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Abstract
Dispersion remains an enduring challenge for the characterization of wavelength-dependent transmission through
optical multimode fiber (MMF). Beyond a small spectral correlation width, a change in wavelength elicits a seemingly
independent distribution of the transmitted field. Here we report on a parametric dispersion model that describes
mode mixing in MMF as an exponential map and extends the concept of principal modes to describe the fiber’s
spectrally resolved transmission matrix (TM). We present computational methods to fit the model to measurements at
only a few, judiciously selected, discrete wavelengths. We validate the model in various MMF and demonstrate an
accurate estimation of the full TM across a broad spectral bandwidth, approaching the bandwidth of the best-
performing principal modes, and exceeding the original spectral correlation width by more than two orders of
magnitude. The model allows us to conveniently study the spectral behavior of principal modes, and obviates the
need for dense spectral measurements, enabling highly efficient reconstruction of the multispectral TM of MMF.

Introduction
Managing and controlling optical scattering in complex

or disordered media has enabled vast new possibilities for
imaging, sensing, and manipulation in optical engineering
and physics, including communications1,2, biomedical
optics3–6, defense7, mesoscopic physics8, and quantum
optics9. Close attention has been paid to calibration
methods for compensating the seemingly chaotic trans-
mission through complex media at single wave-
lengths3,10,11. Dispersion, due to geometric effects as well
as material properties, inflicts additional spectral scram-
bling and remains a pervasive and significant technical
impediment for multi-color or broadband applications in
complex media3. Light transport through complex media
results in independent intensity distributions beyond a
narrow spectral correlation range12,13, to the advantage of
spectrometry14,15, but requiring independent calibration

at many frequencies for accurate multispectral wave-
control16–18. Inconveniently, this results in burdensome
measurement time and data storage, which scale linearly
with spectral bandwidth and resolution-determined
sampling rate16.
Optical multimode fiber (MMF) has emerged as an ideal

tool for studying transmission through complex media
attributed to its high throughput with low loss, defined
degrees of freedom, small form factor, controllable geo-
metry, and remarkable dispersion2,14,19–23. Principal
modes (PMs), the eigenmodes of the group-delay opera-
tor, define pairs of specific input and output mode pat-
terns that are unaffected by a change in wavelength1,24,25.
PMs transmit pulses with a characteristic delay free of
temporal scattering into a defined spatial output pattern.
Yet, the superposition of PMs that generalizes to an
arbitrary input pattern results in a chaotic output that is
very sensitive to a change in wavelength. The chromato-
axial memory effect has been shown to link a spectral shift
of the input illumination with an axial homothetic dilation
of the output speckle pattern26. Whether this effect is
applicable to all available spatial channels stands to be
investigated, but attests to a highly deterministic
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wavelength-dependence of the MMF transmission matrix
(TM). Many practical applications require accurate
spatio-spectral control and knowledge of the full, spec-
trally resolved TM. Improved understanding of dispersion
and mode mixing in MMF remains an imperative step
towards efficient calibration of multispectral TMs
(msTMs) and enabling applications associated with mul-
tispectral and broadband light transport through MMF.
Here we establish a parametric dispersion model of the

optical transmission through MMF. It develops the dif-
ference between the TMs at two frequencies as an
exponential map, polynomial in the frequency offset. This
is inspired by the well-known polynomial scalar phase
terms of material dispersion. Furthermore, in single mode
fiber, polarization-dependent dispersion is modeled with
Jones matrices, described by the exponential map of the
special unitary group SU(2), and used to analyze the
principal states of polarization mode dispersion27. As
illustrated in Fig. 1, we extend this concept to the higher
algebraic dimension of transmission matrices. Owing to
the model’s constrained parameter space, we can fit it to
experimental TM measurements at few discrete fre-
quencies and predict the TM over a wide frequency range.
We verify the model’s performance experimentally in
various types of MMF by comparing the predicted TMs
with independently measured TMs. For illustration, we
use the predicted TMs to computationally focus through
the independently measured TMs and use the higher-
order model to investigate the frequency-dependence of
its PMs. We discuss the spectral sampling conditions for
the discrete frequency measurements and investigate
trade-offs between the number of measurements and TM

fidelity as well as between the closed-form reconstruction
of the linear model and the optimization-based fitting of
the higher-order model.

Results
Efficient dispersion modeling in MMF with exponential
mapping
Coherent monochromatic light transmission through a

general medium, including MMF, from an input surface
to an output surface in the far field can be described by a
complex-valued TM28. The TM specifies the linear rela-
tionship between pairs of input and output spatial chan-
nels sampled at discrete locations on the input and output
surfaces, respectively. The TM is generally wavelength
dependent

~t ωð Þ ¼ M ωð Þ~s ð1Þ

where ~t and ~s are the vectorized representations of the
output and input fields, respectively, and MðωÞ is the TM
at an optical frequency ω. To investigate the dispersion
captured by the TM we use an input field ~s that is
independent of frequency ω. The instantaneous dispersion,
relating the frequency dependence of the output field to
itself, ∂~t

∂ω ¼ m~t, is described by the differential matrix

m ωð Þ ¼ ∂M ωð Þ
∂ω

M�1 ωð Þ ð2Þ

For a unitary TM, the differential matrix is skew-Her-
mitian, leading to purely imaginary eigenvalues that
identify the group delays of individual PMs, defined by the
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Fig. 1 Concept of parametric dispersion modeling. a For wave propagation through an isotropic medium such as glass, dispersion due to
frequency difference Δω amounts to a scalar phase term, ψ. In single mode fiber (SMF), the polarization-dependence of residual waveguide
anisotropy leads to wavelength-dependent polarization states and polarization mode dispersion (PMD), where~τ is the PMD vector, and the σn are
the Pauli spin matrices27. In MMF, a change in wavelength impacts both the polarization and the spatial modes. b All these manifestations of
dispersion can be modeled by an exponential of a polynomial in the frequency difference Δω. Specifically, we measure the MMF TM at several
discrete optical frequencies and fit these measurements to the corresponding dispersion model with matrix series Xk , referenced at ω0. We then
reconstruct the TM M ωð Þ at continuous ω to predict the full spatio-spectral TM
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corresponding eigenvectors. The conventional time-delay
operator �jM�1 ωð Þ ∂M ωð Þ

∂ω
29 acts on input PMs, which are

related to the output PMs through Eq. 1 and by multi-
plication with –j features real-valued eigenvalues.
If we assume that the differential matrix m describes a

constant time delay independent of the frequency and
with fixed eigenvectors, i.e., PMs, we can integrate Eq. 2 as
an initial value problem given M ω0ð Þ to find

M ωð Þ ¼ emΔωM ω0ð Þ ð3Þ

The variation of M due to a change in frequency can
in this consequential generalization of PMs be simply
accounted for by scaling m with the frequency offset
Δω, to adjust the eigenvalues and, hence, the phase
delays experienced by PMs at other frequencies. How-
ever, this first order description is inherently limited.
Not only are the theoretical eigenmodes of a cylindrical
waveguide frequency dependent, but fiber bending,
twisting, and variations in the fiber geometry all lead to
a variation of m(ω) with frequency. In Supplementary
File Sec. 1 we show with a qualitative analysis how
transmission through a sequence of MMF segments
with disparate but constant m generates this frequency
dependence.
Analytical integration of Eq. 2 for a general frequency-

dependent m ωð Þ is only possible if m ω1ð Þ commutes with
m ω2ð Þ for all ω30. Instead, we directly develop M as the
product of M ω0ð Þ at the reference frequency and the
exponential map of a matrix Lie algebra X

M ω ¼ ω0 þ Δωð Þ¼ eX ω;ω0ð ÞM ω0ð Þ
� D Δωð ÞM ω0ð Þ ð4Þ

where DðΔωÞ denotes the dispersion matrix, modeling the
modification of M due to spectral perturbation Δω
referenced to ω0. We then construct X as a series
expansion

X ω;ω0ð Þ ¼
X1
k¼1

XkΔω
k ð5Þ

where the complex-valued constant matrix Xk records the
kth order dispersion. It is important to note that in general
there is no closed-form analytical expression relating
X ω;ω0ð Þ and m ωð Þ. Only when truncating the series at
k= 1 to obtain the first-order linear model do we find
m ¼ X1. Summing various orders of Xk in the exponent is
fundamentally different from a sequential product of
different order dispersion matrices31. Crucially, the
exponential map in Eq. 4 linearizes the dispersion matrix
and decouples different orders of dispersion into the
series of Xk , allowing elegant parameterization of disper-
sion in a polynomial of Δω.

Measurement, fitting, and testing procedure
We measured the polarization-resolved msTM of MMF

using a wavelength-tunable laser and an automated
measurement system as elaborated in Methods A and
illustrated in Supplementary File Fig. S1. Repeating the
TM measurement from a starting frequency, ωs, over a
spectral span, Ω, at equidistant optical frequency steps,
δω, produces a three-dimensional (3D) msTM, where
TMs at ascending frequencies are discretized in Nω

sampling points, indexed by n

Mn ¼ M ω ¼ ωs þ nδωð Þ; n ¼ 0; 1; 2:::;Nω � 1 ð6Þ

We then used one or several differently spaced msTMs
for fitting our model, referenced at a frequency ω0

up to K orders DK Δω ¼ ω� ω0ð Þ ¼ exp
PK

k¼1 XkΔωk
� �

.

As explained in detail in the following sections, we can
derive a first-order model in closed form from a single
msTM (Methods B). Since there is no apparent relative
loss or gain for transmission through an MMF at dif-
ferent frequencies, we constrain D to be a unitary matrix.
Fitting higher orders or fitting to multiple, differently
sampled msTMs was achieved with gradient descent
optimization (Methods C). Under the unitarity con-
straint, this leads to manifold optimization associated
with Riemannian gradient32,33, which has emerged as a
topic of interest for stabilizing and enhancing the
training of deep or recurrent neural networks34. An
additional strategy fits a linear model to two differently
sampled msTMs (Methods D). For fitting, all TMs are
projected into a subspace spanned by the leading sin-
gular vectors of the TM at ω0, encompassing the number
of modes guided in the fiber, and all TMs are then
normalized by their respective Frobenius norms. To
estimate the TM at a test frequency ω ¼ ω0 þ Δω, we
defined the dispersion compensation DK Δωð Þ referenced
at ω0 back in the recording space and computed M ωð Þ ¼
DK Δωð ÞM ω0ð Þ, where the overline denotes the estimated
TM. To evaluate the fidelity of the estimated TM,
we computed the cosine similarity, i.e., correlation
C M ωð Þ;M ωð Þ� �

between the predicted M ωð Þ and a
separately measured ground truth M ωð Þ at the same
frequency ω (Methods E). To visually appreciate the
achieved compensation, we used the estimated TMs to
computationally focus through the independently mea-
sured TMs on a focus location ~p at varying frequency
(see Methods F). This strategy avoids the experimental
complication of physically generating the desired wave-
fronts at distinct wavelengths. We have recently used
this approach for computational confocal imaging
through MMF without physical wavefront shaping35.
The focus quality achieved with this approach depends
solely on the quality of the TM estimation.
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Ultra-wide hidden spectral correlation
For the initial exploration of the dispersion model, we

used a loosely coiled 1m-long 50-μm-core 0.22 numerical
aperture (NA) step index (SI) MMF, which supports ~200
modes. The spectral correlation of the fiber’s TM at
ω0 ¼ 191 THz, i.e., the similarity between the TMs at ω0

and an offset frequency (Methods E), manifests a fast decay
with a full width at half maximum (FWHM) of δν ¼ 30:43
GHz (0.26 nm) (see Supplementary File Sec. 4), consistent
with previously reported results using MMF with a similar
geometry25. As a benchmark, we found a similarity of
98:7 ± 0:14% between four pairs of repeatedly measured
TMs at identical optical frequency. At first glance, the
MMF has an independent transmission at a spectral shift
beyond δν and hence low resemblance between different
outputs upon just sub-nanometer spectral perturbation. To
create a dispersion model, we acquired two msTMs,
centered on the reference frequency of ω0 ¼ 191 THz
with ωs; δω;Ωð Þ ¼ 190:9; 0:01; 0:2ð Þ THz (Nω ¼ 21) and
ωs; δω;Ωð Þ ¼ 184; 0:467; 14ð ÞTHz (Nω ¼ 31), respec-
tively. The first, narrow msTM served to obtain an initial
first order dispersion matrix D1. Within its narrow spectral
range, the first order should be valid and the relative dis-
persion matrices between adjacent regularly spaced fre-
quencies can be assumed identical, enabling the
reconstruction of D1 in closed form (see Methods B and
Supplementary File Sec. 5). δω for this first msTM was set
smaller than half of the original spectral correlation width.
This was necessary to ensure that the relative phase
between the eigenvalues of D1 remained smaller than 2π
without wrapping36 to reveal the correct, unambiguous
mode-dependent delay (elaborated in Supplementary File
Sec. 6). Because experimentally there remained an
unknown phase offset between the M ωð Þ at different fre-
quencies, the global phase of D1 was set to zero, making
these delays relative. The exponential map X1i was then
retrieved by computing the matrix logarithm of D1, and
employed as initial value for fitting a second order dis-
persion model, using gradient descent to directly optimize
the exponential maps X1 and X2 (see Methods C and
Supplementary File Sec. 5). Conveniently, the formulation
of the higher order dispersion optimization does not
require regular sampling intervals, and fitting was done
simultaneously on both the first narrow msTM and the
second, broader msTM spanning 14 THz. The overall time
for constructing this K ¼ 2 model was � 9 minutes on an
Intel Core CPU (i7-8550U quad-core CPU at 1.8 GHz
frequency). Additional higher orders, while taking addi-
tional computation time, resulted in negligible improve-
ment on msTM fitting for this fiber.
To evaluate the fidelity of the TM estimation, Fig. 2a

plots the cosine similarity C M ωð Þ;M ωð Þ� �
considering Xk

to different orders. To verify the spectral continuity, the
frequencies of the ground truth TMs for testing were

different from those for fitting and intercalated to the
previous grid by half a frequency step. We define the
spectral model width, δνe, as the FWHM bandwidth of
the model’s cosine similarity. For the first order dispersion
X1, it is 33 nm, which is � 127 times broader than the
original spectral correlation width δν. The initial estima-
tion captures the linear dispersion in close agreement
with computational optimization to the first order.
Although the optimized X1 had a matrix Frobenius norm
489:8 times larger than X2, suggesting that only at
Δω ¼ 489:8 THz the two polynomial terms would be
equal in Frobenius norm, fitting to second order sig-
nificantly enhanced the spectral model width, covering
the entire 115 nm available from the laser source (purple
curve). This is � 442 times the original δν and would
require almost 1000 TM measurements when directly
sampling at δν=2.
To evaluate without using wavefront shaping the effect

of the model’s dispersion compensation on the ability to
image through a fiber, we used synthetic focusing through
the MMF: an input pattern computed to focus through
MðωÞ was numerically propagated through an indepen-
dently measured MðωÞ (Methods F). Figure 2a shows a
high-quality focus over 33 nm with K ¼ 1 (orange and
yellow boxes), and across the entire 115 nm spectrum
with K ¼ 2 (purple box). However, ignoring the model
and directly applying the input pattern that focuses at
Mðω0Þ to other wavelengths results in speckle patterns
(black box), as expected from the initial poor spectral
correlation (black curve). The focus contrast η, defined as
the peak intensity over the average intensity of all avail-
able spatial channels, assesses the spatial dependence of
the focus quality. Illustrated in Fig. 2b, the given spatial
channel achieves a maximal η= 172 at 191 THz and
η> 75 across the entire spectrum using the K= 2 dis-
persion model. We further evaluated the bandwidth of the
focus contrast for all spatial channels by calculating the
FWHM of their η curves, smoothed with a moving filter
of width 5.4 nm. The resulting spatial maps of maximal η
and bandwidth are shown in Fig. 2c, where the white
arrows indicate the polarization states. High focus con-
trast around 170–200 is maintained over a bandwidth of
70–81 nm at the central core region; towards the cladding
the contrast increases to 260–291, accompanied by a
reduction in the bandwidth to 22–25 nm. We attributed
this variation to the increased transmission loss but higher
spatial frequencies of higher order modes that dominate
at the core periphery. Dispersion compensation with the
fitted model achieves high quality focusing at all available
spatial/polarization channels.
Figure 2a also shows the spectral correlations of indi-

vidual PMs. We computed the input PMs at the center
frequency ω0, applied them to all measured ground-truth
M ωð Þ, and then evaluated the cosine similarity of the
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output PMs at ω and ω0. Most PMs have spectral corre-
lations that exceed the model width, and the first order
model is close to the PMs with the narrowest spectral
width. The first-order model relies on all PMs to persist
with a well-defined phase delay. Once enough PMs exceed
their spectral bandwidth, the fidelity of the TMs estimated
to first-order degrades. Extending the model to a higher
order, in comparison, results in a spectral width
approaching the best-performing PMs. To verify the
generalizability of our model, we repeated the same
experiments with MMF of different types, lengths, coil
radii, or from publicly available measurement data sets37,
and observed reliable fitting with robust performance (see
Supplementary File Figs. S7–S9). We found a general
reduction in the spectral width of our model with
increased fiber length and mode coupling.

Spectrally variant PMs
The first-order approximation assumes a constant m in

Eq. 2, independent of the frequency. Even if higher orders
Xk are present, but they commute with each other, i.e.,
Xk ;Xk 0½ � ¼ 0; k ≠ k 0, then they share the same eigenvec-
tors, and the PMs that they define maintain their profile

independent of the wavelength. However, in general, the
Xk series are not commutative and lead to a frequency-
dependence of m and the PMs. The experimental inves-
tigation of this PM dispersion is challenging due to the
need for measuring the MMF response and for the noise-
sensitive computing of the PMs at many frequencies over
a wide spectrum1. Conveniently, our MMF dispersion
model affords precise numerical characterization of MMF
transmission and accurate computation of all spectrally-
variant PMs (see Methods G for details).
The normalized commutativity between X1 and X2 of

the second order model presented in Fig. 2 is
X1;X2½ �j jF= X1j jF X2j jF

� � ¼ 0:0033. From the model we
computed m ωð Þ following Eq. 2 and plotted the normal-
ized commutativity referenced at ω0 ¼ 191 THz in Fig. 3a,
which increases linearly with frequency offset, indicating
at non-commutative m. We then studied individual
spectrally-dependent PMs and defined their permanence,
C, as the averaged spectral correlation of a PM across the
entire 115 nm spectrum referenced at ω0. As plotted in
Fig. 3b, the permanence of the 200 PMs in this 50-μm-
core SI-MMF decreases from 0.99 to 0.40, where the PMs
are sorted accordingly. The decreasing permanence
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Fig. 2 Ultra-wide hidden spectral correlation enables efficient dispersion compensation. a The curves correspond to the cosine similarity of
independently measured TMs with the reference TM at ω0 (black), with the first-order estimation using the closed-form reconstruction (orange), and
subsequent optimization with K= 1 (yellow) or K= 2 (purple) using gradient descent optimization, with spectral widths of 0.26, 33, 33, and 115 nm,
respectively. Additionally, the correlations of individual PMs computed at ω0 and applied to all ω are shown (gray). The color-coded frames show
corresponding synthetic focusing through the MMF at varying wavelengths, where the second order enables excellent focus contrast across the
entire spectrum (purple frame). b Focus contrast η at a spatial channel (gray solid circle) for varying wavelengths using the dispersion model with
K= 2. The fiber facet is masked from the background (gray dashed circular support). c Spatial maps of maximal focus contrast and bandwidth
obtained by focusing through all available channels at the fiber core in two polarization states. The scale bars are 20 μm
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clearly reflects the non-commutativity of m and hence the
limited PM bandwidth. Figure 3c shows several output
PMs of different permanence in both H (cyan) and V
(magenta) polarization at varying wavelengths, where the
polarization with less energy is plotted in the small insets.
Visually, the profiles resemble theoretical Laguerre-
Gaussian modes in SI-MMF, which remain constant
across wavelength for PMs with high permanence, but
change the mode pattern for less permanent PMs. In
Fig. 3d, we illustrate the PM dispersion by plotting the
spectrally-variant group delays of individual output PMs,
relative to the delay of the fundamental mode. The rela-
tive group delays span � 52 ps, consistent with step-index
waveguide theory38. Interestingly, besides the different
nonlinear delays, the PMs exhibit both positive and
negative dispersion. In addition, we observed degeneracy
effects (dashed circles) between PMs due to unstable
eigen-solutions, similar to a previous study1. As a result,
already the second-order dispersion model enables
numerical analysis of spectrally-variant PMs featuring
distinctive behaviors. The PM analysis for different MMF
can be found in Supplementary File Sec. 7.

Efficient reconstruction of multispectral TMs
So far, we introduced the high-order dispersion model,

demonstrated its ability to estimate MMF transmission
well beyond the linear regime, and studied the spectral

variation of PMs. Because TMs are prone to perturbation
such as fiber bending or temperature change39,40, strate-
gies to efficiently characterize spectrally dependent TMs
with only few measurements are of high interest for
experimental applications. How many monochromatic
TM measurements are needed to reliably fit the disper-
sion model? In the following, we investigated the trade-off
between h, the number of measurements, and the fidelity
of the estimated TM. We did so for both an improved
method for efficiently fitting to the first order in a speed-
driven approach, and for fitting to the second order to
achieve best bandwidth performance. We used the 1m-
long 50-μm-core SI-MMF with NA= 0.22 and as in our
previous experiments, all results were validated using
independently measured ground truth TMs.

Speed-driven
For many applications, speed is of the essence and the

bandwidth of the linear regime may be sufficient. As
discussed, the dispersion matrix D1 relating TMs spaced
by a fixed frequency offset δω can be obtained very effi-
ciently in closed form (see Methods B) from at least two
TM measurements. Repeated application of D1 allows
extrapolating the TM at discrete frequencies over a wide
spectrum but multiplies any error present in the original
dispersion matrix, hence favoring a larger δω. Yet, in
order to estimate the TM for continuous frequencies, the
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exponential map X1 is needed, which can only be recov-
ered unambiguously from D1 if δω< δν=2. To reconcile
the need for both large and small δω, we developed a
strategy for reconstructing a first order dispersion model
in closed form using the first order dispersion matrices of
two msTMs having small and large δω, respectively (see
Methods D). In short, this method derives the PMs from
the dispersion matrix with larger step size and removes
the 2π ambiguity in the phase of its eigenvalues by
extrapolating from the correctly resolved fractional phase
of the dispersion matrix with smaller δω. The computa-
tion for typical msTMs in this case takes 30 seconds on a
CPU for TMs with ~200 modes. To investigate the impact
of the number of measurements on the model fidelity, we
used Nω spectral steps for both msTMs, with a total
number of h ¼ 2Nω � 1 TM measurements (subtracted
by 1 because of the duplicate TM at ω0 ¼ ωs). We used
ωs ¼ 190:9 THz, δωsmall ¼ 12:2 GHz and δωlarge ¼ 60:7
GHz. As plotted in Fig. 4a, the model fidelity using h ¼ 21
measurements (green curve) is smooth and has a
δνe ¼ 34 nm. For comparison, the minimal h ¼ 3 mea-
surements (blue curve) still achieve a spectral model
width of δνe ¼ 10 nm, with a greatly reduced measure-
ment effort. Using h ¼ 5 measurements strikes an optimal
balance (orange curve), achieving δνe ¼ 30 nm, with the
best efficiency (δνe=h ¼ 6 nm) and fast computation time
of � 10 seconds, relaxing the effort by a factor of � 46
compared to the brute force approach: msTM measure-
ment with half of the original correlation width δν=2 as
spectral step across the same 30-nm bandwidth. The
images within the blue, orange, and green frames in

Fig. 4a visualize the reconstruction accuracy corre-
sponding to different h with synthesized focusing through
the MMF. For h ¼ 5, in Fig. 4b, we exemplify the focus
contrast at an individual channel, and plot the spatial
maps of the focus contrast and bandwidth. The model
covers all available channels with focus contrast and
bandwidths varying from 170 to 200 and 17 to 25 nm at
the center of the fiber to 250–274 and 15–20 nm at the
periphery, respectively.

Bandwidth-driven
For applications where bandwidth is prioritized over

speed, but full sampling of the msTM remains impractical,
fitting higher order dispersion offers an interesting para-
digm to attain broader bandwidth coverage. In an experi-
ment separate from the previous ones, we first constructed
a linear dispersion model using five TMs from two msTMs
following the aforementioned speed-driven approach, and
then selected subsets (Nsub ¼ 4; 8, or 12) from a third
msTM of ωs; δω;Ωð Þ ¼ 184; 0:933; 14ð ÞTHz to optimize
dispersion to the second order, fitting to all h ¼ 5þ Nsub

available TM measurements. The subsets were not reg-
ularly sampled, and the minimal spectral step was deter-
mined to avoid phase wrapping issues at higher orders Xk

(see Supplementary File Sec. 6). Figure 5a plots the spectral
model fidelity for varying h and indicates the correspond-
ing spectral sampling points of the third msTM used
during optimization. Here, h ¼ 13 (δνe=h ¼ 8:53 nm)
offers the best bandwidth efficiency, being 65.6 times more
efficient than the brute force measurement approach
across the same bandwidth. Similar to Fig. 4, the focal spot
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Fig. 4 Efficient computation of first order dispersion. a Spectral correlation of MMF transmission and focusing through MMF using h ¼ 3; 5; 21
TM measurements. b With h= 5, we computed the focus contrast η at each spatial channel and all wavelengths, and visualized the spatial maps of
maximal focus contrast and bandwidth of reconstructed channels for two polarization states. The scale bars are 20 μm
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images in the colored frames visualize the focus accuracy
corresponding to different h. We exemplify the focus
contrast and plot the spatial maps of the focus contrast and
bandwidth at h= 13 in Fig. 5b. The model bandwidth
varies from 100–110 nm at the center of the MMF core to
23–28 nm at the periphery, while the contrast increases
from 170–190 at the core to 250–292 close to the cladding.

Discussion
We established an algebraic architecture for modeling

modal dispersion and mode coupling in MMF transmis-
sion based on exponential mapping. The model not only
accommodates PM theory and linear dispersion, but also
enables efficient parameterization of higher order dis-
persion. The achieved wide spectral bandwidth of the
modeled MMF transmission demonstrates that spectral
MMF transmission through meter-long fibers is highly
deterministic and can be measured with high efficiency.
Principal modes have attracted significant attention due

to their ability to transmit specific mode patterns inde-
pendent of a change in wavelength, to first order. How-
ever, to obtain full spatio-spectral control, the entire
spectrally resolved TM is needed. Our first-order expo-
nential map constructs this TM by accounting for the
mode-dependent phase-delays between individual PMs.
Yet, while the PMs define a full mode basis, their spectral
bandwidth varies substantially1. Because the TM depends
on all the modes combined, the PMs with the poorest

spectral bandwidth limit the bandwidth of the first order
model. Interestingly, including higher orders in the
exponential map accommodates spectral variation of the
PMs and increases the bandwidth of the modeled TM,
approaching that of the best-performing individual PMs.
The bandwidth of PMs has been shown to directly

depend on the coupling regime within the fiber. With an
increase in fiber length, the coupling regime transitions
from weakly coupled to strongly coupled when reaching a
length identical to the fiber’s transport mean free path,
accompanied by a reduction in the PM bandwidth25. Our
investigation of TM model performance in fibers of dif-
ferent types, lengths, and perturbation indeed observed a
decrease in model bandwidth in longer fibers and with
increased fiber bending. On the other hand, our model
performed well on shorter graded index (GI) MMF, where
the almost degenerate modes of higher order mode
groups can be considered fully coupled within each group.
Model performance was poor, however, on longer GI
MMF, accompanied by a collapse of the PM bandwidth.
Others have measured significant PM bandwidths in GI
MMF as long as 100 m1, suggesting that our TM mea-
surements for longer fibers have been compromised,
possibly by insufficient phase stabilization.
Our model assumes a unitary dispersion matrix. This

constraint was critical to stabilize the gradient descent
optimization of higher-order models. Yet, a fundamental
limitation of the unitarity constraint, even in weakly
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Fig. 5 Efficient computation of dispersion up to second order. a Spectral correlation of MMF transmission and focusing through MMF using
h ¼ 5þ Nsub TM measurements. Colored dots indicate the sampled frequencies included in the Nsub- element subsets, which were used for
optimization, in addition to the five measurements of the initial first-order guess. b With h ¼ 13, we computed the focus contrast η at each spatial
channel at varying wavelengths, and visualized the spatial maps of maximal focus contrast and bandwidth of reconstructed channels in dual
polarization states. The scale bars are 20 μm
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coupled fibers, is that the model does not capture the
variation in the number of guided modes in MMF as a
function of frequency. The rank of the TM should depend
on the frequency and cannot be coupled by a unitary
matrix between frequencies. Furthermore, even the the-
oretical mode profiles in a cylindrical waveguide depend
on the frequency, putting a similar fundamental limit on
PMs. This fundamental limitation may indeed be the
limiting factor in the model performance for the loosely
coiled SI fibers, as we clearly observe the variation of the
number of modes with wavelength (Supplementary File
Fig. S3).
Unlike MMF, general complex media are not only fully

coupled, but their TMs are also lossy due to back-
scattering. Moreover, only a subset of all degrees of
freedom is available experimentally, and this subset may
further vary spectrally. Scattering in complex media likely
generates higher dispersion orders, and the limited cov-
erage of degrees of freedom further conflicts with the
unitarity constraint. Conceptually, the exponential map
could be extended to include attenuation and, hence,
define non-unitary dispersion matrices that linearize the
relation between the TM of complex media at different
wavelengths, but would need improved optimization
strategies. Instead of a change in wavelength, Matthès
et al.41 recently analyzed an operator similar to our dis-
persion matrix that describes the change in the TM when
physically deforming MMF. We speculate that using an
exponential map would enable convenient parameteriza-
tion of this deformation operator.
While our results clearly demonstrate the potential of

the dispersion model, our experimental approach of
measuring multiple, differently scaled msTMs deserves
further exploration. The spectral sampling must allow
resolving the modal phase delays, but other sampling
schemes could be envisioned. Also, wavelength accuracy,
repeatability, and system stability directly influence the
fidelity of the TM measurements, in addition to the
intrinsic measurement noise. Our empirical investigation
of balancing model performance suggests that inclusion of
additional wavelengths intrinsically helps to improve the
model, because inclusion of TMs repeatedly measured at
the same wavelength failed to yield an improvement.
Moreover, our measurement methodology compensates
for interferometer phase drift during the acquisition of a
single TM but results in an unknown phase offset
between TMs at different wavelengths. While this is
irrelevant to measure the relative mode delays between
various modes, it excludes material dispersion from our
model. Lastly, we have made little effort to accelerate the
steepest gradient descent for high order dispersion esti-
mation. Additionally, the error landscape of Eq. 9 is in
general non-convex and the optimization may get caught
in a local minimum. This may explain why fitting beyond

the second order only yielded modest performance
improvement. Techniques such as stochastic gradient
descent, momentum, and re-initialization could be helpful
in expediting the fitting of higher order dispersion models
and avoiding local minima.
Temporal focusing through MMF with arbitrary delays

has been demonstrated by exploiting measured msTMs42,
where MMF with the same geometry as the one used here
was fully characterized over a similar spectrum with more
than a thousand TM measurements. Alternatively, the
TM of scattering media has been measured in the tem-
poral domain, by measuring the interference between the
scattered light and a pathlength-controlled reference arm
using broadband light43. Recently, a rapid multispectral
characterization system based on hyperspectral imaging
has been introduced for measuring the TM of scattering
media18, which expedited the data acquisition by nearly 2
orders of magnitude. Our computational dispersion-
model-based calibration complements these methods by
necessitating only tens of measured TMs when char-
acterizing MMF, which relaxes the hardware complexity
of microlens arrays or gratings, brings extra flexibility in
system design, and reduces data storage for calibration of
the TM over a wide spectrum.
Using the same TM formalism to model free space

propagation, the dispersion matrix D would be diagonal
in the Fourier basis, according to Fresnel diffraction the-
ory, and define a quadratic defocus phase term when
reshaping its diagonal into 2D spatial frequencies. Inter-
estingly, for transmission through the 1m-long SI-MMF,
reshaping the main diagonal of the recovered D into
spatial frequency coordinates revealed a pattern similar to
a quadratic phase front. This indicates that MMF dis-
persion is associated with a defocusing effect, which is
another observation of the chromato-axial memory
effect26. Nevertheless, the D matrix of the MMF has non-
negligible off-diagonal elements, owing to the coupling
between spatial modes upon spectral perturbation. While
the chromato-axial memory effect has been shown to be
valid across a few nanometers in straight MMF of several
centimeters in length26, our method compensates for
additional waveguide dispersion and achieves orders of
magnitude broader model bandwidth for all supported
modes in loosely coiled, meter-long MMF.
The dispersion model may streamline multispectral

characterization of photonic systems in a range of appli-
cations. It can be readily applied to, e.g., calibration for
MMF-based spectroscopy or nonlinear endoscopy15,44. It
may spark new multispectral or coherent-based mea-
surement strategies for endomicroscopy through MMF or
other multicolor imaging and sensing applications, for
dispersion correction in meta-surfaces and materials, and
holds promise for both fundamental and applied studies
of light transport in MMF. In optical communication
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systems, MMF features throughput and cost advantages
over single-mode fiber, and space-division and
wavelength-division multiplexing (SDM and WDM) with
MMF have recently been proposed to surpass the Shan-
non capacity limit of data delivery in single optical
fiber45–47. The presented model can help to resolve dis-
persion in the transmission through MMF and may
benefit SDM and WDM in the following ways: Combined
with wavefront-shaping techniques on the transmitter
side, efficient fiber calibration may facilitate physical
generation of spectrally-dependent PMs in parallel, or
temporal pulse shaping for delivering signals that are
favorable to detection; Alternatively, to relax the
requirements for active wave control and use only passive
multiplexing elements such as photonic lanterns or
multiplane light converters on the transmitter side, effi-
cient TM reconstruction at varying wavelengths can be
applied on the receiver side and expedite multispectral
digital signal processing. As shown in Supplementary
Materials, the fiber dispersion model applies well to dif-
ferent GI MMFs, which have even higher number of
guided modes than the SI-MMF primarily used in this
study, and we expect the model to be suitable for GI-
MMF in current SDM applications.

Conclusion
Our parametric dispersion model efficiently describes

transmission through MMF over a wide spectral range. It
demonstrates that, far from random, modal crosstalk and
dispersion for different wavelengths are highly deterministic
and closely related. Use of an exponential map linearizes
these relations and affords inter- and extrapolation over
continuous wavelengths. The first-order model essentially
adjusts for the relative phase of the PMs experienced at
different wavelengths. At higher orders, the PMs themselves
become wavelength-dependent and extend the bandwidth
of the model, approaching the performance of the best
individual PMs. The disclosed computational methods open
the ability to accurately characterize spectrally resolved
TMs from only few spectral measurements, although it is
critical that some measurements correctly resolve the
mode-dependent delays without ambiguity. Using a second-
order model, we accurately estimated the TM of a 1m-long
200-mode SI-MMF over a spectral range exceeding ~442-
fold the original spectral correlation width and with 65.6
times higher efficiency than full spectral sampling. The
model performed well on various types of MMF and opens
new opportunities for fundamental and applied studies in
need of accurate spatio-spectral control.

Materials and methods
A. Experimental setup
The experimental system is illustrated in Supple-

mentary File Fig. S1. A 1-MHz-line-width wavelength-

tunable laser (TSL-510, Santec) with frequency range
ω= 184–198 THz (1629.3–1514.1 nm in wavelength)
and an objective lens (Mitutoyo Plan Apo NIR Infinity
Corrected) with a NA of 0.4 were used to generate a
2.5 μm FWHM focus on the input facet of the MMF
under test. The focal spot was sequentially coupled into
all available input spatial channels, dependent on the
fiber geometry, with a two-dimensional (2D) galvan-
ometer mirror scanner (GVSM002, Thorlabs). For
every input spatial channel, the laser was switched
between horizontal (H) and vertical (V) linear polar-
ization states using a fiber-based electro-optical phase
retarder (PRT1010, Boston Applied Technologies Inc.).
We used a InGaAs camera (OW1.7-VS-CL-LP-640,
Raptor Photonics) with exposure time of 20 μs and a
maximal frame rate of 120 Hz, and employed off-axis
digital holography to record the complex-valued fields
emitted from the fiber output facet in response to all
possible MMF input realizations. The output was pro-
jected on the two orthogonal polarization states using a
beam displacer (BD40, Thorlabs) for simultaneous,
polarization-diverse measurements. Interleaved with
the different input realizations in the acquisition of a
monochromatic TM, a reference input mode was
repeatedly visited for phase tracking and system stabi-
lization. We demodulated the recorded interference
patterns by taking into account the spectral variation of
the off-axis carrier (see Supplementary File Sec. 3),
corrected for phase tracking, flattened output images
into column vectors, and constructed a full mono-
chromatic TM at the current operating wavelength (or
optical frequency). The overall acquisition time of one
monochromatic TM was within several seconds, and
was repeated at different wavelengths for the acquisi-
tion of msTMs. Since the optical frequency sweep was
relatively slow compared to system phase drifting, we
could not stabilize the phase offsets between individual
TMs.

B. Estimation of the first order dispersion
For fitting the model, we projected all TMs into the

subspace, UyMV, where U and V are the first Q left and
right singular vectors of the TM at ω0, and Q is the
number of modes of the MMF. In this subspace the
experimental TMs are full rank and invertible. To com-
pute the first order dispersion matrix D1 from a msTM
measured at regular frequency intervals δω, we first
aligned the global phase offsets between the TMs at dif-
ferent frequencies by computing the phase between con-
secutive pairs of complex-valued TMs, corresponding to
the phase of the trace of their respective inner product,
and correcting the msTM with their cumulative sum.
Then we computed ~D1 δωð Þ, where the tilde indicates a
non-unitary D1, by solving the least squares optimization
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problem

argmin
~D1

XN�1

n¼1

Mnþ1 � ~D1Mn

�� ��2
F ð7Þ

where �k kF is the matrix Frobenius norm (L2-norm). The
solution to this minimization problem can be derived
analytically

~D1 ¼
XN�1

n¼1

Mnþ1M
y
n

 ! XN�1

n¼1

MnM
y
n

 !�1

ð8Þ

Constraining ~D1 to be unitary corresponds to setting
the singular values of ~D1 to identity. The overall process is
illustrated in Fig. S4a. With D1 δωð Þ, we can compute an
estimated X1i ¼ logmðD1Þ=δω, which relies on δω< δν

2 to
produce unambiguous delays.

C. Optimization for higher-order dispersion
We developed a gradient descent optimization algo-

rithm to fit a general dispersion model including higher
order terms to msTM measurements without strict con-
dition on the spectral sampling. The formulation in Eq. 7
requires adjusting the unknown phase offset of each
measured TM, which becomes difficult beyond the linear
dispersion regime. We instead minimized the com-
plementary cosine similarity, 1� C2, similar to ref. 48,
between each pair of measured M ωð Þ, and estimated
eX ω;ω0ð ÞM ω0ð Þ � DK Δωð ÞM ω0ð Þð Þ to find the matrices Xk

up to order K

argmin
Xk 2 g

XN
n¼1

1� tr My
ne

PK
k¼1

XkΔωk
n

M ω0ð Þ
0
@

1
A

������
������
20

B@
1
CA ð9Þ

where g is the group of skew-Hermitian matrices, Mn is
the indexed M ωð Þ with arbitrary spectral sampling that
does not need a regular interval, tr indicates the trace of
TM products, and we summed over all Nω TMs offset
from the reference frequency. Note that the skew-
Hermitian constraint on Xk makes DK unitary. Taking
the absolute squared norm of C removes the unknown
phase offsets between the TMs. The constraint makes
Eq. 9 a manifold optimization problem, which is in
general non-convex. Using the estimated first order
dispersion X1i to initialize the first order and initializing
the higher ones with zeros, we achieved convergence to a
meaningful higher order model by simultaneously opti-
mizing all Xk . For efficient computation, we employed
approximated Riemannian gradient descent with an
analytical gradient33. The overall process is illustrated in
Fig. S4b, and details on the gradient descent are available
in Supplementary File Sec. 5.

D. Fast construction of linear dispersion model
Constructing an accurate linear dispersion model

without iterative optimization from two msTM mea-
surements with distinct spectral sampling rates, δωsmall

and δωlarge, respectively, where δωsmall < δν=2 involves
the following steps: First, we compute first order esti-
mations ~D1 independently for both msTMs, using Eq. 7.
We then take the eigenvectors of ~D1 δωlarge

� �
from the

msTM with larger spectral step as the eigenspace of the
improved ~D1. Using these eigenvectors, we diagonalize
~D1 δωsmallð Þ from the msTM with the smaller spectral
step, and interpret the phase of the diagonal entries
divided by ωsmall as the PMω0 delays. Owing to
δωsmall < δν=2, these delays are determined without
ambiguity, although the small spectral sampling leads to

residual errors. Scaling these delays by δωlarge

δωsmall
should

match the phase of the eigenvalues of ~D1 δωlarge
� �

, with a
2π ambiguity. We can, thus, correct for the residual
error present with the small spectral sampling and derive
an improved matrix ~D1, and hence the corresponding
X1i . The overall process is illustrated in Fig. S4c.

E. Calculation of cosine similarity
To quantify the similarity between two TMs, for

instance an estimated and a measured TM, or two
measured TMs at different frequencies, we computed
the cosine similarity between the two corresponding
complex-valued matrices, A and B, as the absolute
value of the normalized Frobenius inner product

C A;Bð Þ ¼
P

ij a
�
ijbij

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij aij
�� ��2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij bij
�� ��2q ¼ tr Ay � B� ��� ��

Ak kF Bk kF
ð10Þ

where i and j are the matrix row and column indices, and
aij and bij are the entries of A and B, respectively. We then
calculated the spectral correlation by comparing a TM at
frequency ω to the TM at the reference frequency ω0,
C M ωð Þ;M ω0ð Þð Þ, or the fidelity of a predicted TM by
comparing it to its independently measured ground-truth
C M ωð Þ;M ωð Þ� �

. Alternatively, we used the same expres-
sion to compute the spectral correlation of individual
PMs, where A and B are vectors instead of matrices. In all
cases, we evaluated the FWHM bandwidth as a measure
of spectral width.

F. Synthesized focusing through MMF
Imaging through MMF can be achieved based on

computational reconstruction with synthesized rather
than physically generated foci35,49. To synthesize
focusing through the MMF at ω, we right-multiplied the
separately measured ground-truth MðωÞ with the
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inverse of the modeled transmission M
�1

ωð Þ. This is
equivalent to numerically propagating predicted wave-
fronts through the MMF and focusing on intended
output spatial channels. In practice, M ωð Þ is generally
non-square and ill-posed in the recording space coor-
dinates, so we used Tikhonov regularization to
approximate its inversion, M

�1 tikð Þ
, with the regular-

ization parameter set to 10% of the largest singular
value, as in our previous studies22,35. To balance the H
and V polarization detection, we rotated the polariza-
tion states of the matrix product by 45°. The spatial
basis of the matrix product was then converted from
the Fourier domain to real space with inverse Fourier
transformation for focus visualization. Reshaping a
given column of the matrix product into 2D spatial
coordinates reconstructs the image of the correspond-
ing focus.

G. Calculation of spectrally variant PMs
To obtain the spectrally-variant PMs at a given ω, we

computed the differential ΔD with δω<δν=2

ΔD ωð Þ ¼ D ωþ δωð ÞD�1 ωð Þ
� M ωþ δωð ÞM�1

ωð Þ
ð11Þ

This computation was performed directly in the sub-
space of leading singular vectors, where D is full rank and
invertible. The eigenvectors of ΔD ωð Þ are the output PMs,
and the phase of the eigenvalues is associated with the
group delays. To compensate for the relative optical path-
length difference between the H and V polarization
channels due to the use of the optical beam displacer on
the detection pathway (similar to ref. 1), we numerically
corrected the ΔD ωð Þ by applying a spectral linear phase
slope to the V polarization channel before collecting its
eigenvectors and eigenvalues. We repeated the process for
varying frequencies ω, sorted the PMs by matching them
between neighboring ω, and calculated the spectral cor-
relation of each PM as the normalized complex vector
inner product with itself at ω0, which is the corresponding
permanence. The group delay, τpm, of an output PM at ω
is calculated by taking the phase of its corresponding
eigenvalue and dividing it by δω. The PMs are then dis-
played in recording space coordinates, and the funda-
mental mode is visually identified from its spatial profile
to serve as reference for the relative delays of other
modes. The PMs with negative delays due to noisy
eigenvalues are discarded.

Data accessibility
Datasets and Matlab code used to generate key results
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szuyul/Parametr ic-dispers ion-model- for-MMF-
transmission]. Other data that support the findings in
the Supplementary File are available from the corre-
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