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consumption for neuromorphic computing
Chenguang Zhu1,2, Huawei Liu1,2, Wenqiang Wang1,2, Li Xiang1,2✉, Jie Jiang3, Qin Shuai1,2, Xin Yang1,2, Tian Zhang1,2,
Biyuan Zheng1,2, Hui Wang1,2, Dong Li1,2✉ and Anlian Pan 1,2✉

Abstract
Brain-inspired neuromorphic computing, featured by parallel computing, is considered as one of the most energy-
efficient and time-saving architectures for massive data computing. However, photonic synapse, one of the key
components, is still suffering high power consumption, potentially limiting its applications in artificial neural system. In
this study, we present a BP/CdS heterostructure-based artificial photonic synapse with ultra-low power consumption.
The device shows remarkable negative light response with maximum responsivity up to 4.1 × 108 A W−1 at VD= 0.5 V
and light power intensity of 0.16 μW cm−2 (1.78 × 108 A W−1 on average), which further enables artificial synaptic
applications with average power consumption as low as 4.78 fJ for each training process, representing the lowest
among the reported results. Finally, a fully-connected optoelectronic neural network (FONN) is simulated with
maximum image recognition accuracy up to 94.1%. This study provides new concept towards the designing of
energy-efficient artificial photonic synapse and shows great potential in high-performance neuromorphic vision
systems.

Introduction
Artificial intelligence (AI), as a new branch of com-

puter science, is seeking to understand the nature of
intelligence and aiming to perform complex tasks that
would normally require human intelligence1. Since the
beginning of this century, with the rise of internet big
data, the explosive growth of information, AI system has
entered a new period of rapid development and gains
more and more attention2–4. Rather than traditional von
Neumann architecture-based computing system, the
newly emerged brain-inspired neuromorphic computing
is featured by parallel computing that reacts in a manner

similar to human brain and thus possesses high efficiency
and low power consumption5,6. It can be imagined that
the future scientific and technological products brought
by neuromorphic computing will be the “container” of
human wisdom.
Similar to synapses in human brain, artificial synapses

are considered as core components in constructing brain-
inspired neuromorphic computing and play significant
role in transmitting signals between synaptic neurons7–9.
Up to now, different artificial synapse prototypes have
been successfully constructed based on organic materi-
als10–12, perovskites13,14 and low-dimensional materi-
als15,16. Most of the reported works are focused on
electrically stimulated synapses that are trained by elec-
trical signals and thus endowed with learning and cog-
nitive functions5,9,17,18. For example, Kinam Kim18, the
vice chairman and CEO of Samsung Electronics, has
teamed up with scientists at Harvard University to come
up with a vision that promises real human brain function:
Directly copy the brain’s neural signal and interconnec-
tion mode, and paste it on the electronic computer
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framework, using electronic current instead of biological
current signal, so as to realize a real artificial neural net-
work. In addition to electric-stimulated synaptic devices,
optical-stimulated synapses have also been seriously
considered ascribing to the advantage of high bandwidth,
fast speed, and low cross-talk characteristics4,10–16,19–22.
More importantly, such photonic synapses can simulate
typical synaptic plasticity behavior under optical stimu-
lation, which is beneficial to the development of artificial
vision system. For example, Zhou et al.19 demonstrated
two-terminal optoelectronic resistive random access
memory (ORRAM) synaptic device with a structure of
Pd/MoOx/ITO, which exhibits UV-light-tunable synaptic
behaviors. The results show that the ORRAM array not
only allows us to perform a first-stage image processing,
but also effectively improves the processing efficiencies
and accuracy of subsequent processing tasks. However,
due to the large power of the stimulating optical signal,
the reported photonic synapses are still far from practical
applications. In this term, to develop artificial photonic
synapse with low power optical plasticity and high image
recognition accuracy is of great significance.
In this work, we present an artificial photonic synapse

based on BP/CdS van der Waals heterojunction, where
the CdS and BP are employed as the photosensitive layer

and channel layer, respectively. Basic photoresponse
behavior is probed with a laser source of 450 nm,
where record high responsivity of 4.1 × 108 AW−1 can be
deduced with incident light power of 0.16 μW cm−2. Such
sensitive photoresponse enables the applications of the
device as synapse with ultra-low average power optical
plasticity ~4.78 fJ per spike. Based on typical optoelec-
tronic synaptic behavior of the artificial photonic synapse,
a fully-connected optoelectronic neural network (FONN)
is further constructed to evaluate the accuracy of image
recognition for the Modified National Institute of Stan-
dards and Technology (MNIST) handwriting image
dataset. The results show that maximum recognition
accuracy of 94.1% can be achieved after training. This
work provides a new strategy for the design and fabrica-
tion of energy-efficient artificial photonic synapses for
constructing high-performance neuromorphic computing
systems.

Results
Biological synapse and the designed artificial synaptic
device
Figure 1a depicts the schematics of the human visual

system, where the information detected by eyes is further
passed through optic nerves and processed in the visual
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Fig. 1 Comparison of the biological synapse with the designed artificial synaptic device. a Schematic illustration of human visual sensory
system. The right panel of figure describe the responses to biological spikes in the biological synapse. b Schematic structure of the artificial photonic
synapse based on BP/CdS vdWs heterojunction. Upper panel: top-view scanning electron microscope (SEM) image of the device; scale bar, 5 μm. The
light green strip is CdS, while the brown area indicates the BP flake. The right panel of figure describe the responses to optical spikes in the artificial
synapse, Cr/Au (10 nm/50 nm) electrodes are only contact with BP
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area in the brain. The synapses are the connection
between each neuron and play crucial role in neural
information transmission. As shown in the right panel of
Fig. 1a, when the presynaptic terminal is stimulated by
biological spikes, neurotransmitters are released by pre-
synaptic membrane and transmitted to the receptors of
the postsynaptic terminal, leading to the variation of the
amplitude of postsynaptic current (PSC). In this sense,
designing artificial synapse with optical plasticity is criti-
cally important to enable the machine vision and neuro-
morphic computing. Figure 1b shows the schematic
illustration of the designed artificial photonic synapse in
this work. It is based on a BP/CdS heterostructure tran-
sistor, where the CdS flake obtained by chemical vapor
deposition is imbedded under an exfoliated multi-layer BP
as photogating and charge trapping layer. Raman and PL
measurement is conducted to characterize each compo-
nent, where the acquired Raman spectrum of BP and PL
spectrum of CdS are shown in Fig. S1c and Fig. S1d,
respectively. Inset of Fig. 1b presents a false-color scan-
ning electron microscope (SEM) image of a designed
device. The corresponding optical image and atomic force
microscopy (AFM) image are shown in Fig. S1a and
Fig. S1b, where the thickness of the BP and CdS is iden-
tified to be 16 nm and 33 nm, respectively. Simplified
working process of the artificial synapse is schematically
illustrated in the right panel of Fig. 1b, where optical
spikes are used as trigger thus to drive the synaptic device.

Optoelectronic characteristics
Basic transport and photoresponse properties of the

fabricated devices were firstly probed in a vacuum
chamber of ~10−4 to eliminate the effects of oxygen and
water in the air. Figure 2a shows the measured output
curves at different gate voltages applied on Si (300 nm
SiO2 used as insulating layer), where symmetric and linear
relationship can be observed in both heterojunction FET
(HJ-FET, E1 and E2) and normal BP FET (BP-FET, E2 and
E3). Meanwhile, similar ambipolar transfer characteristics
are also acquired at the HJ-FET and BP-FET (Fig. 2b),
indicating that the imbedding of CdS flake has no obvious
influence on the electrical properties of BP at dark con-
dition. The comparison on the maximum current (Imax),
on-off ratio and mobility shown in Fig. S2 also confirm
the results. However, when the device is applied with light
illumination, different transport behaviors are observed.
Transfer behavior of BP-FET is depicted in inset of Fig. 2c,
which shows normal and weak positive light response
towards laser irradiation23. On the contrary, the HJ-FET
shows distinct negative photoresponse (Fig. 2c). Figure 2d
is a two-dimensional plot of ID as a function of Plight and
VG, showing the negative optical response information of
the HJ-FET in more detail. It can be inferred from Fig. 2d
that the drain current dramatically decreases with the

Plight increasing from 0.16 μW cm−2 to 2.14 mW cm−2.
We also probed the photoresponse behavior of pure CdS
as a comparison (Fig. S3). The CdS FET also shows nor-
mal positive photoresponse, indicating that the negative
photoresponse observed in the heterostructure originates
from the heterointerface rather than the conduction var-
iation in each component.
The novel transport behavior in BP/CdS hetero-

structure can be reasonably understood by the working
mechanism shown in Fig. 2g. In dark condition, because
the electrodes are only in direct contact with BP, the HJ-
FET exhibits similar electrical properties as compared
with BP-FET and the whole conductive channel is uni-
formly p-doped with VG ≤ 0 V (Figures 2g1 and 2g4). CdS
is more sensitive to light than BP, when light illumination
is introduced, a large number of electron-hole pairs will
be generated in CdS flake with electrons flowing into BP
and holes trapped in CdS, due to the interface barrier
between BP and CdS, as well as the defects and surface
state in CdS. However, the photogenerated carriers in BP
should be negligible due to weak light response (inset of
Fig. 2c). The trapped holes will further produce mirror-
imaged charges in BP, thus leading to the up shift of the
Fermi level in BP. Since BP is naturally p-doped, the up
shift of the Fermi level will lead to the decrease of hole
doping concentration and even the transition of the
doping type into n-type, resulting in the negative response
towards light irradiation (Figures 2g2 and 2g5). In addition
to defect trapping, the absorbed molecules in the nanos-
tructure surface may also be one of the reasons for
negative photoresponse. During the device fabrication
process, BP and CdS will inevitably contact with air,
PMMA, acetone and other solutions, which may cause
molecular adsorption on the surface of nanostructures,
resulting in the occurrence of negative photoresponse
phenomenon. Furthermore, it should be pointed out that
since both BP and CdS exhibit positive photoresponse, the
negative photoresponse should be reasonably originated
from the heterojunction caused by defect trapping or
molecular adsorption. We also notice that the device is
very sensitive to light. As depicted in Fig. 2c, a weak light
of 0.16 μW cm−2 will lead to a photocurrent (ΔI) variation
of about 20 μA and thus the photoresponsivity (R) can be
deduced a high value.
Figure S4 shows more designed devices, where the on-

state current varies from 30 to 90 μA from device to
device. It can be reasonably attributed to the difference in
channel size and the thickness of BP. Shorter channel
length, larger channel width and thicker thickness indi-
cate larger on state current. After normalization of the
channel width and length, we can thus deduce that
the current (I*L/W) increases with the increasing of the
channel thickness (Fig. S4c and Table S1). In order to
eliminate the influence of these factors on the device
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performances, we constructed the device array with
similar channel thickness, width and length. As shown in
Fig. S5 and Fig. S6, both the dark current and photo-
response behavior are similar with the same BP flake and
similar channel size, indicating nice repeatability and
consistency of device array. In further studies, large-scale
device array may be achieved through combing BP arrays
and CdS arrays by developing compatible CVD prepara-
tion methods or large-scale transfer technologies. Fig. S7
shows that the photocurrent (Iph) and photoresponsivity

(R) of the device, where Rmax are all in the range of
108–109AW−1, indicating that the devices have stable
and excellent photoresponse. Furthermore, the extracted
R from devices with different thickness of materials is
summarized in Fig. S8, showing that there is no obvious
dependence between R and the thickness of heterojunc-
tion materials. We also summarize the responsivity (R)
corresponding to the reported photodetectors con-
structed of different material systems, including single
material11,12,24–26, inorganic heterojunction14,15,23,27–34
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and organic-inorganic heterojunction35–37, and the results
are shown in Fig. 2e. It can be concluded that the
responsivity of the BP/CdS HJ-FET is among the highest
in the reported devices so far. When light illumination is
removed, the trapped holes can be well maintained in CdS
(Fig. 2g3, g6), leading to small current state be well kept in
the channel (Fig. 2f). Such charge storage behavior is
similar to the long-term plasticity (LTPL) in biological
synapse and is prerequisite to ensure reliable study on the
synaptic photoresponse. Meanwhile, the observed current
plasticity in BP/CdS stimulated by light further enables
the photonic synaptic device application.

Typical synaptic behavior of artificial photonic synapse
The signal transmission between biological neurons is

governed by the exocytosis of neurotransmitters from the
presynaptic membrane to the receptor on the post-
synaptic membrane. The constructed artificial synaptic
device can effectively imitate this behavior with light
irradiation and the corresponding schematic diagram is
shown in Fig. 3a. The channel conductivity (synaptic
weight) of device can be effectively modulated by light
illumination, and well maintained after removing light
source (Fig. S9), which is the essential feature of multi-
modal plasticity in photonic artificial synapse. When
the device is stimulated by 450 nm light pulse
(Plight= 11.97 μW cm−2; pulse width: 50 ms; gate voltage:
0 V), the photo-activated postsynaptic current (PSC)
shows a marked negative increment (defined as −ΔPSC)
by 12.5 μA and well maintained at current level of 11 μA
for a long time after turning off the light source (Fig. 3b
and inset of Fig. 3b), indicating nice long-term potentia-
tion (LTP) behavior. Photoresponse behavior of the
synaptic device monitored under light illumination with
different wavelength is shown in Fig. S10, the artificial
synapse can recognize optical signals with wavelength of
450 nm, but has no obvious response to the light at
wavelengths of 633 nm and 980 nm. This can be reason-
ably understood that CdS has a bandgap of 2.4 eV, which
can only give response to incident light with wavelength
lower than 515 nm. We also monitored the LTP behavior
of the synapse at 450 nm light pulse with different light
stimulation information, including illumination time and
intensity. As shown in Fig. 3c, the peak current value of
−ΔPSC increases gradually from 3 to 16 μA with the
illumination time increasing from 5 to 1000ms
(VD= 0.5 V, Plight= 11.97 μW cm−2). That is to say,
longer light exposure time will effectively enhance the
stimulus effect, leading to larger −ΔPSC. Similarly, larger
illumination power can also enhance the stimulus effect.
As shown in Fig. 3d, maximum −ΔPSC increases from 2.5
to 14.5 μA with Plight increases from 0.9 to 126 μW cm−2

(VD= 0.5 V, illumination time fixed at 50 ms). The peak
current of −ΔPSC versus pulse width and illumination

power is extracted in Fig. S11 and the results indicate that
both light illumination time and intensity can effectively
modulate the synapse behavior. We also monitored the
synaptic behaviors by increasing the stimulated light pulse
numbers. The amplitude of −ΔPSC gradually increases
from 7.3 to 9.8 μA as changing the light pulse number
from 1 to 50 (Fig. S12), which reflects long-term synaptic
weight change of the artificial photonic synapse and the
characteristics of −ΔPSC can also be effectively modu-
lated by different light pulse number.
Moreover, the FET-based device architecture also

enables the synergistic modulation of the synaptic beha-
viors with the assistant of negative gate voltage. As shown
in Fig. S13, with larger negative gate voltage, larger
maximum −ΔPSC values will be obtained, which can be
reasonably attributed to higher charge separation effi-
ciency driven by the vertical electrical field. Fig. S14
presents the detailed synaptic behavior of the device with
negative VG (−40 V), where similar larger −ΔPSC is
obtained as compared with Figs. 3c and 3d. The char-
acteristics of −ΔPSC under consecutive light pulses at
different VG are shown in Fig. S15, the −ΔPSC increases
linearly with increasing the pulse number at first and then
tends to saturate at a definite value with a fixed gate
voltage. For example, as shown in Fig. S15a, the amplitude
value of −ΔPSC linearly increases to 14 μA after five
pulses, and stabilizes at 16 μA after tens of pulses
(Plight= 5.32 μW cm−2; pulse width, 50 ms; VG= 0 V).
The amplitude rate (defined as An/A1, where A is the
amplitude of the −ΔPSC peak value) reaches 356% after
100 consecutive light pulse stimulations. It also indicates
that the saturation current of −ΔPSC increases corre-
sponding with similar light stimulation process by
applying larger negative gate voltage (Fig. S15b, S15c).
Another important parameter of the conductance mar-
gins (Gmax/Gmin, defined as the ratio between the max-
imum and minimum conductance value, which is one of
key parameters to determine the accuracy of image
recognition) are also extracted and shown in Fig. S15d.
The Gmax/Gmin is extracted to be 132 at VG= 0 V, and can
be further promoted to 804 with gate voltage of −40 V,
enabling more efficient training and pattern recognition
in a neuromorphic systems38. The synaptic device trained
by lower light intensity and shorter pulse time is shown in
Fig. S16 (Plight= 0.29 μW cm−2; pulse width, 10 ms;
VG= 0 V), presenting similar synaptic behavior but larger
amplitude rate (2500%) and good linear relationship.
On the contrary, a positive gate voltage in dark condi-

tion will drive electrons into CdS to recombine with
trapped holes and thus lead to the decrease of −ΔPSC,
indicating depression process of the synapse (Fig. 3e).
Thus, On the basis of the synergistic effect of
optical programming and electrical erasing in the
artificial synapse, optical-stimulation-induced long-term
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potentiation (LTP) and electrical-response-driven long-
term depression (LTD) are successfully simulated. Firstly,
LTP/LTD characteristics are trained by 50 consecutive
potentiation pulses (optical programming) and depression
pulses (electrical erasing) under different light intensity on
SiO2/Si substrate (Fig. S17), the curves show good
linear relationship with lower light illumination
(Plight= 0.29 μW cm−2). In order to evaluate the endur-
ance characteristics of the device, pulse-switching char-
acteristics and multiple cycles of LTP/LTD characteristics
are tested in Fig. S18. The result exhibits that the device
can be switched well between the program and erase state
with more than 150 cycles over 3000 s. Moreover, the
potentiation and depression processes can be con-
tinuously simulated by applying consecutive light and VG

spikes, reflecting repeatable switching and good endur-
ance performance of the device. We also probed the

synaptic behavior of BP/CdS heterostructure on h-BN/
graphene substrate and the results are shown in Fig. S19,
where similar synaptic properties are observed, further
confirming that the synaptic behavior originates from the
heterostructure rather than substrate. Figure 3f depicts
the measured LTP/LTD curves with BP/CdS hetero-
structure on h-BN/graphene substrate, where the LTP is
triggered by 20/50/100 consecutive light pulses (illumi-
nation time, 5 ms; light power, 0.16 μW cm−2) and the
LTD is elicited by same number of electrical spikes (pulse
time, 5 ms; voltage amplitude, uniformly increasing gate
voltage from 0 to 4 V). The result shows symmetric and
linear LTP and LTD process, demonstrating great optical
and electrical controllability of the synaptic device, which
is also the basis for realizing high image recognition
accuracy. The energy consumption for the photonic
programming process and electric erasing process are
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Zhu et al. Light: Science & Applications          (2022) 11:337 Page 6 of 10



further estimated to be about 8.9 fJ and 25 fJ per spike
(detailed calculation and extraction process of the energy
consumption is shown in Note S1), respectively, which is
comparable to the biological synapse (10 fJ) and compares
favorably to most of the reported synaptic devices (e.g.,
TMD15,16,20,22,28,30,39–41, CNT14, MoOX

19 and BP21 based
synaptic device), indicating potential application in energy
efficient neuromorphic systems (Fig. 3g). The artificial
photonic synapse clearly exhibits photonic potentiation
and electronic depression behaviors, indicating that the
artificial synaptic devices support optical-write and
electronic-erase functions for learning and recognition in
artificial neural networks.

Simulation of FONN for image recognition
To evaluate the learning capability of our low-power

photonic synaptic devices, a fully-connected optoelec-
tronic neural network (FONN) is constructed with a
three-layer architecture for MNIST handwritten digit
recognition. As demonstrated in Fig. 4a, the network
consists of an input layer (400 neurons, corresponding to
20 × 20 pixels of an input image), a hidden layer (100
neurons) and an output layer (10 neurons, corresponding
to the 10 classes of recognized digits 0~9). Here, each
neuron in the network receives the weighted summed
results through the summation function (Σn) from the
previous layer and pass the output value by an activation
function (Yn), which is as shown in Fig. 4b. The circuit
block diagram for the simulation is illustrated in Fig. 4c,
including the simulated photonic synapse array and the
peripheral circuits. The weight update calculation is based
on inner product of the input signal vector and synapse
matrix that are read by the read current ADC module,
providing the feedback into the simulated synapse array to
update the synaptic weight via optical or electric pulses
(see experimental methods for more details). After
training the FONN with 6000 handwritten images, the
recognition rate test is carried out with a separate testing
set (with 1000 images), and the results is shown in Fig. 4d.
The recognition rate of our FONN simulation can achieve
93.2% on average (94.1% as a maximum). It is worth
noting that the recognition rate rises quickly during the
initial three training epochs and the recognition rate
could be up to 81.8% at the first epoch, which is sig-
nificantly outperformed the previous results using the
same datasets15,21,39,42–44. The confusion matrix for the
recognition rate test is present in Fig. 4e, indicating that
the FONN can highly-accurately recognize every classes
of digits (0~9) since the initial epoch.

Discussion
In summary, we successfully fabricated an artificial

photonic synapse based on BP/CdS heterojunction with
multilayer BP as conducting channel and CdS flake as the

light-sensitive layer. Due to the effectively charge transfer
between BP and CdS, typical photonic synaptic behaviors
can be effectively modulated under the synergistic effect
of light pulses and electrical pulses, including photo-
sensitivity, postsynaptic photocurrents and persistent
photoconductivity. Based on the synaptic characteristic of
LTP/LTD curve under photonic programming and elec-
tric erasing process, a FONN is constructed for image
recognition against the Modified National Institute of
Standards and Technology (MNIST) handwriting image
dataset, with recognition accuracy up to 94.1% and energy
consumption as low as 0.43–8.9 fJ per light spike and 25 fJ
per electrical spike. The proposed artificial photonic
synapse provides a promising concept that use 2D het-
erojunctions for neuromorphic computation, machine
vision and artificial intelligence systems.

Materials and Methods
Device fabrication
The heterojunctions were fabricated by a dry transfer

technique45,46. The CdS flakes were synthesized by a
vapor growth strategy reported previously23,33, and then
were transferred onto the silicon substrate with 300-nm
silicon oxide by polydimethylsiloxane (PDMS) stamp
using a three-dimensional transfer platform. Next, mul-
tilayer BP flakes were mechanically exfoliated onto a
PDMS film and transfer on top of the CdS flake after
aligning under an optical microscope. Finally, standard
e-beam lithography (EBL, Raith 150 Two) was employed
to define the source and drain patterns, Au/Cr (50 nm/
10 nm) metal contacts were then deposited by using metal
thermal evaporation with a standard lift-off process.

Material and performance characterization
The optical images of simples were obtained by using a

polarizing microscope (ZEISS, Axio Scope A1). The SEM
study was characterized by a ZEISS Sigma HD instru-
ment. The morphology of the devices was confirmed by
an atomic force microscopy (AFM, Bruker Dimension
Icon) in a tapping mode. Photoluminescence and Raman
measurements were performed by using a confocal μ-PL
system (WITec, alpha-300) with a 488 nm laser excitation
source. All the electrical properties of the artificial pho-
tonic synapses were characterized in high vacuum (10−4

Pa) with an Agilent-B1500 semiconductor parameter
analyzer and a Lakeshore probe station at room tem-
perature. The light illumination was applied by a 450 nm
laser and controlled by a laser controller (Thorlabs,
ITC4001). The optical power was measured with Thor-
labs’ Optical Power Meter.

Simulation of FONN for handwritten digit recognition
The simulation is carried out based on the “NeuroSim+”

simulation platform, which could provide system-level
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simulation including device level (transistor technology
and memory models) to the circuit level (synaptic array
architecture and peripheral neuron circuits)47,48. The
analog conductance change of the synaptic device is fitted
by an exponential model to mimic the weight update
behavior in the neural network using the following
equations:

GLTP ¼ Gmin þ ðGmax � GminÞð1� e�
P
NLÞ

1� e�
Pmax
NL

GLTD ¼ Gmax � ðGmax � GminÞð1� e
P�Pmax

NL Þ
1� e�

Pmax
NL

where variations of GLTP, GLTD, and P are the con-
ductance for long-term potentiation (LTP), long-term
depression (LTD) and pulse number, respectively. And
the constant of Gmax, Gmin, Pmax, NL represent the
maximum conductance, minimum conductance, max-
imum pulse number between the maximum/minimum
conductance state, and a non-linear parameter of the
weight updating, respectively. By using the equations
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above, NL are firstly extracted from the data in Fig. 3f.
After loading the 6000 handwritten images from MNIST
datasets, the training algorithm including the feed forward
(FF) and back propagation (BP) is carried out. Subse-
quently, the testing set consisting of 1000 images are
loaded to test the recognition accuracy of the network.
Here, the input images from MNIST database are all
binarized with a threshold of 128 for every pixel and
cropped with the size of 20 × 20 pixels. The activation
function in the neurons is the sigmoid function.
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