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Abstract
A single-step printable platform for ultraviolet (UV) metasurfaces is introduced to overcome both the scarcity of low-
loss UV materials and manufacturing limitations of high cost and low throughput. By dispersing zirconium dioxide
(ZrO2) nanoparticles in a UV-curable resin, ZrO2 nanoparticle-embedded-resin (nano-PER) is developed as a printable
material which has a high refractive index and low extinction coefficient from near-UV to deep-UV. In ZrO2 nano-PER,
the UV-curable resin enables direct pattern transfer and ZrO2 nanoparticles increase the refractive index of the
composite while maintaining a large bandgap. With this concept, UV metasurfaces can be fabricated in a single step
by nanoimprint lithography. As a proof of concept, UV metaholograms operating in near-UV and deep-UV are
experimentally demonstrated with vivid and clear holographic images. The proposed method enables repeat and
rapid manufacturing of UV metasurfaces, and thus will bring UV metasurfaces more close to real life.

Introduction
Ultraviolet (UV) optics play a critical role in numer-

ous applications such as high-resolution imaging1,2,
spectroscopy3, quantum optics4,5, photolithography6,
and biosensing7,8. So far, UV light is mostly modulated
using conventional bulky optical components which
hinder the integration of compact systems. Moreover,
conventional UV optics are limited in functionality,
diversity, and manufacturability.
Metasurfaces composed of subwavelength structure arrays

have been actively studied to replace conventional bulky
optics, and with the exceptional ability to modulate light at
the nanoscale have been applied to numerous applications
such as metalenses9,10, biosensors11,12, metaholograms13–21,
and color printing22–26. However, UV metasurfaces have

long faced challenges such as a lack of UV transparent
materials and high-resolution patterning techniques with
low cost and high throughput. Conventional high-refractive-
index materials used for metasurfaces usually have a narrow
bandgap, resulting in high absorption of UV light27. So far,
very few materials such as silicon nitride (SiNx)

28, hafnium
oxide (HfO2)

29, zinc oxide (ZnO)30, and niobium pentoxide
(Nb2O5)

31 have been used for UV metasurfaces; however,
the fabrication of those UV metasurfaces involves atomic
layer deposition of thick layers or high-aspect-ratio etching,
resulting in complicated fabrication process with the high
cost and low throughput. Moreover, in all of the afore-
mentioned UV metasurfaces, electron beam lithography
(EBL) has been used for high-resolution patterning of sub-
wavelength structures. These fabrication processes cause
manufacturing limitations, such as high cost and low
throughput, resulting in challenges in the commercialization
of UV metasurfaces.
Here, we introduce a one-step printable platform for

high-efficiency metasurface operating over a broad UV
range from near-UV to deep-UV region (Fig. 1a). Zirco-
nium dioxide (ZrO2) nanoparticle embedded resin (nano-
PER), a printable material with a large bandgap and high
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refractive index over a wide UV range, is newly proposed.
ZrO2 nano-PER is synthesized by dispersing ZrO2 nano-
particles in a UV-curable resin. The proposed one-step
printable platform enables direct replication of UV
metasurfaces without the need for any secondary opera-
tions, resulting in extremely high throughput and low
cost. The metasurface can achieve a high conversion
efficiency owing to the high refractive index and low
extinction coefficient of ZrO2 nano-PER. As a proof of
concept, we experimentally demonstrate a metahologram
operating in near-UV (325 nm) and deep-UV (248 nm).

Results
Characteristics of ZrO2 nano-PER
The key to a one-step printable UV metasurfaces is to

produce a printable material that has a high refractive
index (n) and low extinction coefficient (k) in the UV
region. However, conventional printable materials such as
imprint resin have a low refractive index of approximately
1.5. Recently, we developed a titanium dioxide (TiO2)
nano-PER with n ≈ 1.95 in the visible region and silicon
(Si) nano-PER with n ≈ 2.2 in the near-infrared region;
however, both materials have severe absorption in the UV
region owing to their small optical band gap32–36.

Therefore, a high-n printable material with a large optical
bandgap is required for high-efficiency UV metasurfaces.
The ZrO2 nano-PER developed here can be used as a

UV transparent printable material with a high refractive
index (Fig. 1b). The ZrO2 nano-PER has a large bandgap
of 6 eV which leads to low absorption in the UV region
(Fig. 1c, Fig. S1). The ZrO2 nano-PER is synthesized by
dispersing 19 nm diameter ZrO2 nanoparticles with an
80% weight ratio into a UV-curable resin which makes the
nano-PER printable (Fig. S2). As the weight ratio increa-
ses, the refractive index also increases (Fig. S3). However,
the highest weight ratio is 80% because imprinting
becomes difficult as the ratio increases over 80%. The
complex refractive index of the ZrO2 nano-PER film is
calculated by measuring the amplitude ratio (Ψ) and
phase difference (Δ) between the s and p components of
three different angles (65˚, 70˚, 75˚) using ellipsometry
(Fig. S4). In order for the nano-PER to operate as a meta-
atom, the nano-PER should act as a homogeneous effec-
tive medium. The measured Ψ and Δ fit well with the
Tauc-Lorentz model37, which provides the validity of the
ZrO2 nano-PER as the homogeneous effective medium
(Fig. 1d). Moreover, the scattering effect of a Gaussian
beam in the ZrO2 nano-PER is simulated to confirm that
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the nano-PER acts as an effective medium (Fig. 1e). The
diameter of the ZrO2 nanoparticles follows a Gaussian
distribution of 19 nm on average. Owing to small particle
size, the scattering effect is negligible, and the Gaussian
beam maintains its shape as it propagates. These results
prove that the ZrO2 nano-PER can act as an effective
medium and can be applied for use in a metasurface.

Design of high-efficiency UV meta-atoms
Rigorous coupled-wave analysis (RCWA)38 was used to

simulate the transmission properties of meta-atoms con-
sisting of ZrO2 nano-PER. To achieve full phase mod-
ulation with broadband property, the concept of the
Pancharatnam-Berry phase (PB phase)16, also known as
geometric phase39,40, is used to physically realize the
required phase profile (Supplementary Note 1). PB phase
uses an anisotropic meta-atom which is a birefringence
(Fig. 2a). Transmitted light with a converted handedness
of polarization (cross-polarization) has a phase delay of
2θ. The amplitude of the cross-polarized component is
defined as a conversion efficiency that is directly related to
the efficiency of the meta-atom.
The final goal of this work is to design high-efficiency

meta-atoms operating from near-UV (325 nm) down to
deep-UV (248 nm). For the near-UV meta-atom, we calcu-
late the conversion efficiencies of meta-atoms with varying
lengths and widths from 50 nm to 250 nm with a fixed

height of 700 nm and periodicity of 300 nm (Fig. 2b). The
meta-atom with a length of 250 nm and a width of 65 nm
has a conversion efficiency of 88% at a wavelength of
325 nm. For deep-UV meta-atom, we calculate conversion
efficiencies of meta-atom varying lengths and widths from
40 nm to 160 nm with a fixed height of 700 nm and peri-
odicity of 200 nm (Fig. 2c). The meta-atom with a length of
110 nm and a width of 45 nm has a conversion efficiency of
81% at a wavelength of 248 nm. The height is optimized for
maximum conversion efficiency (Fig. S5), and periodicity is
determined to be smaller than the operating wavelength to
suppress the diffraction of transmitted light. Notably, can-
didate meta-atoms near the target geometry still have high
efficiency, therefore some fabrication errors are acceptable.
The ideal PB phase meta-atom should provide a π–phase
difference between the x and y components of the electric
field (Ex and Ey), and act as a half-wave plate. We plot real
values of the propagating electric field profiles of x- and y-
polarized light in designed meta-atoms at the designed
wavelength of 325 nm and 248 nm (Fig. 2d, Fig. S6). We
confirm that designed meta-atoms provide a π–phase dif-
ference between the x and y components of the electric field
and act as a half-wave plate, therefore operating as an ideal
PB phase meta-atom. Owing to the broadband property of
the PB phase, the meta-atom designed for 325 and 248 nm
has high efficiency and low zero-order efficiency near the
target wavelength, respectively (Fig. 2e, f, Fig. S7). Owing to
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the low extinction coefficient of ZrO2 nano-PER, the
designed meta-atom has high transmittance and low
absorption in the UV region (Fig. S8).

One-step printable platform for ZrO2 nano-PER based UV
metasurface
A schematic for the one-step printable platform for

ZrO2 nano-PER-based UV metasurface is described in Fig.
3a. First, master molds with different scales for meta-
surfaces operating at λ= 325 nm and 248 nm are fabri-
cated by conventional EBL, mask deposition, and lift-off
process, respectively (details in the Methods, Fig. 3b, e).
Then, the fabricated master molds are covered with a
hard-polydimethylsiloxane (h-PDMS)/PDMS bilayer and
cured by heat for the successful transfer of extremely small
meta-atoms with 50-nm resolution (Fig. 3c, f)41. The 80 wt
% ZrO2 nano-PER in the MIBK solvent is spin-coated on
soft molds to achieve the uniform ZrO2 nano-PER thin
film with an optimal residual layer thickness which affects
the final conversion efficiency and reflectivity of UV
metasurfaces(Fig. 3d, g)32. It is beyond any doubt that the
conformally coated ZrO2 nano-PER layer fits perfectly
with the flat target substrate. Plus, an additional PMMA
layer between the ZrO2 nano-PER and substrates can
underpin non-trivial enhancement of work of adhesion,
which is suitable for the facile transfer on any arbitrary
substrate32. To finish, the adequate pressurization and UV
illumination achieve UV metasurfaces operating at
λ= 325 nm and 248 nm, respectively.

Design and demonstration of a UV metahologram
We design a simple Fraunhofer hologram as a repre-

sentative wavefront shaping function of the designed UV
metasurface. The Gerchberg-Saxton (GS) algorithm is
used to retrieve the phase map for high-quality phase-only
holograms42. Since Fraunhofer approximation results in a
pincushion-like distortion in the recovered hologram,
barrel distortion is used to compensate for the distortion
by trial and error. By modulating the phase profile with
the designed meta-atoms, we design and demonstrate
high-quality UV metaholograms operating in the near-UV
and deep-UV. The optical setup for UV metaholograms is
prepared as shown in Fig. 4a. A helium cadmium (HeCd)
laser is used for λ= 325 nm, and a krypton fluoride (KrF)
laser is used for λ= 248 nm. Two UV wave plates, a linear
polarizer, and a quarter-wave plate are used to create the
circularly polarized input beam. A UV sensor card is used
to visualize the UV hologram. As we expected, demon-
strated holographic images match well with simulated
images and show a vivid and clear image in the near-UV
(Fig. 4b, c) and deep-UV (Fig. 4d, e). Moreover, we
experimentally measure the conversion efficiency of both
metaholograms. The metahologram designed for near-UV
regime has a measured conversion efficiency of 72.3% at
λ= 325 nm, and the metahologram designed for deep-UV
regime has a measured conversion efficiency of 48.6% at
λ= 248 nm (Table Sl). We also confirmed that this work
has higher efficiency compared to previously reported UV
metasurfaces (Table S2).
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Fig. 3 Fabrication of UV metaholographic device using the one-step printable process of ZrO2 nano-PER. a Schematic of the one-step
printable platform for fabrication of the UV metaholographic device. SEM images of b the master mold, c the soft mold, and d the one-step printed
UV metasurface of the target hologram designed for λ= 325 nm. (Inset) cross-section view. SEM images of e the master mold, f the soft mold, and
g the one-step printed UV metasurface of the target hologram designed for λ= 248 nm. All scale bars: 500 nm
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Discussions
In summary, we proposed and verified a one-step

printable platform in which high-efficiency metasurfaces
operating from near-UV to deep-UV can be replicated
repeatably with low cost and high throughput. In detail,
single ZrO2 nano-PER metasurface can be fabricated in
15minutes and costs around 1.39 USD (Table S3). The
ZrO2 nano-PER is synthesized as a printable material
having high UV transparency and refractive index by
dispersing ZrO2 nanoparticles in a UV-curable resin.
Owing to the UV-curable matrix, the UV metasurface
consisting of the ZrO2 nano-PER can be fabricated with
one step of nanoimprint lithography without any sec-
ondary operations such as etching and deposition. The
refractive index of the ZrO2 nano-PER is high enough to
confine the light well and the extinction coefficient is low
enough to minimize the absorption, resulting in high
conversion efficiency. The simulated conversion efficiency
of the designed meta-atoms achieve 88% for λ= 325 nm
and 81% for λ= 248 nm, respectively. As a proof of con-
cept, we experimentally demonstrate a clear and vivid
metahologram operating in near-UV and deep-UV. The
demonstrated hologram has a conversion efficiency of
72.3% for λ= 325 nm and 48.6% for λ= 248 nm, respec-
tively. We believe that this work will be a decisive
improvement in the practicality of UV metasurfaces.

Methods
Synthesis of ZrO2 nano-PER
The ZrO2 nano-PER was prepared by mixing ZrO2 NPs

dispersed in MIBK (DT-ZROSOL-30MIBK (N10), Ditto
technology), monomer (dipentaerythritol penta-/hexa-
acrylate, Sigma-Aldrich), photo-initiator (1-Hydro-
xycyclohexyl phenyl ketone, Sigma-Aldrich), and MIBK
solvent (MIBK, Duksan general science). The mixing ratio
was controlled to achieve a weight ratio of 4 wt % for
ZrO2 NPs, 0.7 wt % for monomer, and 0.3 wt % for photo-
initiator.

Fabrication of the master mold
A Si substrate was used for the master mold. The meta-

atoms were transferred onto a bilayer of two positive tone
photoresists (495 PMMA A6, MicroChem & 950 PMMA
A2, MicroChem) using the standard EBL process (ELIONIX,
ELS-7800; acceleration voltage: 80 kV, beam current: 100
pA). The exposed patterns were developed by MIBK/IPA 1:3
developer mixed solution. An 80 nm-thick chromium (Cr)
layer was deposited using electron beam evaporation (KVT,
KVE-ENS4004). The lifted-off Cr meta-atoms were used as
an etching mask for the Si substrate. Cr patterns were
transferred onto the Si substrate using a dry etching process
(DMS, silicon/metal hybrid etcher). The remaining Cr
etching mask was removed by Cr etchant (CR-7).

Fabrication of the soft mold
h-PDMS was prepared by mixing 3.4 g of vinylmethyl

copolymers (VDT-731, Gelest), 18 μL of platinum-caralyst
(SIP6831.2, Gelest), 0.1 g of the modulator (2,4,6,8- tetra-
methyl-2,4,6,8-tetravinylcyclotetrasiloxane, Sigma-aldrich),
2 g of toluene, and 1 g of siloxane-based silane reducing
agent (HMS-301, Gelest). The h-PDMS was spin-coated on
the master mold at 1,000 rpm for 60 s, then baked at 70 °C
for 2 h. A mixture of a 10:1 weight ratio of PDMS (Sylgard
184A, Dow corning) and its curing agent (Sylgard 184 B,
Dow corning) was poured on the h-PDMS layer and cured
at 80 °C for 2 h. The cured soft mold was detached from the
master mold, then used to replicate the nano-PER structure.

Pre-treatment of the soft mold
Fluorosurfactant ((tridecafluoro-1,1,2,2-tetrahydrooctyl)

trichlorosilane) is coated on the soft mold by vaporized
coating at 130 °C for 5 min to decrease the surface tension
of the soft mold.
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