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Abstract
Arbitrary polarized vortex beam induced by polarization singularity offers a new platform for both classical optics and
quantum entanglement applications. Bound states in the continuum (BICs) have been demonstrated to be associated
with topological charge and vortex polarization singularities in momentum space. For conventional symmetric
photonic crystal slabs (PhCSs), BIC is enclosed by linearly polarized far fields with winding angle of 2π, which is
unfavorable for high-capacity and multi-functionality integration-optics applications. Here, we show that by breaking
σz-symmetry of the PhCS, asymmetry in upward and downward directions and arbitrarily polarized BIC can be realized
with a bilayer-twisted PhCS. It exhibits elliptical polarization states with constant ellipticity angle at every point in
momentum space within the vicinity of BIC. The topological nature of BIC reflects on the orientation angle of
polarization state, with a topological charge of 1 for any value of ellipticity angle. Full coverage of Poincaré sphere (i.e.,
�π

4 � χ � π
4 and �π

2 � ψ � π
2) and higher-order Poincaré sphere can be realized by tailoring the twist angles. Our

findings may open up new avenues for applications in structured light, quantum optics, and twistronics for photons.

Introduction
Photonic crystal slab (PhCS) is dielectric structure with

periodically modulated refractive index and finite thick-
ness, supporting Bloch modes that are mostly leaky with
finite lifetimes1. Destructive interference or symmetry
mismatch can make these modes become nonradiative
with infinite lifetime, that is, bound states in the con-
tinuum (BICs)2–7. The mode at BIC remains localized
and cannot couple with free-space radiations even in a
continuous spectrum carrying energy away. Since there is
no outgoing power and thus undefined polarization
vector, BIC manifests as a momentum space singular
point representing vortex center (V point) in the far-filed
polarization state5,8–10. Conventionally, when the PhCS
supporting BIC maintains σz-symmetry (up-down mirror

symmetry) and in-plane inversion symmetry, the far-field
is linearly polarized and the polarization angle winds
around the V point, generating topological radiation
pattern quantized by topological charges5,10–12. These
winding topologies of resonances in momentum space
can inherently act like spatially winding configurations in
real space for generating optical vortex beams13–16. The
topological property guarantees the robustness of BIC
against change of system’s parameters. Recently, mod-
ulating polarization of light and exploring polarization
singularities using PhCS has been of greet interest due to
abundant polarization features emerging in momentum
space17–20. To overcome the limit of only linearly
polarized resonance around BIC, the in-plane inversion
symmetry of square PhCS is broken into trapezoid and
triangle, which causes the V point at BIC decomposed
into two circular polarized states (C points) and equator
lines on the Poincaré sphere (L lines)10,21. This broken
symmetry enriches the features of polarization modula-
tion using BIC topology and achieves full coverage of
Poincaré sphere. Later, with a honeycomb lattice, it has
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been demonstrated that C points can occur near BICs
and Dirac points with preserved in-plane inversion
symmetry, which remarkably contributes to diversity of
polarization around BIC22. While for PhCS with inversion
symmetry but broken σz-symmetry, two C points emerge
without splitting the V point, and the evolution demon-
strates merging processes governed by the global
charge conservation23. These findings promote the
applications of PhCS supporting BIC for polarization
modulation and manipulating various polarization sin-
gularities in momentum space.
However, in previous studies, the circularly polarized

states spawning from BIC can only occur in pairs at off-Γ
point due to the conservation of an integer topological
charge induced by the V point, and pure elliptical/circular
polarization states within a large span of momentum
space cannot be achieved10,23. The relevant circular and
elliptical polarization states originate from destroyed
radiative modes that are almost linearly polarized
enclosing BIC. This is due to unperturbed σz-symmetry
and unidirectional scattering of eigenmode of the
PhCS24–26. Although broken σz-symmetry has been ana-
lyzed in ref. 23 in the one-dimensional PhCS, the lack of
rotation asymmetry still ends up with unidirectional gui-
ded resonances with global charge of zero. Most recently,
the concept of twistronics has been extended from two-
dimensional heterostructures to optics like twist-stacked
metamaterials and chiral PhCS, which provide new plat-
forms for tailoring chiral-optical effects and elliptical
polarizations with new degree of freedom27–32.
In this letter, based on the ellipticity angle χ of polar-

ization states, we define the polarization singularity
induced by the Γ-BIC from the twisted PhCS as χ point,
which can be encircled with constant ellipticity angle χ.
BIC in the twisted PhCS has infinite quality factor robust
against rotation angle of the hole and is encircled by far-
field polarization state carrying the same ellipticity angle
(χ). Taking advantage of BIC-induced topological dis-
tribution of orientation angle (ψ), polarization states
around BIC encircles a full latitude of the Poincaré sphere
for each BIC. The ellipticity angle of χ point can be
arbitrarily controlled by changing the rotation angle of
the hole, resulting in a full coverage of Poincaré sphere of
the radiating polarization states.

Results
Concept of constantly distributed and arbitrary polarized
BIC
Figure 1a shows the typical square-hole silicon PhCS

with unperturbed σz-symmetry and in-plane mirror
symmetry standing in free space. The PhCS has a thick-
ness of 600 nm and a lattice constant of 580 nm. The hole
has a side length of 330 nm. BIC and topological far-field
polarization distribution are expected to be observed in

momentum space. This PhCS supports a BIC encom-
passed by linear polarization symmetrically radiating in
upward and downward, as proved by temporal coupled-
mode theory (TCMT)10,33,34. Breaking in-plane inversion
symmetry leads to an undermined BIC and two C points
spawning from the original V point at BIC (Fig. 1b). In
this case, radiation in upward and downward remains the
same, but the polarization states become elliptical.
However, the ellipticity angle changes by encircling the
C point. By rotating the top hole with an angle of αtop,
broken σz-symmetry is introduced in the twisted PhCS
(Fig. 1c). The far-field polarization states become ellip-
tical encompassing the central BIC singularity with
asymmetric radiation in the upward and downward
directions. Figure 1d compares the polarization states on
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Fig. 1 Conventional σz-symmetric and twisted photonic crystal
slab (PhCS) supporting BICs at the Γ point. a Schematic of a
conventional PhCS with etched square-hole standing in free space
and its far-field polarization states distribution in momentum space
near the V point at BIC. b Breaking in-plane inversion symmetry of the
PhCS results in elimination of BIC and two C points spawning from the
V point. The radiation in upward and downward remains the same.
c The twisted PhCS by rotating the top hole with an angle of αtop.
Breaking σz-symmetry results in asymmetric radiation of elliptical
polarizations surrounding BIC upward and downward. The BIC is
redefined as a χ point referring to arbitrary polarization states with the
same ellipticity χ enclosing BIC. d Comparison of the polarization
states on Poincaré sphere by enclosing the V point (blue line), C point
(green line), and χ point (red line). The solid line and dash circles
represent the encircling path in upward and downward direction,
respectively
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Poincaré sphere for the cases when enclosing the V point,
C point and χ point. The topological nature of BIC and χ
point is revealed through the orientation angle of polar-
ization on Poincaré sphere, where the total winding angle
of polarization is 2π around the central BIC point, indi-
cating a topological charge of +1. It is worth mentioning
that this behavior of constant ellipticity around the χ
point can be used to generate higher-order Poincaré
sphere beam, so as to enhance multiplexing capacity of
information encryption, optical trapping, and quantum
entanglement applications35–40.

Theoretical calculation of χ-BIC
Considering finite resonance amplitude and zero inci-

dent field in the twisted PhCS, the polarization state of the
far-field radiation around BIC is found to be uniquely
dependent upon the coupling coefficients from the reso-
nance to the output channels27,33

D ¼ du
s ; d

d
s ; d

u
p ; d

d
p

� �T ð1Þ

where the superscripts u and d indicate the upward and
downward direction of the PhCS and the subscripts s and
p denote two orthogonal polarization designations.
Each layer of the twisted PhCS can be deemed as a

scatter-producing linear polarization at the interfaces, and
the slab thickness provides a phase difference ΔΦ between
the scatters required for radiating elliptical or circular
polarization states27. For instance, to radiate far-field
circular polarization in upward, the coupling coefficients
should fulfill

arg dus
dup

� �
¼ ± π

2

du
sj j

du
pj j ¼ 1

ð2Þ

From the temporal coupled-mode theory (TCMT), the
realization of χ-polarized BIC requires (see more details in
Supplementary Note 1):

arg du
s

du
p

� �
¼ arctan tan 2χð Þ

sin 2ψð Þ
h i

du
sj j

du
pj j ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�cos 2χð Þ cos 2ψð Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þcos 2χð Þ cos 2ψð Þ

p
� � ð3Þ

It is shown that the ellipticity angle χ of the BIC can be
fully covered by controlling both du

s and du
p from Eq. 3,

which can be realized by tuning the rotation angle of the
top structures for the twisted PhCS (see more details in
Supplementary Fig. S3).

Electric field distribution
Figure 2a shows the calculated band structure of the

twisted PhCS with αtop= 18°, αbot= 0° and the quality factor
of the eigenmode is color-mapped to the iso-frequency

surface. The quality factor is not undermined by rotation of
the hole, and the twisted PhCS can still maintain the Γ−BIC
(detailed in the Supplementary Material) while forming the
χ point. The bounded resonance at BIC is shown in the field
distribution of the twisted PhCS at Γ point (Fig. 2b), where
there is no leakage from the PhCS to the upward and
downward direction. Chiral feature and asymmetric radia-
tion of the twisted PhCS are demonstrated in left circular
polarized field with radiation in both directions (Fig. 2c) and
right circular polarized field with only radiation in the
downward (Fig. 2d) at off−Γ point.

Robustness of BIC against rotation of the holes
Figure 3 evaluates the robustness of BIC in the PhCS

toward rotation of the holes. Figure 3a shows the change
of quality factor with response to the rotation angle
when the two layers have opposite values αtop=−αbot.
The quality factors of both BIC and quasi-BIC remain
stable against the perturbation of ration angles. This is
the same for PhCS with only top layer having a rotation
angle of αtop, as shown in Fig. 3b. The quality factor is
not undermined by rotation of the hole, and therefore
the twisted PhCS can still preserve Γ−BIC. Figure 4
shows the wavelength and quality factor with varying
value of wave vector kx at αtop= 18° (Fig. 4a, b) and
αtop= 36° (Fig. 4c, d). BIC in the twisted PhCS is shown
with infinite quality factor at kx= 0.

Bidirectional χ-BIC in upward and downward directions
With point symmetry against the center of the PhCS,

Fig. 5a illustrates a twisted PhCS having rotation of top
hole and bottom hole with relation αtop=−αbot= 9°.
Upward radiation and downward radiating polarization
states have the same value of χ (Fig. 5b, c for the upward
and Fig. 5d, e for the downward radiation), and the
polarization orientation angle keeps the charge of 1
(detailed in the Supplementary Material).
To verify the generation of circularly polarized BIC, the

rotation angle is fine-tuned to αtop= 18° and αbot= 0° in
Fig. 5f. Figure 5g plots the distribution of upward far-field
polarization states, and circular polarization states occur at
every point in the vicinity of BIC due to the specially
matched phase and amplitude relation for radiation in the s
and p direction based on tunable degree of the broken σz-
symmetry. There is no radiation at BIC as reflected by zero
amplitude of polarization ellipse. The corresponding ellip-
ticity angle χ of polarization states is extracted in
Fig. 5h. Except for a deviation at Γ−BIC point because of its
singular feature of undefined polarization state, all other
region surrounding the BIC preserves the condition of
χ= 45°, confirming the realization of a circularly polarized
BIC. This phenomenon is in sharp contrast with C points
resulting from broken in-plane symmetry as shown in
Fig. 1b, where only two circular polarization states occur
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due to the splitting of BIC vortex point10. Here, the BIC
point is preserved and there exist constant circularly
polarized states just as the linearly polarized states
encompassing BIC in conventional PhCS. As a result,
projecting the polarization states in the whole Brillouin
zone to the Poincaré sphere will give rise to a C point plus
a singularity. As for the downward radiation, polarization
states become elliptical with different χ in Fig. 5i, j. Within
the vicinity of BIC, these elliptical polarizations only
change their orientation angle ψ while preserving the
ellipticity angle χ. Insets in Fig. h, j illustrate the enlarged
view of polarization ellipses appearing in the first quadrant.
Projection of the downward polarization states to the
Poincaré sphere is then a belt deviated from the L line (or
elliptical line) plus a singular point. C points with χ=−45°
in upward radiation can be approached by conducting

mirror symmetry of the twisted PhCS, that is, letting
αtop=−18° (detailed in the Supplementary Material). It
should be noted that even though the relative rotation
angles of the two PhCS layers in both cases of Fig. 5a, f are
the same, the absolute values of the rotation angles change
the coupling condition between two layers, resulting in
different radiating polarization states.

Full coverage of Poincaré sphere
To better understand the effect of rotation angle αtop on

far-field polarization states and demonstrate full coverage
of Poincaré sphere assisted by BIC topology, we illustrate
the evolution of upward far-field radiation with varying
αtop in Fig. 6. Fourfold rotation symmetry of the square
PhCS makes it reveal linear polarization states with the
rotation angle αtop= 45°, equivalent to the conventional
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Fig. 2 Simulated results of the twisted PhCS supporting BIC with αtop = 18° and αbot = 0°. a Iso-frequency surface and color-mapped quality
factor of the twisted PhCS. A symmetry-protected BIC is induced at Γ point. b Field distribution of the twisted PhCS at Γ point. c Left circular polarized
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PhCS (Fig. 6a). Decreasing αtop to 30°, 25°, 22° enhances
the degree of asymmetry in z direction, contributing to
elliptical polarization states with increasing value of χ as
shown in Fig. 6b. Orientation angle ψ maintains the
topological pattern with winding angle of 2π in Fig. 6c
regardless of αtop. At αtop= 18°, the ellipticity reaches the
maximum of 45° and circularly polarized BIC is realized as
shown in Fig. 5b. Figure 6d illustrates the topological
nature of the arbitrarily polarized BIC by only tuning the

rotation angle αtop for coverage of the whole Poincaré
sphere (i.e., �π

4 � χ � π
4 and �π

2 � ψ � π
2). The rotation

angle controls uniformly distributed orientation angle χ
within momentum space near BIC. Since each value of χ
corresponds to a parallel assisted by BIC topology on the
sphere, therefore, by increasing αtop from 0° to 18°,
polarization states on the upper hemisphere can be fully
covered from linear states (L lines) to circular states
(C points). Continuing to increase αtop from 18° to 45°, the
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far-field polarization gradually changes from C points to L
lines. A similar trend holds true for negative αtop that
covers the polarization states on the lower hemisphere.
The Poincaré sphere can be covered twice with αtop

ranging within a span of 90°. This trend can be under-
stood in view of the square’s four-fold rotation symmetry
and the difference of polarization angles induced by the
two equivalent scatters.
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The topological charge carried by BIC with different χ
can be defined as the winding number of the polarization
vortex13,22

q χð Þ ¼ 1
2π

I
L
dψ χð Þ ð4Þ

where L is a closed trajectory in momentum space around
the BIC of different χ. Figure 6e shows the topological
charge as a function of χ. Arbitrarily polarized BIC can be
uniquely defined by the ellipticity angle of polarization

states enclosing it. When χ= 0°, it is a conventional
linearly polarized BIC occurring in the in-plane and
σz- symmetric PhCS. When χ has a value between −45°
and 45°, it is the elliptically polarized BIC. At χ= ±45°,
there emerges circularly polarized BIC. Although with
circularly polarized BIC the orientation angle ψ still
reveals topological feature of q= 1, the far-filed polariza-
tion states are the same since the C point on Poincaré
sphere is actually a singular point different from L or
elliptical line. This also demonstrates the robustness of
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BIC topology against an ellipticity angle. Each χ point at
BIC and its topology correspond to a point on the higher-
order Poincaré sphere as proposed in ref. 35. By employing
the new degrees of freedom in rotation angles of both
holes, full coverage of higher-order Poincaré sphere can
be achieved with BIC in the twisted PhCS (detailed in the
Supplementary Material).
Regarding the fabrication processes, the single-layer

PhCS can be fabricated by using conventional e-beam
lithography and etching14,41,42, followed by direct wafer
bonding of two PhCS layers43. Furthermore, other
techniques using spin-on glass for the fabrication of
bilayer silicon structures have also been demonstrated
in refs. 44,45.

Conclusion
In conclusion, we reported that by breaking σz-sym-

metry of a PhCS, arbitrarily polarized BIC can be realized
by controlling the twist angle between two layers of the
PhCS. Unlike BIC in unperturbed PhCS or broken
in-plane symmetric PhCS where only linear and at most
two circular polarization states can occur, the twisted
PhCS can exhibit circular polarization states at every
point in momentum space within the vicinity of BIC. At
different twist angles, other elliptical polarizations can be
approached surrounding BIC singular point with the
same ellipticity angle. Based on the topological nature of
BIC, polarization states on the Poincaré sphere can be
fully covered twice with a rotation angle of 90 degrees.
Full coverage of the higher-order Poincaré sphere is also
attained by tuning the rotation angles of both holes.
More diverse polarization control is demonstrated by
introducing new degrees of freedom like opposite
rotation angle for two layers, breaking both in-plane and
σz- symmetry, and changing the surrounding index. The
demonstrated work may contribute to applications of
BIC topology in chiral-optical effects, polarization
control, structure light like more exotic vector beam,
and twistronics.
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