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The complex Maxwell stress tensor theorem: The
imaginary stress tensor and the reactive strength of
orbital momentum. A novel scenery underlying
electromagnetic optical forces
Manuel Nieto-Vesperinas 1✉ and Xiaohao Xu 2,3✉

Abstract
We uncover the existence of a universal phenomenon concerning the electromagnetic optical force exerted by light
or other electromagnetic waves on a distribution of charges and currents in general, and of particles in particular. This
conveys the appearence of underlying reactive quantities that hinder radiation pressure and currently observed time-
averaged forces. This constitutes a novel paradigm of the mechanical efficiency of light on matter, and completes the
landscape of the optical, and generally electromagnetic, force in photonics and classical electrodynamics; widening
our understanding in the design of both illumination and particles in optical manipulation without the need of
increasing the illuminating power, and thus lowering dissipation and heating. We show that this may be accomplished
through the minimization of what we establish as the reactive strength of orbital (or canonical) momentum, which
plays against the optical force a role analogous to that of the reactive power versus the radiation efficiency of an
antenna. This long time overlooked quantity, important for current progress of optical manipulation, and that stems
from the complex Maxwell theorem of conservation of complex momentum that we put forward, as well as its
alternating flow associated to the imaginary part of the complex Maxwell stress tensor, conform the imaginary Lorentz
force that we introduce in this work, and that like the reactive strength of orbital momentum, is antagonistic to the
well-known time-averaged force; thus making this reactive Lorentz force indirectly observable near wavelengths at
which the time-averaged force is lowered. The Minkowski and Abraham momenta are also addressed.

Introduction
The Maxwell stress tensor in whose terms the con-

servation of linear and angular momentum is expressed1,2,
is at the root of electromagnetic forces in general and
optical manipulation in particular3–9. When the fields are
characterized by complex functions, this conservation law
is obtained from the real parts which yield time-averaged,

or real, Lorentz forces (RLF) and torques. This is exten-
sively employed, in particular, for time-harmonic (i.e.,
monochromatic) fields6,8,10,11.
In this context, it is well-known that the RLF on a

volume V0 of charges and currents is given by the
momentum flux whose density is the real part of the
Maxwell stress tensor (RMST) across any contour ∂V
enclosing V0. In consequence this RLF may be con-
sidered as the flow, characterized by the RMST, into the
surface of a sphere in the far-field, i.e., in the radiation
zone of V0 and, as such, it may be considered a “radia-
tion force”.
In this paper, we demonstrate that this theory through

the RMST describes only half the physics of the
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electromagnetic optical force. The other half, so far
ignored and that we uncover here by establishing the
complex Maxwell stress tensor theorem, is characterized
by the imaginary part of the complex Maxwell stress
tensor (CMST), related to the exchange of reactive (i.e.,
imaginary Poynting) momentum (IPM)12, and acquires
importance as optical manipulation of matter progresses
and expands its scope incorporating reactive con-
cepts12–14. The imaginary Maxwell stress tensor (IMST)
builds-up in and around V0 what we find and put forward
here: the reactive strength of orbital (or canonical)
momentum (ROM); so that this storage of ROM con-
tributes to the imaginary Lorentz force (ILF) on V0 which,
as we shall show, may also be envisaged as a reactive
strength of Poynting momentum. This reactive force is
not observable on time averaging since its net value is
zero, but it exists instantaneously due to the transfer of
the reactive momentum, which alternates with time,
between the wave and the body.
Hence, the ILF is a basically fundamental dynamic

phenomenon, inherent to the emergence of electro-
magnetic optical forces, being also associated to the
appearance of reactive energy, reactive work, and reactive
helicity12–14. The former having been for many years a
well-known workhorse in the design of RF antennas15–18,
and recently studied in nano and micro-antennas12–14,19.
Therefore, like in RF antenna design one aims to
diminish the reactive power and reactive work to increase
the radiation efficiency, the theory put forward in this
work constitutes a tool to act on the ROM and ILF in
order to optimize a desired radiation pressure in optical
manipulation.
Consequently, here we show that, as such, the ILF and

ROM play an antagonic role with respect to the standard
RLF, so that a strong ILF, and thus a large ROM storage,
amounts to a loss of radiative force, RLF, and vice-versa.
This makes the ROM and ILF indirectly observable.
It is somewhat striking that having existed for decades

the complex Poynting theorem and its consequent reac-
tive quantities: the IPM, reactive work, and reactive
energy; to our knowledge, the complex Maxwell stress
tensor theorem, and the reactive entities it conveys, had
not been established. This might be due to the practical
difficulties involved in optical manipulation. However the
fast advances and present maturity of the optical handling
of matter, now warrant their formulation.
In our view, this novel scenario completes an inter-

pretative panorama of forces in the science of light and
classical electrodynamics, e.g., in the design of particles
and of structured beam illumination that, as done with
their radiative power and emitted field helicity12,20, the
efficiency of the time-averaged force, i.e., of the RLF
acting on them, be optimized by either enhancing or
weakening it.

The outline of this paper is as follows:
First, we establish the complex stress tensor theorem

in an embedding vacuum or air; defining the ILF, IMST,
and ROM for general time-dependent light fields,
and discussing their respective physical meaning. Then
we address these concepts for time-harmonic (or
monochromatic) wavefields to which the rest of this
work is devoted.
Secondly, we shall characterize the IMST flow in terms

of the magnetic and electric spin momenta of the total
(i.e., incident plus scattered) field, which we introduce
from first Lagrangian principles. We then express the
ILF by what we put forward as the reactive strength of
Poynting momentum, obtained from the electric and
magnetic spin and orbital momenta, while we show that
the RLF may be written as the sum of the imaginary
spin and orbital momenta. We also establish the ima-
ginary field (i.e., Poynting) momentum representation
with sources in terms of the reactive orbital and spin
momenta12.
After demonstrating the near-field nature of the IMST,

we consider the extensively studied case of a dipolar
particle, deriving the alternating imaginary momentum
flow IMST across the surface of a surrounding sphere in
the near-field, along with the ROM and ILF; showing
that, in contrast with the field (i.e., Poynting) momentum
flow RMST, and the RLF, these quantities depend on the
sphere radius.
Examples are given, comparing numerical results and

theory, for three dipolar archetypical particles: a low-
index dielectric, a high-index magnetoelectric one, and a
plasmonic sphere. It is also shown that an heuristic direct
derivation of the ILF, analogous to that employed in ref. 5

for the RLF, works well for low index dielectric particles,
but not for resonant ones, which first require the use of
the above-mentioned IMST calculation.
Finally, a recapitulation of the CMST and the reactive

force is given when one considers a homogeneous, linear,
isotropic dielectric as the embedding medium; establish-
ing the time-dependent CMST theorem, reactive force,
and ROM according to whether one chooses a complex
value generalization of the Minkowski or Abraham field
momentum. Demonstrating that in the case of time-
harmonic waves, the reactive force, like the time-averaged
force, is independent of the choice of a Minkowski or an
Abraham complex Poynting momentum.

Time-dependent fields: The complex Maxwell
stress tensor theorem. The imaginary stress tensor
and the reactive strength of orbital momentum
In our study, we use Gaussian units and assume a

homogeneous medium with relative permittivity and
permeability: ϵ= μ= 1, (i.e., vacuum), embedding the
illuminated body. A convenient way to frame the

Nieto-Vesperinas and Xu Light: Science & Applications          (2022) 11:297 Page 2 of 21



following theory is to start with analytic signals21,22 as
done with the complex Poynting theorem23,24. These are
~Eðr; τÞ, ~Hðr; τÞ and ~J ðr; τÞ, associated to the real vectors
~Eðr; tÞ, ~Hðr; tÞ and~Jðr; tÞ which are analytically continued
into the lower half complex plane τ= t− is. Generically
denoting each of these analytic functions as ~Vðr; t; sÞ, they
are expressed by the Fourier integral21,22:

~Vðr; t; sÞ � ~Vðr; τÞ ¼
Z 1

0
dω expð�iωτÞ~Vωðr;ωÞ

ð1Þ

~Vωðr;ωÞ being the ω-Fourier spectrum of the real
function ~Vðr; tÞ which generically denotes either ~Eðr; tÞ,
~Bðr; tÞ or ~Jðr; tÞ. Then, (1) allows us to write the Hilbert
transformation:

~Vðr; t; sÞ � ~Vðr; τÞ ¼ i
2π

R1
�1 dt0

~Vðr;t0Þ
t0�τ

¼ ~Vðr; tÞ � CsðtÞ; CsðtÞ ¼ �i
2πðt�isÞ ¼ 1

2π
s�it
t2þs2

ð2Þ

Where the symbol * denotes convolution. Hence ~Vðr; t; sÞ
is obtained by time-averaging the physical function ~Vðr; tÞ
over the low pass Cauchy filter Cs(t)=− i/[2π(t− is)],
whose real and imaginary parts, (being a Kramers-Krőnig
pair), are a Lorentzian of width Δt= 2s and an odd
function resulting from the product of this Lorentzian
by−t/s. Hence 2s constitutes the minimum time interval
with which the quantity ~Vðr; t; sÞ can be resolved, and Δt is
a time resolution scale for the analytic signals ~Vðr; τÞ
associated to the real quantities ~Vðr; tÞ23,24. In antenna
and circuit theory, s is known as reactive time, (measured
in second reactive, sr)23,24.
Introducing the complex derivatives:

∂τ ¼
1
2
ð∂t þ i∂sÞ ∂�τ ¼

1
2
ð∂t � i∂sÞ ð3Þ

∂τ~V� ¼ ∂t~V� ¼ i∂s~V�; ∂�τ
~V ¼ ∂t~V ¼ �i∂s~V ð4Þ

the Maxwell equations: ∇ �~E ¼ 4πρ, ∇ � ~H ¼ 0, ∇ ´~E ¼
�ð1=cÞ∂t~H and ∇ ´~H ¼ ð1=cÞ∂t~Hþ ð4π=cÞ~J, yield for the
analytic signals associated to the fields:

∇ �~E ¼ 4πρ; ∇ � ~H ¼ 0; ∇ ´~E ¼ � 1
c ∂

�
τ
~H;

∇ ´ ~H ¼ 1
c ∂

�
τ
~E þ 4π

c
~J

ð5Þ

In the Hilbert space of analytic signals we now intro-
duce the complex Lorentz force ~F on a system, sur-
rounded by vacuum, with densities of charge ρ and
current ~J occupying a volume V0 contained in V. This
force ~F should be identified with the complex source in

the conservation of complex linear mechanical
momentum Pmech ; viz.

~Fðr; t; sÞ � ∂tPmech ðr; t; sÞ ¼ 1
2

Z
V
d3r ρ�~E þ 1

c
~J � ´~B

� �

ð6Þ

Which substituting ρ* and ~J through the Maxwell
equations (5), leads to

~Fðr; s; tÞ � ∂tPmech ¼ 1
8π

R
V d3r ~Eð∇ �~E�Þ

h

þ~B�ð∇ �~BÞ �~B ´ ð∇ ´~B�Þ � 1
c ð∂τ~E

�Þ ´~B
i

ð7Þ

We now recall (3) and (4) using the identities: ∂τ~E� ¼ ∂t~E�

and ∂�τ
~B ¼ ∂t~B. Then, ð∂τ~E�Þ ´~B ¼ ∂tð~E� ´~BÞ �

~E� ´ ð∂t~BÞ ¼ ∂tð~E� ´~BÞ �~E� ´ ð∂�τ~BÞ. Therefore using the
third equation (5) we obtain:

~Fðr; s; tÞ � ∂tPmech ¼ 1
8π

R
V d3r ~Eð∇ �~E�Þ þ~B�ð∇ �~BÞ

h

�~B ´ ð∇ ´~B�Þ �~E� ´ ð∇ ´~EÞ� 1
c ∂tð~E

� ´~BÞ
i

ð8Þ

Now, the scaled complex Poynting momentum is:
~Gðr; t; sÞ ¼ ð1=c2Þ~Sðr; t; sÞ ¼ ð1=8πcÞ½~Eðr; t; sÞ ´~B�ðr; t; sÞ�.
Therefore, operating on the analytic signals in the four
first terms of the integrand of (8), and from the identity:
a� ´ ð∇ ´ aÞ ¼ a�j ∂iaj � a�j ∂jai, (I, j= 1, 2, 3), we finally
obtain for the complex Lorentz force the following
conservation equation of the scaled complex linear
momentum

F iðr; s; tÞ � ∂tPmech i ¼ �
Z

V
d3r ∂tG�

i þ
Z

∂V
d2rT ij nj

þ i
8π

Z
V
d3rIm½B�

j ∂iBj � E�
j ∂iEj�

ð9Þ

Where Im denotes imaginary part, nj is the jth Cartesian
component of the unit outward normal to the surface ∂V
of V, and the scaled CMST is

T ij ðr; s; tÞ ¼
1
8π

EiE�
j þ B�

i Bj �
1
2
δij ðjEj2 þ jBj2Þ

� �

ð10Þ

There is a remarkable appearence in (9) of the orbital
(or canonical) momentum densities due to the electric
and magnetic fields, [in this connection, we remark
that after Belinfante, the terms orbital25 and canoni-
cal26 are indistinctly employed for ~PO

e , ~PO
m, and
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~PO ¼ ð1=2Þð~PO
e þ ~PO

mÞ
12,27–35]]:

ðPO
e Þi ðr; s; tÞ ¼ 1

8πω Im½E�
j ∂iE j�;

ðPO
mÞi ðr; s; tÞ ¼ 1

8πω Im½B�
j ∂iBj�; ðω ¼ kcÞ

ð11Þ

With which the conservation law (9) reads

∂t ½Pmech i þ
Z

V
d3r G�

i � ¼
Z

∂V
d2r T ij nj

þ iω
Z

V
d3r½~PO

m � ~PO
e �i

ð12Þ

Equation (12) is one of the main results of this work. Its
real and imaginary parts are

F R
i ðr; t; sÞ � ∂tP

R
mech i ¼ �

Z
V
d3r ∂t GR

i þ
Z

∂V
d2rT R

ij nj

ð13Þ

T R
ij ¼

1
8π

Re EiE�
j þ B�

i Bj �
1
2
δij ðjEj2 þ jBj2Þ

� �

ð14Þ

and

F I
i ðr; t; sÞ � ∂tPI

mech i ¼
Z

V
d3r ∂t GI

i þ
Z

∂V
d2r T I

ijnj

þω

Z
V
d3r ½~PO

m � ~PO
e �i

ð15Þ

with the scaled imaginary, or reactive, Maxwell stress
tensor (IMST) T I

ij:

T I
ijðr; t; sÞ ¼

1
8π

Im½EiE�
j þ B�

i Bj� ð16Þ

The superscripts R and I denote real and imaginary
parts. It should be reminded that, although only
explicitely written in the extreme left, all quantities in
the above equations are functions of r, t and s.
However, since there are no s-derivatives in (12)–(15),
they also hold in the limit s→ 0 and have physical
meaning even if they are not scaled, then becoming
instantaneous ones. This is in contrast with the energy
in the complex Poynting vector theorem23. While the
reactive power is determined in volt-ampere reactive
(var), we note that the ILF is measured in newtons.
Thus when s→ 0 Eq. (14) becomes the familiar time-
dependent conservation equation, in terms of analytic
signals, for the time variation of instantaneous linear
momentum PR

mech ðr; tÞ.

Nonetheless, the novel Eq. (15) represents a quite dif-
ferent process: the interaction wave-object yields a change
of an additional scaled linear momentum PI

mech ðr; t; sÞ,
giving rise to an imaginary Lorentz force (ILF) ~F Iðr; t; sÞ
on the body to which a time change of reactive momen-
tum of the field is substracted, irrespective of whether or
not the incident wave possess it (like e.g., an evanescent or
a two-wave interference field); so that even if the incident
wave has no IPM, like propagating plane waves and
beams, it arises in the scattering process. We shall insist
on this below.
The ILF also stems from the flux, given by T I

ij, into the
volume V that surrounds the object, of ω

R
V d3r ½~PO

m � ~PO
e �

given by the difference between the magnetic and electric
orbital (or canonical) momenta (11) of the field, and that
we define as the reactive strength of orbital (or canonical)
momentum (ROM) stored in V. (We wish to remark the
difference of the ROM concept with that of reactive orbital
momentum that we introduced in ref. 12, Eq. (26), as the
difference between the imaginary parts of the magnetic and
electric orbital momenta, to be seen later on).
Since Eq. (13) also holds for s → 0, it rules instanta-

neous quantities too. Then, as we shall show below,R
∂V d2r T I

ijnj for monochromatic fields is associated to
an alternating flux of ROM, flowing from the body and
returning to it.
For these reasons, we call ~F I the reactive force on the

object of volume V0. These quantities, and ~F I in parti-
cular, have zero time-average, (like the reactive Poynting
vector associated to the alternating flow of reactive power),
in contrast with the active force ~FR which constitutes the
time-averaged force sensed by the object, and observed in
most experimental observations. Like in circuit the-
ory23,36,37, as s diminishes there is an increase of modes of
the standing flow going back and forth from V0, which
corresponds to the ROM. The size s of the Cauchy filter
Cs(t) in (2), goes from t=∞ to t=minimum time scale23

which in our case is 0, at which no more modes linked to
the bouncing flow associated to the IMST, appear.
The arise of the canonical momenta in the IMST law

(15), defining the ROM, is quite illuminating since it
highlights the prominent role of these canonical
momenta, (rather than of the Poynting momentum) in the
generation of optical forces12,28,31,38. This will further be
discussed below.
Therefore we have obtained in (15) a fundamental law for

the instantaneous (s→ 0) — and also for the scaled s ≠ 0 —
force that confers another physical property to the IPM,~GI ,
in the realm of momentum conservation in light-matter
interactions, which transcends that previously found in
connection with self-forces on magnetoelectric parti-
cles12,38,39, assigned to specific illuminating fields, like e.g.,
evanescent, standing, and cylindrical vector beams28,29,40.
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This exchange of imaginary momentum produces
the reactive flow IMST and ILF, (therefore it should
be instantaneously observed with a time-varying inci-
dent field, like e.g., an ultrashort pulse), which gives
rise to an accretion of reactive strengtht of canonical
momentum, ROM, around the body. As such, this ROM
is not associated to the scattered field radiated into the
far-zone, i.e., to the “radiated” RMST, but to reactive
power, and thus it remains inside and in the near-field
of the object volume V0. In this regard, we remark that
this field imaginary momentum exchange is opposite to
that of field (i.e., Poynting) time-averaged momentum,
thus substracting, rather than adding, to the variation
of imaginary linear momentum. This means that
although the light wave loses field momentum ~GR on
interaction, it may gain reactive field momentum ~GI ,
even when it does not exist in the illuminating field.

This is the case of e.g., an incident plane wave, dis-
cussed later on.
As a consequence, we may expect the ROM, and thus

the flow related to the IMST and ILF, to severely affect
the flow given by the RMST into the far-zone, namely,
the standard time-averaged electromagnetic optical
force, RLF, sensed by the body. The ILF is, as seen in the
next sections, characterized by the total ROM stored in
and out the particle, and its flow; in analogy with the
imaginary work in terms of the reactive energy in and
around the particle and its flow: the reactive momen-
tum IPM12.
In this context, while the time-averaged force, i.e., the

RLF, is the flow whose density is the RMST “radiated”
into the far zone, the reactive force, ILF, is the stored
ROM inside and in the near-field due to the flow IMST.
Thus the complex flow, CMST, into the far and near
zones constitutes a novel way of understanding the
significance of both the standard RLF as well as
the ILF. Hence the stored ROM will constitute a hin-
drance to the time-averaged force, RLF, sensed by
the particle. As we shall see, the external stored
ROM is due to the interference of the incident and
scattered fields.
Figure 1 that we shall address at the end of next section

depicts this process for monochromatic fields for which it
is more easily illustrated. Let us see next the CMST for
these fields.

Time-harmonic fields. The imaginary Maxwell
stress tensor and the reactive force in the space-
frequency domain
Complex stress tensor and reactive strength of orbital
momentum
For the spatial parts of time-harmonic fields whose

analytic signals are ~Eðr; τÞ ¼ EðrÞ expð�iωtÞ, ~Bðr; τÞ ¼
BðrÞ expð�iωtÞ and ~J ðr; τÞ ¼ JðrÞ expð�iωtÞ, (τ= t),
(ω= kc), Eq. (12) becomes

F i ¼
Z

∂V
d2r Tij nj þ iω

Z
V
d3r ðPO

m � PO
e Þi ð17Þ

which is the complex Maxwell stress tensor theorem in the
space-frequency domain; the CMST being

Tij ¼
1
8π

EiE
�
j þ B�

i Bj �
1
2
δij ðjEj2 þ jBj2Þ

� �
ð18Þ

With the electric and magnetic canonical momentum
densities:

ðPO
e Þi ¼

1
8πω

Im½E�
j ∂iEj�; ðPO

mÞi ¼
1

8πω
Im½B�

j ∂iBj�

ð19Þ

E
B

k

RLF

ILF

Reactive IMST
momentum flow

Radiated RMST
momentum flow

Stored
external
ROM

+-Near
field

Far field

x

y
z

Incident illumination

Fig. 1 Outline of the physical process, (the near-field region is
enlarged and the radiative area has been shrunk to ease
reading). When an electromagnetic wave, (for example a
monochromatic plane wave, as illustrated here), impinges on a body,
charges are separated, thus inducing multipoles. The object feels a
time-averaged Lorentz force, RLF, associated to the field (i.e.,
Poynting) momentum flux, RMST, flowing into a far-field surface, (e.g.,
spherical as shown). However, there also appears a flow, IMST, of
imaginary field momentum, related to momentum flux going back
and forth across a near-field surface, with zero time-average, which
accumulates reactive strength of orbital momentum, ROM, stored
both inside and in the near-field of the object, yielding a reactive
force, ILF, on the body
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The real part of (17) is the well-known conservation law
of linear momentum for monochromatic fields6:

< dPmech
dt > � <F i> � RefF ig

� 1
2

Z
V
Re ρ�EðrÞ þ J�

c
´BðrÞ

� �
i
d3r ¼

Z
∂V
d2r <Tij>nj ;

<Tij> ¼ TR
ij ¼ 1

8π RefEiE�
j þ B�

i Bj � 1
2 δij ðjEj

2 þ jBj2Þg

ð20Þ

which expresses the total time-averaged electromagnetic
optical force, < F > , on the system of charges and currents
of the object of volume V0 contained in the integration
volume V.
On the other hand, the imaginary part of (17) reads:

F I
i � 1

2

Z
V
Im ρ�EðrÞ þ J�

c
´BðrÞ

� �
i

d3r

¼
Z

∂V
d2r TI

ijðrÞnj þ ω

Z
V
d3r ðPO

m � PO
e Þi

ð21Þ

From (18) the imaginary, or reactive, Maxwell stress
tensor (IMST) is:

TI
ij ¼

1
8π

ImfEiE
�
j þ B�

i Bjg ð22Þ

The first term of the right side of Eq. (21) expresses TI
ij as

the flow density IMST into V across its surface ∂V.
Because of this, TI

ij is a reactive quantity. Furthermore, as
stated above, the second term is the ROM stored in V,
namely in and around the body volume V0. Then, the
reactive Lorentz force (ILF), ~F I , is the here uncovered
optical force, acting on the object, related to the
alternating instantaneous one, as a result of the inward
flow IMST TI

ij and accretion of reactive strength of orbital
momentum, ω

R
Vd

3r ðPO
m � PO

e Þ, in and around the object
volume V0.
Analogously, while Eq. (20) yields the time-averaged opti-

cal torque < Γ > on the object, of lever arm r: r ´ ~FR41–43,
Eq. (21) leads to the reactive torque: ΞI ¼ r ´ ~F I

, [see
Appendix A of the Supp. Mat.].

The instantaneous Maxwell stress tensor
At this point it is convenient to introduce the

instantaneous Maxwell stress tensor, that gives rise to
the alternating instantaneous ILF, built by the fields
~Eðr; tÞ ¼ Ref~Eðr; tÞg and ~Bðr; tÞ ¼ Ref~Bðr; tÞg. Like for
other instantaneous time-harmonic quantities12,44,45,

it is immediate to obtain:

Tijðr; tÞ ¼ 1
4π Eiðr; tÞEjðr; tÞ þBiðr; tÞBjðr; tÞ
�

� 1
2 δij½E

2ðr; tÞ þB2ðr; tÞ�
	

¼ <TijðrÞ>þ 1
8πRe EiðrÞEjðrÞ þ BiðrÞBjðrÞ


�
� 1

2 δij½EðrÞ � EðrÞ þ BðrÞ � BðrÞ� expð�2iωtÞ
	

However by a simple calculation we gain insight
expressing it as:

Tijðr; tÞ ¼ <TijðrÞ> ð1þ cos 2ωtÞ þ TI
ijðrÞ sin 2ωt

þ 1
4π ER

i ðrÞEI
j ðrÞ þ BI

i ðrÞBR
j ðrÞ

n

� 1
2 δij½E

RðrÞ � EIðrÞ þ BIðrÞ � BRðrÞ�
	
sin 2ωt

� 1
4π EI

i ðrÞEI
j ðrÞ þ BI

i ðrÞBI
j ðrÞ

n
� 1

2 δij½E
IðrÞ � EIðrÞ þ BIðrÞ � BIðrÞ�

	
cos 2ωt

ð23Þ

While the term with <Tij(r)> does not change sign with
time, as expected from the instantaneous MST part
associated with the time-averaged flow of momentum,
the term containing the reactive Maxwell stress tensor,
TI

ijðrÞ, alternates its sign at frequency 2ω following the
variation of sin 2ωt. This is in accordance with the
interpretation of the imaginary part of (17) being
related to the ROM flux, i.e., the IMST, going back and
forth from the object volume V0 with zero time-
average. (Note that the Fourier decomposition (1) into
time-harmonic components shows this zero time-
average of the ROM flow also for general time-
varying fields). In addition, there is an alternating
generally non-zero contribution to this instantaneous
flow Tijðr; tÞ in the terms within the curly brackets of
(23). Obviously only the <Tij(r)> term remains on time-
averaging in (23).

The external reactive strength of orbital momentum
One may obtain additional discernment on the role

played by the terms of the conservation law (21). Let us
take the volume V to be V∞ of a large sphere of radius r
such that kr → ∞. The flow IMST across its surface ∂V∞ is
zero since the CMST is real in the far zone38, (this may
also be easily seen considering the far zone expression of
the scattered fields. Then only the diagonal elements of
the CMST contribute to the Lorentz force and, as such,
this reduces to a real quantity; namely, only <~F> is
obtained in this region). Then in the volume V0 of the
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scattering body within V we have

~F I � 1
2

Z
V 0

Im ρ�EðrÞ þ J�

c
´BðrÞ

� �
d3r

¼ ω

Z
V1

d3r ðPO
m � PO

e Þ
ð24Þ

Equation (24) shows that the ILF, i.e., the source term in
the left side of (21), is given by the overall ROM. In
addition, introducing (24) into (21), we obtain

Z
∂V
d2r TI

ijnj ¼ ω

Z
V1�V

d3r ðPO
m � PO

e Þi ð25Þ

Equation (25) is important because it illustrates that the
part of the ILF due to the flow IMST into the volume V
surrounding the body volume V0, is given by the total
outside ROM stored between V∞ and V. In particular, V
may approach the source volume V0. We also see from
(25) that in the far-field (FF) region: POFF

m ¼ POFF
e since

the right side of (25) is zero as V approaches V∞.
Now we are in position to have the overall perspective

of the CMST theorem in both the far-field and near-field
regions, and to understand how the flow IMST builds up
the ROM inside and outside the particle, with the ILF
being generated. Figure 1 illustrates the process. It should
be recalled that the illuminated object behaves like an
antenna, so that the interaction also conveys a reactive
work on the charges, building-up reactive power which
hinders the efficiency of radiated scattered energy1,12,19.
As we shall see in the section on dipolar objects, the ILF
and stored ROM (which are the dynamical analogues of
the reactive work and reactive power, respectively)
counteract against the RLF, (i.e., the dynamical analogue
of the radiated energy). In consequence, a large ROM, and
hence a strong ILF, conveys a decrease of "radiative"
RMST, i.e., of RLF. Conversely, low ROM and ILF are
linked to a larger RLF.

The canonical and spin momenta and the complex
Lorentz force
In this section, we establish a connection of the real and

imaginary parts of the canonical and spin momenta and of
the complex Lorentz force introduced above.

The imaginary Lorentz force and the spin momenta. The
reactive strength of Poynting momentum. Implications for
the reactive Maxwell stress tensor
The ILF ~F I may be expressed by writing the flow IMST

in terms of the real electric and magnetic spin (i.e.,
Belinfante) momenta, which is of conceptual interest.
This is obtained using the identity: a� ´ ð∇ ´ aÞ ¼ a�j ∂iaj �
a�j ∂jai, from which we have: Imf�a� ´ ð∇ ´ aÞ þ að∇ �
a�Þg ¼ Imf∂jðaia�j Þ � a�j ∂iajg. On the other hand, since

the Levi-Civita tensor holds: ϵijkϵklm= δilδjm− δimδjl, we
have ð1=2Þ∇ ´ Imfa� ´ ag ¼ Imf∂jða�i ajÞg.
Hence, using the above identity, we may write these spin

momentum densities12,28 as:

PS
e ¼ 1

16πω∇ ´ ImfE� ´Eg ¼ 1
8πω Imf∂jðE�

i EjÞg;
PS
m ¼ 1

16πω∇ ´ ImfB� ´Bg ¼ 1
8πω Imf∂jðB�

i BjÞg
ð26Þ

Therefore the ILF, Eq. (21), reads

F I
i ¼ 1

8π

Z
V
Im Eð∇ � E�Þ þ B�ð∇ � BÞ � E� ´ ð∇ ´EÞ½

�B ´ ð∇ ´B�Þ�i d3r ¼ 1
8π

Z
V
Im �∂jðE�

i EjÞ



� E�
j ∂iEj þ ∂jðB�

i B
�
j Þ þ B�

j ∂iBj

i
d3r

ð27Þ

which finally becomes

~F I ¼ ω

Z
V
d3r½ðPS

m � PS
e Þ þ ðPO

m � PO
e Þ� ð28Þ

Equation (28), which is other of the main results of this
work, provides a physical meaning of the ILF in terms of
the spin and orbital momenta as a reactive strength of
Poynting momentum whose density is : ω½ðPO

m þ PS
mÞ �

ðPO
e þ PS

e Þ�. And
Z

∂V
d2r TI

ijnj ¼ ω

Z
V
d3rðPS

m � PS
e Þi

or : ∇j � TI
ij ¼ ωðPS

m � PS
e Þi

ð29Þ

I.e. the reactive strength, of spin momentum (RSM),
ω
R
Vd

3rðPS
m � PS

e Þ, in V is equivalent to the incoming flow
IMST across ∂V.
In addition, from Eqs. (25) and (29) we have:

Z
V
d3r ðPS

m � PS
e Þ ¼

Z
V1�V

d3r ðPO
m � PO

e Þ ð30Þ

And thus we obtain that as V approaches V∞, one has that

Z
V1

d3r ðPS
m � PS

e Þ ¼ 0 ð31Þ

We emphasize that when the emitter of volume V0 ⊆ V is
a scatterer, the above equations hold for the total field
given by the sum of the incident and scattered fields.
Equation (30) is an important novel balance law for the

formation of RSM in a finite volume V that contains the
body volume V0, as it equals the accumulation of ROM in
the whole space outside V, and so it builds the ILF. In
particular, it holds when V→V0. On the other hand, as
regards (31) we shall later show that the overall spin
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momentum of the field emitted, or scattered, by a dipolar
particle is zero.
In particular, in free space and for surface waves, one

knows that
R
V1

d3r PS ¼ ð1=2Þ
R
V1

d3r ðPS
m þ PS

e Þ ¼ 028,30,
therefore (31) will imply that in the whole space V∞ the
overall electric and magnetic spin momenta of a free-field
are zero, and thus according to (30) this amounts to V= 0.
This is compatible with the evidence that in this case, no
scattering object is present.

The time-averaged Poynting momentum with sources and
the imaginary Lorentz force
At this point, we must remark the compatibility of the

ILF, Eq. (28), with the formulation of the (real) Poynting
momentum with sources.
Let us, first, employ the third Maxwell equation to

eliminate B in the definition of the time-averaged Poynting
momentum <g> ¼ <S>=c2 ¼ ð1=8πcÞRefE ´B�g:

<g> ¼ PS
e þ PO

e þ 1
8πω ImfEð∇ � E�Þg

¼ PS
e þ PO

e þ 1
2ω Imfρ�Eg

ð32Þ

Correspondingly, by eliminating E in the definition
of < g > , we obtain in terms of the magnetic momenta:

<g> ¼ � 1
2cω ImfJ� ´Bg þ PS

m þ PO
m

þ 1
8πω ImfBð∇ � B�Þg

¼ PS
m þ PO

m � 1
2cω ImfJ� ´Bg

ð33Þ

Adding (32) and (33) we get an expression for the time-
averaged field momentum valid in a space which is not
source-free, but that contains charge and current dis-
tributions:

<g> ¼ PS þ PO þ 1
4ω

Im ρ�E� 1
c
J� ´B

� �
ð34Þ

where we have employed the (real, i.e., time-averaged)
canonical and spin momenta12,28,30:

PO ¼ 1
2
ðPO

e þ PO
mÞ; PS ¼ 1

2
ðPS

e þ PS
mÞ ð35Þ

In free-space (34) turns into the well-known decomposi-
tion of <g> as the sum of the spin and canonical
momentum densities. In Appendix B of Supp. Mat. we
show the derivation of (32) and (33) from first Lagrangian
principles.
Note the compatibility of (28) with (32) and (33), since

substracting (32) from (33), and integrating in V, we
immediately obtain (28).

The imaginary field momentum with sources: The reactive
orbital and spin momenta. The time-averaged force
The above time-averaged spin and canonical momenta

are the real parts of complex canonical and spin
momenta12,28: ~P

O ¼ PO þ iPOI and ~P
S ¼ PS þ iPSI .

The imaginary parts, PO I and PS I, play an important
role complementary to that of the above real parts,
namely in the time-averaged force. To see it, we now
proceed with the reactive Poynting momentum gI ¼
ð1=8πcÞImfE ´B�g in a way analogous to that leading to
Eqs. (32) and (33). It is straightforward to obtain:

ðgIÞi ¼ 1
8πω f�Re½∂jðE�

i EjÞ� þ 1
2 δij∂jjEj

2g
þ 1

2ωRefρ�Egi
ð36Þ

and

ðgIÞi ¼ 1
8πω fRe½∂jðB

�
i BjÞ� � 1

2 δij∂jjBj
2g

� 1
2ωRef1c J

� ´Bgi: ði; j ¼ 1; 2; 3Þ
ð37Þ

Substracting (36) from (37), we obtain the well-known
time-averaged force density, [cf. Eq. (20)],

1
2 Refρ�ðEÞi þ 1

c ðJ
� ´BÞig ¼ 1

8π ∂jReðEiE�
j þ B�

i BjÞ
n

� 1
2 δij∂jðjEj

2 þ jBj2Þ
	
ð38Þ

On the other hand, adding (36) and (37), we derive a
representation for the reactive Poynting momentum
density:

ðgIÞi ¼ 1
8πω ∂jf12 ReðB

�
i Bj � EiE�

j Þ � 1
4 δijðjBj

2 � jEj2Þg
þ 1

4ωRefρ�E� 1
c J

� ´Bgi
ð39Þ

We now introduce the imaginary spin curl and orbital
momenta, viz.:

ðPSI
e Þi ¼ 1

8πωRef∂jðE
�
i EjÞg;

ðPSI
mÞi ¼ 1

8πωRef∂jðB
�
i BjÞg;

ðPOI
e Þi ¼ � 1

8πω ∂j
1
2 δijjEj

2 ¼ � 1
8πω

1
2 ∂ijEj

2;

ðPOI
m Þi ¼ � 1

8πω
1
2 ∂ijBj

2

ð40Þ

We emphasize that the definition of the spin momenta as
∂j(⋅) in (40) [cf. also (26)] is useful as it permits a direct
introduction of the CMST, as well as of the complex spin
momenta, whose imaginary parts yield:

PSI ¼ 1
2
ðPS I

e þ PS I
m Þ ; POI ¼ 1

2
ðPO I

e þ PO I
m Þ ð41Þ
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and the reactive spin and orbital momenta12:

~PS ¼ 1
2
ðPS I

m � PS I
e Þ; ~PO ¼ 1

2
ðPO I

m � PO I
e Þ ð42Þ

So that the imaginary spin and orbital momenta
introduced in Eqs. (40) and (41) permit us to write the
time-averaged force, (38), as

<~F> ¼ 2ω
Z

V
d3r ðPSI þ POIÞ ð43Þ

which is the desired representation of the RLF in terms of
the imaginary momenta. While the imaginary Poynting
momentum, (39), reads

gI ¼ ~PS þ ~PO þ 1
4kc

Refρ�E� 1
c
J� ´Bg ð44Þ

Equation (44) is the representation of gI through the
reactive spin and orbital momenta in presence of sources;
while (43) and (28) formulate the real and imaginary
Lorentz forces in terms of the respective imaginary and
real parts of the spin and canonical momenta. These
momenta are therewith shown to be the ultimate dynamic
quantities that characterize the complex optical force. We
shall later make use of the fact that in a scattering
configuration they correspond to the total fields; namely,
incident plus scattered.

Example 1: Evanescent wave
Let us consider the monochromatic reactive wavefield

consisting of the evanescent wave created by total internal
reflection at a plane interface z= 0 separating air in z ≥ 0
from a dielectric in the half-space z < 0. The plane of
incidence being OXZ. The complex spatial parts of the
electric and magnetic vectors in z ≥ 0, are expressed in a
Cartesian coordinate basis fx̂; ŷ; ẑg as12,46:

E ¼ � iq
k T k;T?;

K
k Tk

� �
expðiKx� qzÞ;

B ¼ � iq
k T?;�Tk;

K
k T?

� �
expðiKx� qzÞ

ð45Þ

For TE or s (TM or p) - polarization, i.e., E (B)
perpendicular to the plane of incidence OXZ, only those
components with the transmission coefficient T⊥, (T∥) are
chosen. K denotes the component, parallel to the inter-
face, of the wavevector k= (K, 0, iq), q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 � k2

p
.

The densities of energy, w=we+wm, reactive power,
wreact= 2ω(wm−we), Poynting momentum, spin, and
canonical momentum of this wave in Z ≥ 0 are straight-
forwardly obtained from (45) and well-known12,28.
Since in this case12 PS I=−PO I, the global time-averaged

force density in z ≥ 0 due to the evanescent wave is, fol-
lowing (43), equal to zero. This is to be expected since no
body exists in z ≥ 0; and such a force <~F>, Eq. (43), with V

being the source-free space z ≥ 0, is [cf. Eq. (38)] also equal
to the flow RMST on the surface ∂V. Since this flow is the
same whatever the contour surrounding the sources is, we
can take ∂V in the far-zone, (kz→∞), at which the eva-
nescent wave is zero, and thus it does not contribute to
this flux.
Furthermore, note that the evanescent wave CMST

divergence is

∇ � Tij ¼ ∂jT ij ¼ ∂zT i3 ¼ ½i Kq2

4πk2
ðjT kj2 � jT?j2Þ; 0; 0�e�2qz

¼ �i Kω ðwreact ; 0; 0Þ
ð46Þ

The extreme right of (46) has been written in terms of
wreact

12. The real part of (46) is zero, in agreement with
the above statement. Nevertheless, the imaginary part is

∇ � TI
ij ¼ ∂zT

I
i3 ¼ ωðPS

m � PS
e Þ ¼ �K

ω
ðwreact; 0; 0Þ

ð47Þ

which is associated [cf. Eq. (23)] to a back-and-forth flow
of momentum in the x-direction of propagation of the
evanescent wave, without any net transfer of momentum
to any body in z ≥ 0. Besides, we know12 that

�K
ω
ðwreact; 0; 0Þ ¼ �ωðPO

m � PO
e Þ ð48Þ

Hence, replacing the first term of the right side of Eq. (21)
by (47) and (48), we get for the reactive force density:
1
2 Im½ρ�EðrÞ þ J�

c ´BðrÞ�i ¼ 0, wich agrees with the absence
of object in z ≥ 0.
In addition, like the canonical momentum, (cf. Eq. (35)

and ref. 12): PO ¼ K
ω ðw ; 0 ; 0Þ, the flow ∇ � TI

ij ¼ ωðPS
m �

PS
e Þ is superluminal, (K > k). However, while PO has

an x-component characterized by the electromagnetic
energy density, w, the flow density ∇ � TI

ij is, according to
(47), governed by the reactive power, wreact, of the
evanescent wave.

Near-field nature of the imaginary stress tensor
As discussed above, (see also Appendix D of Supp.

Mat.), the flow IMST is zero in the far-zone because in
that region only the diagonal part of the CMST con-
tributes to this flow, and hence it is real. Next, we prove
that only evanescent components exist in the flow
IMST, thus showing its near-field nature as a reactive
quantity12.
Using Eq. (29), we use for simplicity a framework

such that the sources are in z < 0, and thus the inte-
gration is done on the z= z0 ≥ 0 plane. The electric field
E(r) propagating into the half-space z ≥ 0 is represented
by its angular spectrum of plane-wave components12.
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Using the subscripts h and e for homogeneous and
evanescent components of complex amplitudes: elec-
tric, e(K), and magnetic, b(K), the integrated IMST
divergence (29) per unit length on z is, (cf. Appendix C
of Supp. Mat.):

ω

Z 1

�1
d2RðPS

m � PS
e Þ

¼ π

Z
K > k

d2K qe expð�2qez0ÞIm b�e zðKÞbe?ðKÞ
�

�e�e zðKÞee?ðKÞ
	

ð49Þ

Where

b?ðKÞ ¼ ðbxðKÞ; byðKÞ; 0Þ; e?ðKÞ ¼ ðexðKÞ; eyðKÞ; 0Þ

Equation (49) shows a contribution from only the
evanescent part of the angular spectrum of the fields
and, as such, this integral is a near-field quantity.
Notice the characteristic exponential z-decay as z= z0
increases, and that the transversal components, E⊥ and
B⊥, contribute to this IMST flux in such a way that
the component of this flow along OZ,

R1
�1 d2RðPS

m �
PS
e Þ � ẑ, is zero, as should be, in the decay direction.

Hence, like the imaginary Poynting momentum12,
although in the near-field and intermediate regions the
IMST contributes locally to the ILF, beyond it conveys
no force.

Reactive forces on an electric and magnetic dipole
The imaginary Maxwell stress tensor and the reactive force
on a magnetoelectric dipolar particle
The flow CMST on a dipole is obtained in Appendix D

of Supp. Mat. Calculations are done in the near-field zone
of the emitter. We remark, however, that unless one
makes the integration surface ∂V, enclosing the dipole, to
strictly shrink into its center point, the flux RMST that
yields the RLF is better obtained in the far-zone as done in
ref. 38, where it also acquires a physical significance as the
“radiated” MST flow, independent of the distance to the
dipole, like the radiated energy12.
The reactive part, the IMST, stems from the near-

field zone of the dipolar fields on the integration surface
∂V, Eq. (21). Hence there is no contribution from the
far-zone. As stated above, the integration of the CMST
in the far -field region is real. We address dipolar par-
ticles in the wide sense 41,43, namely whose polariz-
abilities are defined by the first electric and magnetic
Mie coefficients.
The flow IMST depends on the integration surface,

like the reactive Poynting vector flux12. Introducing

the result of Appendix D (see Supp. Mat.) into Eq. (21),
the reactive force on a small dipolar magnetoelectric
particle is

F I
k ¼ Imf

R
∂V 0

d2r T ðmixÞ
kj njg þ ω

R
V!V 0

d3r ½PO
m � PO

e �k :
ðj; k ¼ 1; 2; 3Þ

ð50Þ

where as seen in Appendix D:

Imf
R
∂V 0

d2r T ðmixÞ
kj njg ¼ Im 1

10 ð1� ikaÞ

�

� 1
30 k

2a2
�
expðikaÞ pj ½∂kE�

j þ ∂jE�
k �

þ 1
3 ð1þ ikaÞ expð�ikaÞ p�j ∂jEk

þ 1
6 ðk

2a2 � ikaÞ expð�ikaÞp�j ð∂kEj � ∂jEkÞ
o

� Im ½ 110 ð1� ikaÞ � 1
30 k

2a2� expðikaÞm�
j ∂kBj

n

þ ∂jBk
�
þ 1

3 ð1þ ikaÞ expð�ikaÞmj∂jB�
k

þ 1
6 ðk

2a2 � ikaÞ expð�ikaÞmjð∂kB�
j � ∂jB�

kÞ
o

ð51Þ
The superscript (i) has been omitted in (51), under-
standing that E, B represent the incident field. Equation
(51) is the flow IMST across the minimum sphere ∂V0,
of radius a, that contains the dipole. If this is a
magnetoelectric spherical particle, ∂V0 is the particle
surface taken from outside. In contrast with the RMST
and time-averaged force, RLF, (see Appendix D), the
flow IMST gives no interference between the induced
electric and magnetic dipolar moments p and m. The
superscript (mix) in Eq. (50) expresses quantities due to
the interference of the incident and scattered fields, (cf.
Appendiz D of Supp.Mat.).
As the exterior volume V tends to V0, the integral of

(50) is :

Z
V 0

d3r ½PO
m � PO

e � ¼
Z

∂V 0

d2r ½PO ðmixÞ
m � PO ðmixÞ

e �

þ
Z

V 0

d3r ½PO ðinÞ
m � PO ðinÞ

e �

ð52Þ

The integral on ∂V0 is due to the contribution of the
external ROM in V− V0 that as V → V0 shrinks into
∂V0. The superscript (in) denotes that the canonical
momenta in (52) are those of the field inside the
sphere. The interference ROM density is: ðPOðmixÞ

e Þi �
ðPOðmixÞ

m Þi ¼ 1
8πω Im½EðiÞ �

j ∂iE
ðsÞ
j þ EðsÞ �

j ∂iE
ðiÞ
j � BðiÞ �

j ∂iB
ðsÞ
j �

BðsÞ �
j ∂iB

ðiÞ
j �. In the next subsection [cf. Eq. (60)] we prove

that for the scattered field one has that the quantity
ω
R
V 0
d3r ½ðPOðsÞ

e Þi � ðPOðsÞ
m Þi� ¼ 1

8π

R
V 0
d3r Im½EðsÞ �

j ∂iE
ðsÞ
j � BðsÞ �

j

∂iB
ðsÞ
j �, which would also appear in the right side

of (52), is zero.
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We next consider the simplified approximation of
Eq. (51), (cf. Appendix D of Supp. Mat.):

Imf
R
∂V 0

d2r T ðmixÞ
kj njg ¼ � 1

10 Im pj ∂kE
�
j þ pj ∂jE

�
k

hn

�mj ∂kB�
j �mj ∂jB�

k

io
; ðj; k ¼ 1; 2; 3Þ

ð53Þ

[If no contribution of the radiative part of the scattered
field E(s) were considered in the interference terms, one
would have an expression like (53) but with a factor 1/15,
rather than 1/10, (see Appendix D)].
Let the electric and magnetic plarizabilities of the object

be αe and αm, so that p= αeE
(i), m= αeB

(i), (body chirality
is outside our aim here), and assume ð1� ikaÞ expðikaÞ ’
1. Equation (53) may then be written as

Imf
R
∂V 0

d2r T ðmixÞ
kj njg ¼ � 1

20 fαIe ∇jEj
2 � αIm ∇jBj2g

þ 4πω
5 fαRe PO

e � αRm PO
mg

� 1
10 ImfαeðE � ∇ÞE� � αmðB � ∇ÞB�g

ð54Þ

The two terms of the third curly bracket of the right
side in (54) come from the effect of the near field
on the particle; as such, they have a resemblance with
those of the time-averaged force on a quasistatic
electric or magnetic dipole: ð1=2ÞRefαeðE � ∇ÞE�g and
ð1=2ÞRefαmðB � ∇ÞB�g47.
We note that the first and second curly brackets in (54),

i.e., the gradient and canonical momentum terms, appear
with the real and imaginary parts of the polarizabilities
interchanged with respect to those of the time-averaged
electric and magnetic forces (cf. Appendix D; see also
ref. 38). Except when particles are strongly resonant, the
imaginary parts of the polarizabilities are a factor k3a3

smaller than the real parts38. Thus the conservative gra-
dient part of the reactive force would appear with a much
smaller weight than its non-conservative component. By
contrast, as we shall illustrate, in resonance such gradient
reactive forces would be the strongest if the particle is not
highly absorbing.
Introducing the Belinfante spin momentum and using the

vector identities for divergenceless fields: Re½ðE � ∇ÞE�� ¼
1
2∇jEj

2 � k Im½E ´B��; Im½ðE � ∇ÞE�� ¼ 1
2∇ ´ ImðE� ´EÞ;

with analogous relations for the B-vector, then the simplified
approximation to the IMST, Eq. (54), may be expressed in
terms of the conservative gradient components, the real and
imaginary field (Poynting) momenta and the canonical

momenta, as

Imf
R
∂V 0

d2r T ðmixÞ
kj njg ¼ � 1

10 fαIe∇jEj
2 � αIm∇jBj

2g
þ 4πω

5 ðαRm � αRe Þ<g> þ ðαIe � αImÞgI
�

þ 2ðαRePO
e � αRmP

O
mÞ

	
ð55Þ

The sign of the gradient component of the IMST depends
on that of the first curly bracket. In the next examples we
shall show that the accretion of ROM in and around the
particle, influences the “radiated” (i.e., time-averaged)
RMST into the far-zone, and hence the RLF.
In Appendix E of Supp. Mat. we heuristically intend, as

an addenda to the above equations, to derive the ILF on an
electric and a magnetic dipole following the procedure
employed in ref. 5 for the RLF. It is intriguing that, for
example on a purely electric dipolar particle hit by a line-
arly polarized plane wave, that ILF is five times the
expression given by Eq. (53) or its equivalent (55). In the
Example 2, below, we shall analyze this latter case, showing
the correctness of the ILF obtained in Appendix E.
However, the ILF on a purely magnetic dipolar particle

obtained in Appendix E presents a sign opposite to that
of Eq. (53). In fact, the polarization current density holds:
∇ � ~J ¼ ∇ � d~P=dt (see e.g.,48, Section 14.2.2), and thus
one may add to the relationship: ~J ¼ d~P=dt any term
∇ ´ ~M. Hence, given the lack of experimental evidence
yet, we have an indeterminacy of such a term. Further
research may clarify whether this ambiguity causes the
failure of the equations of Appendix E to describe the
reactive force on resonant dipolar particles, (see Exam-
ples 4 and 5 below); while the term ∇ ´ ~M, if relevant,
appears to be zero for non-resonant dipoles, as seen in
Example 2. Hence, taking into account that the complex
Maxwell stress tensor theorem and its consequences is an
unexplored territory, the formulation of Appendix E on
dipolar particles deserves further experimental and the-
oretical research.

Further physical consequences. The overall spin
momentum. The interior and external reactive strength of
orbital momentum
As stated in Appendix D of the Sup. Mat., the far-zone

flow IMST on a dipole, is zero term by term since only the
diagonal elements of the CMST, which are real, con-
tribute to it, yielding the time-averaged force, (see also
ref. 38). So we infer that, in addition to (31), we haveZ

V1

d3r PS
m ¼

Z
V1

d3r PS
e ¼ 0 ð56Þ

Equation (56) states the vanishing of the overall electric
and magnetic spin momenta of the total field, (i.e.,
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incident plus scattered) from a dipole. It includes the
object volume V0 of charges and currents. This is a
generalization of a previous result28 for the spin
momentum of a free field or of an evanescent wave28.
As seen from Appendix D, Eq. (31), but not Eq. (56), also
holds for the scattered field.
Since, as we have seen in connection with Eq. (25), as

V=V∞ one has that POFF
m ¼ POFF

e , it is likely that (56)
holds for the total field from any arbitrary body. However,
we have not proven it here. Note, nonetheless, that
although the spin momentum of the total field is zero in the
whole space with sources, this momentum is not a virtual
quantity locally. Indeed the Belinfante spin momentum
gives rise to forces near surfaces, like it happens with the
transversal force, which depends on the reactive helicity of
evanescent waves created on ∂V0

12,28.
The fields E(in), B(in) inside the object volume V0

cannot produce any net force on the body. Therefore
using Eq. (17) for these fields one has:

R
∂V 0

d2r T ðinÞ
ij nj ¼

�iω
R
V 0
d3r ½PO ðinÞ

m � PO ðinÞ
e �.

On the other hand, we may write an equation like (21)
for the scattered field in an arbitrary volume V enclosing
the dipole

ImfFðsÞ
i g ¼

Z
∂V
d2r ImfT ðsÞ

ij gnj þ iω
Z

V
d3r ½POðsÞ

m � POðsÞ
e �i

ð57Þ
where ImfFðsÞ

i g is a force on the particle due to the
scattered field only, certainly different from the actual
reactive force F I

i stemmed from the total field.
Taking into account that, as seen in Eq. (57), if V=V∞

one has
R
∂V1

d2r ImfT ðsÞ
ij gnj ¼ 0 since

R
∂V1

d2r T ðsÞ
ij nj is

real, (see also38), the above equation (57) becomes

ImfFðsÞ
i g ¼ iω

Z
V1

d3r ½PO ðsÞ
m � PO ðsÞ

e �i ð58Þ

which is similar to (24). Then introducing (58) into (57)
we obtain in terms of the ROM of the scattered field

Z
∂V
d2r ImfT ðsÞ

ij gnj ¼ iω
Z

V1�V
d3r ½POðsÞ

m � POðsÞ
e �i

ð59Þ

which for the scattered field is analogous to (25). Now,
according to Appendix D, on a dipolar particle:R
∂V 0

d2r ImfT ðsÞ
ij gnj ¼ 0, where V0 is the smallest sphere

enclosing the dipole, which for such a particle we take as
its volume. Then (59) reduces to

Z
V1�V 0

d3r ½PO ðsÞ
m � PO ðsÞ

e � ¼ 0 ð60Þ

Therefore we conclude that the ROM of the field
scattered from a dipolar particle is zero, independently

of whether it is a Rayleigh one or dipolar in the wide
sense38,39. Hence, the ILF on a dipolar particle, Eq. (50),
comes exclusively from those terms of both the IMST and
ROM that contain interference of the incident and
scattered fields. We think that this likely occurs with an
arbitrary body, although we have not proven it here.

Example 2: Linearly polarized plane wave impinging on a
low refractive index small dielectric particle
Consider a low refractive index dielectric particle, like a

polystyrene sphere, (refractive index nPS= 1.59, radius
a= 50 nm), illuminated by a linearly polarized propagat-
ing plane wave:

E ¼ E0ð1; 0; 0Þeikz; B ¼ E0ð0; 1; 0Þeikz ð61Þ

E0 being a constant. The incident momenta are:

PO
e ¼ PO

m ¼ <g> ¼ 1
8πc

E2
0 ẑ ð62Þ

For the time-averaged and the reactive forces we test
Eqs. (E3) and (E4) of Appendix E in the Supp. Mat., which
yield

<~F e> ¼ 1
2
αIe k E

2
0 ẑ; ~F I

e ¼
1
2
αRe k E

2
0 ẑ ð63Þ

Note that, as mentioned above, under plane wave illu-
mination on a purely electric dipolar particle, the ILF ~F I

e,
Eq. (63), is five times its IMST component given by the
approximate equation (55). The numerical computation
methods in this and following examples is the same, and
indicated in Appendix G of the Supp. Mat..
The real and imaginary parts of the electric polariz-

ability, αRe and αIe, as well as <~F e> and ~F I
e, are plotted

versus λ in the visible and near-infrared in Fig. 2(a) and
(b). The ILF, ~F I

e, of (63) agrees well with its numerical
calculation through the charge and current volume inte-
gral of the left side of Eq. (21) and following the procedure
described in Appendix G49. For example for λ= 450 nm
Fig. 2(a) reads kαRe ¼ 600 ´ 10�18 m2 per unit of incident
power density. This yields an ILF per unit power: 25 pN/
(W/μm2), which coincides with its value in Fig. 2(b). In
the same way, there is agreement between the RLF of (63)
according to Fig. 2(a) and its numerical computation of
Fig. 2(b), as it should.
As seen, the ILF is totally dominant upon the time-

averaged force, specially at higher frequencies which lie
in the visible region. This illustrates the physics descri-
bed in this work; namely, underneath a weaker time-
averaged force, there is a relatively large build-up of
ROM and thus of reactive force. This is shown in
Fig. 2(c) of the IMST component, FIMST

z , numerically
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obtained from the IMST, Eq. (22), evaluated from the
total field through an FDTD computation via the Mie
series, and Fig. 2(d) of the ROM component, FROM

z ,
obtained by substracting FIMST

z from FI
z. We observe that

FIMST
z � FROM

z , so that the ILF is largely due to its
stronger ROM component.
The aforementioned counteraction of both the ILF and

ROM on the RLF, evident in these figures, indicates the
observability of the ILF and ROM, as well as the reactive
nature of this near-field radiation pressure versus the
“far-field” flow RMST that yields the time-averaged
force. Thus, underlying the weak RLF, <~F e>, exerted by
an incident wave on a low refractive index dielectric
particle, there are a dominant ROM and reactive force.
This has an analogy with the detrimental effect of the
reactive work, associated to the reactive power, over
the time-averaged work and power radiated by an
emitter into the far-zone12,16,45.

Although the incident optical angular momentum gives
rise to a reactive optical torque, as shown in Appendix B of
Supp. Mat., and twisted structured light may have an effect
on the ILF, the angular momentum of a beam similar to a
circularly polarized (CP) plane wave does not alter the
reactive force, ~F I , of Eq. (63), which therefore also applies
for CP incidence. The same as it happens with the time-
averaged force. As a matter of fact, it is straightforward to
see that the incident canonical momentum, Eq. (62), is
insensitive to the spin in this case.
This is illustrated in Fig. S1 of Appendix F of the Supp.

Mat., which compares the electric field spatial distribution
and the reactive force from a linearly polarized (LP) plane
wave with those pertaining to circular polarization (CP);
both impinging on the above discussed PS particle. The
angular momenta of more complex structured light fields
may, however, have an effect on the ILF. This question is
left open for future research.
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Fig. 2 Linearly polarized propagating plane wave incident on a polystyrene sphere of radius a= 50 nm and refractive index nPS= 1.59.
a Polarizability calculated via Mie theory. b Numerical results, per unit of incident power density, E0= 1, for the ILF FIz , and < Fz>, on the sphere. c IMST

component, FIMSTz , of FIz , calculated with different cube integration contours. Insets show the spatial distribution on the x= 0 plane of the electric and
magnetic field intensities in and around the sphere excited at λ= 800 nm. White broken line squares illustrate the integration contours. d ROM
component, FROMz , of the ILF, calculated by subtracting FIMSTz from FIz
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Example 3: Linearly polarized Gaussian beam incident on a
small particle, electrically dipolar
We address a beam with Gaussian transversal profile,

incident on an electrically dipolar dielectric particle

E ¼ E0 exp �R2

σ2

� �
ð1; 0; 0ÞexpðikzÞ; ðR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ

ð64Þ

Now the gradient component of the RLF and ILF appear.
We have

PO
e ¼ PO

m ¼ 1
8πc

E2
0 exp �R2

σ2

� �
ẑ ð65Þ

and

∇jEj2 ¼ � 4
σ2

E2
0 exp �R2

σ2

� �
ðx; y; 0Þ ð66Þ

So that

< ~F e>¼ E2
0 exp � R2

σ2

� �
� αRe

σ2 ðx; y; 0Þ þ
αIe
2 k ð0; 0; 1Þ

h i
;

Imf ~F eg¼ E2
0 exp � R2

σ2

� �
4αIe
σ2 ðx; y; 0Þ þ αRe k ð0; 0; 1Þ

h i

ð67Þ

which shows the Hooke behavior of the conservative
gradient component as expected in optical tweezer set-
ups, along with the pushing nature of the ILF gradient
component, as well as of the RLF at wavelengths where
αRe < 0, case in which the scattering ILF becomes pulling.
Therefore, this example illustrates the exchange of αRe and
αIe between the RLF and ILF in an optical manipulation
set-up through their gradient and scattering components.

Example 4: Linearly polarized plane wave incident on a
magnetoelectric high refractive index dipolar particle
Magnetoelectric particles are of great importance in

nanophotonics50–58. Given the well-known scaling prop-
erty of high index spheres, results in a certain range of
wavelengths are transposable to another spectrum in
particles with a different refractive index. It is, therefore,
relevant to study this case as regards the build up of ROM
and reactive forces.
We consider the plane wave of Example 2 incident on a

Si sphere of radius 75 nm. Figure 3(a) depicts the RLF, the

predicted IMST component, Imf
R
∂V 0

d2r T ðmixÞ
kj njg ¼

ð4πω=5ÞðαRe � αRmÞ, according to the approximation: (55),
and the factor kðαRe þ αRmÞ that yields the ILF according to
Eq. (E21) of the Supp. Mat.

The RLF, FR
z , and ILF, FI

z, numerically computed from
the charge and current integral of the left side of Eqs. (20)

and (21) as indicated in Appendix G, are shown in
Figure 3(b). Now the effect of the electric and magnetic
dipole resonances of the particle in the proximities of
500 and 610 nm, respectively, is observed. Comparing
Fig. 3(a) and (b) we note that Eq. (E21) does not yield the
correct ILF; neither Eq. (E20). In contrast with Example 2
of a non-resonant particle.
The shape of the computed spectrum of the flow IMST

component FIMST
z , shown in Fig. 3(c), is similar to the

theoretical ILF (63) which follows the broken line of
Fig. 3(a) according to Eq. (55). The IMST force most
similar to that of (55) is that obtained on the cube contour
∂V with L= 0.16 μm, almost tangent to the particle. On
the other hand, a comparison of Fig. 3(b) and (d) shows an
almost total contribution of the ROM to the ILF, mani-
festing the small weight of FIMST

z in the reactive force on
this resonant particle. Figure 3(b) and (c) indicate that
FIMST
z is of the same order of magnitude as the time-

averaged force in the whole range of wavelengths, while
the ILF, FI

z, is much stronger than <Fz>, and enhanced
near the electric and magnetic resonances, although its
sharp variation makes it to be near zero at the resonant
wavelengths where the “radiated” force, <Fz>, is max-
imum. This latter feature keeps an analogy with the
reactive power and helicity12,19 which are near-zero at
resonant wavelengths at which there is maximum radiated
power. As a noted illustration, a photoinduced force
microscopy experiment59 detects the resonant force sig-
nal, on excitation of the magnetic dipole of a Si resonator,
associated with the enhancement of its quality factor and
external stored reactive power.
Actually, we observe that FI

z is almost entirely due to
the large ROM contribution, FROM

z , and its enhance-
ments, as depicted in Fig. 3(d). This once again illustrates
the detrimental effect of this dominant “reactance” ILF
on the “dynamic radiative efficiency” constituted by the
time-averaged radiation force RLF. Now, according to
(24) the ILF equals the overall ROM, while we see from
(25) that FIMST

z is given by the external ROM, (which as
remarked above is due to interference of the incident and
scattered fields).
Therefore in a high index magnetoelectric particle,

most of the ROM is built inside it; the reactive ILF
therewith mainly being due to this internal ROM and its
contribution, FROM

z , is completely dominant upon the
time-averaged force.

Example 5: Linearly polarized plane propagating wave
incident on a plasmonic particle
As seen in the previous examples, almost all con-

tribution to the ILF is due to the internal ROM.
Absorption in the volume distribution of charges and
currents changes this; it may extract energy from the
reactive power44,60,61. A decrease of reactive quantities
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would happen even in situations where both the RLF
and ILF are resonant. To illustrate it, we now consider
the above plane wave incident on an plasmonic Au
spherical particle of radius a= 50 nm, whose polariz-
ability is shown in Fig. 4(a). A computation, as described
in Appendix G of Supp. Mat., yields the time-averaged
force, <Fz> and reactive force, FI

z, on this particle,
[cf. Fig. 4(b)]. On the other hand, Fig. 4(c) and
(d) depict FIMST

z and FROM
z , respectively.

We see that while <Fz> follows the theoretical
expression (63) obtained from Appendix E, FI

z does not,
specially in the region of the plasmon resonance peak
where in spite of the pulling ILF enhancement, the RLF
is stronger. Moreover, at λ < 450 nm the RLF is totally
dominant versus a very small ILF, while the opposite
occurs at λ > 650 nm, in accordance with the expected
antagonistic role of both kind of forces. Also, as the

internal electric field is practically zero, although the
inner B does not vanish, the weight of the internal
ROM, i.e., of FROM

z [cf. Fig. 4(d)] is now much smaller
than in the non-lossy particles of the previous exam-
ples. The contribution of FIMST

z [cf. Fig. 4(c)] to the ILF
is now non-negligible versus that of the internal ROM
plus the ROM in the four corners between the inte-
gration cube and the particle surface. So we see that
field losses in Au are responsible of diminishing the
internal ROM contribution to the ILF versus that of
the IMST.
To get a closer look to the effect of absorption,

Fig. 5(a)–(d) depict the same as before for a hypothetical
particle (Au3) whose refractive index n̂Au3 has a real part
nAu3 identical to that of Au, nAu, but whose imaginary part
κAu3 has artificially been set to zero. We see that now, as
no resonance is present, all quantities behave as in a
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Fig. 3 Linearly polarized propagating plane wave incident on a Si sphere of radius a= 75 nm. E0= 1. a Combined polarizabilities calculated
via Mie theory. The expression of < Fz > given by these polarizabilities according to ref. 38 is shown in the full line, while the broken one depicts the
theoretical flow IMST, FIMSTz , component of the reactive force, FIz , according to Eq. (55). b Numerical results for the time-averaged force < Fz > and

reactive force FIz on the sphere. c IMST component, FIMSTz , of the ILF numerically calculated with different cube integration contours. Insets show maps
on the x= 0 plane of ∣E∣2 and ∣B∣2 at λ= 610 nm which corresponds to the magnetic dipole resonance. White broken line squares illustrate the
integration contours. d ROM component, FROMz , of the ILF calculated by subtracting FIMSTz from FIz
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dielectric sphere, [compare with Fig. 2(a)–(d)]. The ILF
follows the heuristic theoretical equation (63) and the
antagonic role of both forces is now retrieved. It is
interesting, nevertheless, that close to the wavelength
where the ILF changes sign, both forces coincide being
practically zero.
In this connection, Fig. 6(a)–(d) show a direct com-

parison of the polarizability, RLF, and ILF for the Au
sphere and three hypothetical particles whose refractive
index real part is the same as that of Au, n̂Au but with the
imaginary part artificially chosen as: a half that of Au
(Au1), the same as the real part (Au2), and zero (Au3). In
the Au1 case the plasmon resonance is much stronger
than in Au, but although the RLF is accordingly stronger,
the pulling ILF more than doubles the RLF. The antag-
onistic role between both forces is observed in the Au2
and Au3 cases.

Recapitulation: Discussion on the complex stress
tensor theorem in a dielectric medium
If the medium surrounding the illuminated body is not

vacuum, but has a non-unity refractive index n, there is an
ongoing debate on the form of the field momentum. Thus
one may ask how this will affect the above formulation of
the CMST theorem and the ILF.
Among all proposals for the Poynting momentum and

Maxwell stress tensor, we make here a discussion of this
question by focusing on the Abraham and Minkowski
forms, which are those whose respective ranges of validity
have been more countersigned by experiments8,62. Fur-
ther study on other formulations is outside the aims of
this paper.
The Minkowski, ~GM , and Abraham, ~GA, field momen-

tum densities of an electromagnetic wave in an isotropic,
linear, homogeneous nonabsorbing and nondispersive
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Fig. 4 Linearly polarized propagating plane wave incident on an Au sphere of radius a= 50 nm. E0= 1. a Polarizability calculated via Mie
theory. b Numerical results for the time-averaged force < Fz > and reactive force FIz on the sphere. E0= 1. c IMST component FIMSTz of the ILF
calculated with different cube integration contours. Insets show the spatial distribution on the x= 0 plane of the electric and magnetic field
intensities at the wavelength of 540 nm. White broken line squares illustrate the integration contours. d ROM component, FROMz , of the ILF calculated

by subtracting FIMSTz from FIz
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medium of time-independent refractive index n ¼ffiffiffiffiffi
ϵμ

p
≠ 1 are, in terms of the real electric and magnetic

vectors, ~E and ~H ¼ ð1=μÞ~B, in Gaussian units employed
in this work62:

~GM ¼ ϵμ

4πc
~Eðr; tÞ ´~Hðr; tÞ ¼ ϵμ~GA ð68Þ

For the fields represented by the analytic signals we thus
introduce the Minkowski and Abraham complex Poynting
momentum densities:

~GM ¼ ϵμ

8πc
~Eðr; tÞ ´ ~H�ðr; tÞ ¼ ϵμ~GA ð69Þ

whose real and imaginary parts define the time-averaged
and imaginary Minkowski and Abraham Poynting
momentum densities, respectively.

Then the complex Maxwell stress tensor theorem reads
according to Minkowski:

F i ¼ �
Z

V
d3r ∂tGM �

i þ
Z

∂V
d2r T M

ij nj

þ iω
Z

V
d3r½~POM

m � ~POM
e �i

ð70Þ

With the Minkowski complex stress tensor:

T M
ij ¼ 1

8π
ϵEiE�

j þ
1
μ
B�
i Bj �

1
2
δijðϵjEj2 þ

1
μ
jBj2Þ

� �
ð71Þ

and Minkowski orbital momenta:

ðPOM
e Þi ¼ ϵ

8πω Im½E�
j ∂iEj�;

ðPOM
m Þi ¼ 1

8πμω Im½B�
j ∂iBj�

ð72Þ
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but its imaginary part is artificially set to zero. a Calculated polarizibility. b Real and imaginary parts of complex Lorentz force. c IMST and d ROM
components of of the ILF
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Whereas according to Abraham it should be:

F i þ FA
i ¼ �

Z
V
d3r ∂tGA �

i þ
Z

∂V
d2r T M

ij nj

þ iω
Z

V
d3r½POM

m � POM
e �i

ð73Þ

where FA
i ¼ ðϵμ� 1Þ

R
Vd

3r ∂tGA �
i , and we recall that in

Eqs. (70) and (73) F i ¼ 1
2

R
Vd

3r ðρ�~E þ 1
c
~J � ´~BÞi.

Although on using (69) in (73) one inmediately retrieves
(70), Eq. (73) exhibits a first term on the right side that, in
analogy with the first term in the right-hand side of (70),
suggests that ~GA � should be the complex momentum
density of the field, producing a complex Abraham force
on the object given by the sum of the complex Lorentz
force ~F and ~FA.
In consequence, the reactive force produced by a

general time-dependent field on a body in a medium is
given by the imaginary part of either Eq. (70) or (73),
depending on the choice of Poynting momentum. The
reactive force that the Abraham momentum predicts

does not coincide with the ILF, but contains the addi-
tional component Imf~FAg.
For time-harmonic fields, both ~GM � and ~GA � become

time-independent, and therefore (70) and (73) yield the
same CMST equation, identical to (17) with the Min-
kowski CMST pertaining to the embedding medium:

TM
ij ¼ 1

8π
ϵEiE

�
j þ

1
μ
B�
i Bj �

1
2
δijðϵjEj2 þ

1
μ
jBj2Þ

� �

ð74Þ

and the orbital momentum densities:

ðPOM
e Þi ¼ ϵ

8πω Im½E�
j ∂iEj�;

ðPOM
m Þi ¼ 1

8πμω Im½B�
j ∂iBj�

ð75Þ

Then the reactive force and the ILF coincide, being given
by an equation identical to (21) with the Minkowski
IMST: TM I

ij ¼ 1
8π ImfϵEiE�

j þ 1
μB

�
i Bjg and ROM expressed

by the momenta (75).
Hence, the Abraham-Minkowski debate influences the

CMST theorem for arbitrary time-dependent fields, but
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not for time-harmonic (or monochromatic) electro-
magnetic waves. All our conclusions on these latter
wavefields remain valid and unaffected by this debate.

Conclusions
In summary, we have formulated the existence of a

complex force in light-matter interactions which splits
into two, either scaled or instantaneous. The real part is
the standard time-averaged force, RLF, due to transfer of
Poynting momentum. The imaginary part, ILF, estab-
lished here, stems from the exchange of reactive (i.e.,
imaginary Poynting) momentum and is linked to the
accretion of what we find as the reactive strength of
canonical (or orbital) momentum; and that, like the
reactive energy, unavoidably appears as the incident
wevefield hits the object.
Within the area of nanophotonics, near-field effects and

reactive quantities at the nanoscale are shown here to be
of importance in connection with optical manipulation.
Thus we highlight the main conclusions of this work:

(1) Since the Maxwell stress tensor is the basis of
electromagnetic optical forces and binding, with
most current detection on time averaging, the
imaginary Maxwell stress tensor, its associated
reactive stress of orbital momentum, and the
reactive Lorentz force established here, constitute
the other side of the dynamical effects in light-
matter interactions.

(2) The emergence of ROM and ILF is associated to
the appearance of reactive energy and reactive
work, recently remarked in nanoantennas. The ILF
and ROM play a hindrance role versus the standard
RLF, so that a large ROM storage conveys a loss of
radiative force, i.e., of RLF, and vice-versa. This is
illustrated with examples and makes the ROM and
ILF indirectly observable. It is quite interesting that
the electric and magnetic canonical momenta are
the quantities characterizing the force "reactance"
constituted by the ROM, in analogy with the
electric and magnetic energies defining the reactive
energy. This fact emphasizes the capital role28 of
the canonical momentum in the radiation pressure.

(3) Our results show that, in absence of body losses,
the internal ROM contribution to the ILF is
dominant versus that of the IMST (i.e., external
ROM). However, absorption dissipates the interior
field energy and hence the internal ROM, so that
although near resonant (e.g., plasmon) wavelengths,
all reactive quantities are enhanced, the resulting
resonant near-field ILF becomes not so much a
hurdle to the resonant “radiated” force RLF.

(4) The picture illustrated in this work is paradigmatic
to the complementary roles of ROM (and ILF) and

the time-averaged force, completing the whole
picture of the optical force emergence. As the RLF
is characterized by the flow RMST across a far-
zone surface sphere, and it is independent of its
radius, (in analogy with the efficiency of power
radiated into the far-field), the stored ROM, and its
associated ILF, are characterized by the flow IMST
across a near-field sphere that surrounds the
distribution of charges and currents. Therefore,
the ROM acts as a force “reactance” on the body.

(5) Associated with these dynamic concepts, and with
the role of sources in the definition of the real and
imaginary field (i.e., Poynting) momenta, is the
characterization of the RLF by the imaginary
orbital and spin momenta, and of the ILF by what
we introduce as the reactive strength of Poynting
momentum.

(6) While the CMST theorem, and hence the reactive
force, of general arbitrary time-dependent light
waves is affected by the choice of field momentum
in the context of the Minkowski-Abraham debate,
we have demonstrated that in the case of time-
harmonic fields, this choice has no effect neither in
the reactive force nor in the ROM, and like the
RMST, the IMST is that of Minkowski.Given
the recent advances in optical manipulation at the
nanoscale, increasing knowledge on the details of
the generation and control of electromagnetic
optical forces is continuously required. Hence
these long time uncovered reactive dynamic
quantities should be relevant in practice.

(7) Like in the design of RF antennas and nanoantennas
the radiation efficiency is increased by diminishing
the reactive power and reactive work, in the context
of optical manipulation one may act on the ROM
and ILF in order to optimize the time-averaged
optical force. So the scenario established in this
study contains a novel tool to handle the mechanical
action of light on matter.

Given the zero time-average of the ROM flow related to
the instantaneous reactive force, their direct detection
may enter the domain of femtosecond and attosecond
optics on using subcycle pulse illumination63–65.
Although we have emphasized the nanophotonics

domain, the fundamental physics of the complex Lorentz
force highlights its presence in the general electro-
dynamics realm, and suggests its existence in the inter-
action of sound, fluids66, and other matter waves, thus
opening a new landscape of possible dynamic phenomena
of waves on matter.
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