted by the Agilent ICPOES-730. Raman spectra
were carried out on RMS-1000 (Edinburg, England)
spectrometer with an excitation source of 532 nm laser.
The digital photographs were pictured by a smartphone
(Xiaomi 12S Ultra). The pc-LED device was measured in a
glovebox without encapsulation. The current density-
voltage responses were recorded by using a Keithley
2400 source meter with a step of 25 mA cm−2. The
emission spectra of pc-LED were collected by using an
integrating sphere (Ocean Optics, FOIS-1) coupled with a
spectrophotometer (Ocean Optics, QE65 Pro). The tem-
perature dependent-PL spectra were obtained by a spec-
trophotometer (Aurora 4000, GE-UV-NIR, Changchun
New Industries Optoelectronics Tech. Co., Ltd) equipped
with a temperature module (HCS421VXY, Instec,
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Shanghai Hengshang Precision Instrument Co., Ltd) for
temperature control.
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