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Deep learning accelerates whole slide imaging for
next-generation digital pathology applications
Yair Rivenson1,2✉ and Aydogan Ozcan2,3,4,5

Abstract
Deep learning demonstrates the ability to significantly increase the scanning speed of whole slide imaging in
histology. This transformative solution can be used to further accelerate the adoption of digital pathology.

Digital Pathology is a sub-field in pathology that con-
siders the processes of image acquisition, management,
distribution, annotation, and computer-aided analysis.
Digital Pathology is rapidly growing and has already cre-
ated a highly active academic and industry ecosystem1.
The ability to digitize large scales of pathology data and
rapidly disseminate and analyze them is transformative for
research, clinical trials, telemedicine, downstream image
analysis and overall patient care2. At the heart of this
revolution, high-throughput scanning microscopes pro-
vide the “crude oil” that ultimately fuels this digital
transformation. Some of these scanning microscopes and
their digital images were approved by regulatory autho-
rities to be used by pathologists in their primary diagnosis
clinical workflow3.
It is undeniable that the next Machine Learning (ML)

revolution in histopathology will be fueled by large-scale
annotated databases. However, one of the biggest culprits
is the current speed and throughput of digital pathology
scanners4. Scanning each histology slide (using e.g., 40×/
0.75NA objective lens) often yields Gigapixel-worth of
information. While hardware and software advances in
recent years resulted in a speed-up of the scanning time2,4,
it is still a rate-limiting step that adds a burden on
innovation in the field, as the price of these high-
throughput scanners is in the range of ~$150–300 K,

making the scanner a “unicorn” in many deployment
scenarios, as purchasing multiple scanners becomes
highly costly.
For a typical brightfield scanning microscope, the

scanning speed rate-limiting step is often a result of the
mechanical specifications of the scanning stage2. Many
efforts have been put forward to increase the overall
scanning speed of these microscopes. One solution
involves adding hardware components to the microscope
apparatus, such as coded illumination5–8, which then
requires a postprocessing computational step to decode
the encoded specimen information9. More recently,
machine learning (ML) algorithms were also used to
accelerate the throughput of digital microscopic scanning,
including the enhancement of the resolution, depth of
field10 and refocusing capabilities11,12, as well as the ability
to computationally generate multiple stains on the same
tissue section, effectively accelerating the imaging process
by multiplying the useful information channels from each
slide13,14. Another technology that a few vendors have
adopted is based on Time Delayed Integration (TDI),
which uses high-throughput scanning by synchronizing
the charge transfer with the sample’s movement15. How-
ever, most of the existing slide scanners still rely on
standard CCD/CMOS cameras without TDI capability.
In this issue of Light: Science & Applications, Michael

John Fanous and Gabriel Popescu at the University of
Illinois at Urbana Champaign (UIUC) report on a new
method to significantly speed up the scanning speed of
whole slide scanners16. It does so by departing from the
standard “stop-and-stare” imaging approach to a
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continuous scanning approach, reconstructing the
resulting image by applying a machine learning-based
image restoration approach to the motion-blurred scan-
ned image. This ML-based approach is implemented on a
standard scanning microscope and eliminates the need for
specialized add-on hardware components. The main
contribution of this approach is decoupling the imaging
speed from the stage movement speed and stage stabili-
zation. To achieve their goal, the authors adopted the
Pix2Pix image translation framework17. In this case, the
input is a highly motion-blurred image, created by the fast
movement of the stage, while the label is the sharp, high-
resolution image captured at normal speeds. This
approach has two key components. The first is supervised
image-to-image translation18, which uses paired, accu-
rately registered images to facilitate pixel-level optimiza-
tion. The second component is a Generative Adversarial
Network (GAN)19 based model used to craft a data-
adaptive optimization. In a nutshell, GANs are composed
of two competing networks: A Generator and a Dis-
criminator. The role of the Generator is to take an input
image (in this case, a substantially blurred one due to
rapid motion) and to output an image that resembles the
paired label, while the Discriminator’s role is to serve as a
critique of the Generator’s output. This tug-of-war
between the Generator and Discriminator pushes the
Generator to match the labels’ sample distribution, which
creates sharp and realistic-looking results. The fact that
paired images are used in the Generator network allows
the authors to add an L1 pixel-based loss term, that reigns
the more “artistic” effects of the Discriminator and creates
a highly accurate image reconstruction, opposed to ima-
ges that only attempt to create the global distribution of
the image18.
Following the training of the deep neural network, it

was used to deblur images that were continuously scan-
ned at stage speeds of up to 5000 µm/s with an acquisition
rate of 30 fps equivalent to ~1.8 GPixels in 100 s, or an
approximate area of 15 mm × 7.5 mm imaged with a
standard high-throughput scanning microscope. For the
sake of comparison, the ground truth images were cap-
tured at a stage speed of 50 µm/s—i.e., 100-fold slower
(see Fig. 1).
The authors demonstrated this for both brightfield

and phase contrast microscopy applications and for
multiple types of biopsies and tissue constituents.
Moreover, authors have shown impressive resilience for
slightly defocused imaging of +/−5 μm. This is impor-
tant for any potential practical use of this approach, as
defocusing is a common problem for these scanners
(especially at high magnifications) and with the
increasing number of focus correction steps, the sub-
stantial speed gain achieved by this all-algorithmic
method would have been mostly lost.

This approach can benefit clinical and research work-
flows and increase the adoption of digital pathology by
increasing the throughput of the scanning microscopes. It
can utilize already deployed microscopes in clinical set-
tings without additional hardware modifications. For this
method to become widely adopted, the ML models should
be fed with diverse training data, to cover specimens from
multiple origins and microscopes. Overall, the method
can help democratize research and power next-generation
computer-aided diagnosis applications.
Through this News & Views article, we also would like

to remember the senior author of this work, Dr. Gabriel
(Gabi) Popescu, who passed away earlier this year in a
tragic accident in Europe. He was a pioneer in holography,
microscopy and quantitative phase imaging (QPI), and a
role model and a wonderful colleague. Starting with his
postdoctoral studies at MIT, Gabi focused on developing
new technologies for label-free imaging of live specimens.
He combined the strengths of optical microscopy, holo-
graphy, and light scattering to reveal the intrinsic sig-
natures of living cells without perturbing their natural
state. While at UIUC, Gabi co-authored a number of key
papers and patents, which were also commercialized by a
start-up that he co-founded. As a continuation of his
impactful research, his work on Spatial Light Interference
Microscopy (SLIM) provided unprecedented sensitivity to
cell structure and dynamics at the sub-nanometer scale,
quantified cell growth with femtogram accuracy, and also
detected cancer in unstained biopsies. White-Light Dif-
fraction Tomography (WDT) is another technique he
pioneered that uses SLIM data to extract cellular infor-
mation in 3D. WDT taught us new science about how
cells function in time and, because imaging is not per-
turbing the cells, the specimens could be investigated over
longer periods of time.
Gradient Light Interference Microscopy (GLIM) was

another relatively recent invention of Gabi that extended
his techniques to thicker specimens, such as brain slices,
embryos, and whole organism models (C. Elegans, zeb-
rafish). GLIM is likely to revolutionize, for example, the
understanding of neural connectivity in viable brain,

5000 µµm/s 50 µm/s GANscan

Fig. 1 A demonstration of motion deblurring by GANscan. The
results closely resemble the control specimen, with 100x times the
acquisition speed
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without using labels or physical contact. In-vitro fertili-
zation is another good match for GLIM, as typical con-
trast agents cannot be used on developing embryos
without introducing risks of viability. GLIM was also
commercialized through his lab’s pioneering entrepre-
neurial efforts.
The optics community has lost a giant! We are all

deeply saddened and shocked by Gabi’s unexpected death
earlier this year. Our community will remember him
through his pioneering research contributions to the
biophotonics field in general, his successful entrepre-
neurship in translating the exceptional scholarly output of
his research group into impactful products, his out-
standing teaching, mentorship, excellent service to the
optics & photonics community and kind friendship and
witty humor.
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