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Fourier Imager Network (FIN): A deep neural
network for hologram reconstruction with superior
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Abstract
Deep learning-based image reconstruction methods have achieved remarkable success in phase recovery and
holographic imaging. However, the generalization of their image reconstruction performance to new types of samples
never seen by the network remains a challenge. Here we introduce a deep learning framework, termed Fourier Imager
Network (FIN), that can perform end-to-end phase recovery and image reconstruction from raw holograms of new
types of samples, exhibiting unprecedented success in external generalization. FIN architecture is based on spatial
Fourier transform modules that process the spatial frequencies of its inputs using learnable filters and a global
receptive field. Compared with existing convolutional deep neural networks used for hologram reconstruction, FIN
exhibits superior generalization to new types of samples, while also being much faster in its image inference speed,
completing the hologram reconstruction task in ~0.04 s per 1 mm2 of the sample area. We experimentally validated
the performance of FIN by training it using human lung tissue samples and blindly testing it on human prostate,
salivary gland tissue and Pap smear samples, proving its superior external generalization and image reconstruction
speed. Beyond holographic microscopy and quantitative phase imaging, FIN and the underlying neural network
architecture might open up various new opportunities to design broadly generalizable deep learning models in
computational imaging and machine vision fields.

Introduction
Digital holography provides unique advantages in micro-

scopic imaging, by reconstructing the complex optical fields
of input samples1–12. Due to the missing phase information,
various computational approaches have been developed to
digitally reconstruct holograms13–22. Recent work has also
utilized deep neural networks23–45 to reconstruct the com-
plex sample field from a hologram in a single forward
inference step, achieving an image reconstruction quality
comparable to iterative hologram reconstruction algorithms
that are based on physical wave propagation. Some of the

earlier results have also reported simultaneous performance
of phase retrieval and autofocusing in a single network
architecture, demonstrating holographic imaging over an
extended depth-of-field25,34,42. In these earlier demonstra-
tions, various deep network architectures, such as e.g., U-
net-based convolutional neural networks (CNNs)23,25,27,33,37,
recurrent neural networks (RNNs)42,46, as well as generative
adversarial networks (GANs)31,37,42,43,47 have been proven to
be effective for phase retrieval and hologram reconstruction
for new (unseen) objects that belong to the same sample
type of interest used during the training process. Stated
differently, this earlier body of work has successfully
demonstrated the “internal generalization” of the hologram
reconstruction and phase retrieval networks to new objects
of the same sample type as used in training.
On the other hand, “external generalization” to new

objects from entirely new types of samples, never seen by
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the network before, remains a major challenge for deep
neural networks, which might lead to image reconstruc-
tion degradation or hallucinations. Some studies have
explored using transfer learning to address this challenge,
which requires fine-tuning the network using a subset of
the new types of samples48–50. In addition to this external
generalization issue, it is, in general, difficult for CNN-
based image reconstruction networks to accurately
reconstruct raw holograms of samples due to the limited
receptive field of convolutional layers, which casts another
challenge considering the relatively large scale of holo-
graphic diffraction patterns of samples. As a result,
existing end-to-end hologram reconstruction deep neural
networks24,26,33,35,42 could only achieve decent recon-
struction performance on relatively sparse samples.
Alternatively, a pre-processing step, such as zero phase-
padded free space propagation (FSP), has also been uti-
lized to better deal with this issue23,25,26,40,42, which
requires a precise physical forward model with the correct
estimate of the axial propagation distance.
Here we introduce an end-to-end deep neural network,

termed Fourier Imager Network (FIN), to rapidly imple-
ment phase recovery and holographic image reconstruc-
tion from raw holograms of new types of samples,
achieving unprecedented success in external general-
ization. This framework takes in two or more input raw
holograms captured at different sample-to-sensor dis-
tances without any pre-processing steps involved. By
comprehensively utilizing the global spatial-frequency
information processed by its trained spatial Fourier
transform (SPAF) modules, FIN accurately reconstructs
the complex field of the specimen, successfully demon-
strating external generalization to new types of samples
never used during its training. To experimentally

demonstrate the success of this approach, we trained FIN
models using human lung tissue samples (i.e., thin his-
topathology sections of connected tissue) and blindly
tested the resulting trained FIN models on prostate and
salivary gland tissue sections as well as Pap smear samples
without compromising the image reconstruction quality.
Compared to iterative hologram reconstruction algo-
rithms based on wave propagation between different
measurement planes, FIN is >27-fold faster to reconstruct
an image. Compared to existing CNN-based deep learning
models, FIN exhibits an unprecedented generalization
performance, and is also much faster in its inference
speed. We expect FIN to be widely used in various image
reconstruction and enhancement tasks commonly
employed in the computational microscopy field. In
addition to coherent imaging, FIN can be applied to other
image reconstruction or enhancement tasks in different
imaging modalities, including e.g., fluorescence and
brightfield microscopy.

Results
FIN provides an end-to-end solution for phase recovery

and holographic image reconstruction, and its archi-
tecture is schematically presented in Fig. 1 (also see the
Methods section). To acquire raw holograms of speci-
mens, we used a lens-free in-line holographic microscope,
as detailed in the Methods section, to image transmissive
samples, such as human tissue samples and Pap smears,
using a set of sample-to-sensor distances, i.e., z2,i, i = 1,⋯,
M. The input images to FIN consist of M intensity-only
raw holograms captured at z2,1 to z2,M and the network
outputs are the reconstructed real and imaginary images
of the object, revealing the complex-valued sample field.
The corresponding ground truth images for supervised
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learning of FIN are obtained using an iterative multi-
height phase retrieval (MH-PR) algorithm18 with M = 8
holograms acquired at different sample-to-sensor
distances.
To demonstrate the success of FIN, we trained it using

raw holograms of human lung tissue sections and tested
the trained model on four different types of samples: (1)
lung tissue samples from different patients never used in
the training set (testing internal generalization), (2) Pap
smear samples, (3) prostate tissue samples, and (4) sali-
vary gland tissue samples, where (2,3,4) test external
generalization, referring to new types of samples. The z2,i
distances that we used in these holographic imaging
experiments were 300, 450, and 600 μm (M = 3). After its
training, our blind testing results (Fig. 2) reveal that FIN
can not only reconstruct new lung tissue sections from
new patients (internal generalization) but also achieves a
strong external generalization performance on new sam-
ple types never seen by the network before. Furthermore,
compared to the output of the MH-PR algorithm using
the same input (raw hologram) data (M = 3), FIN is ~27.3
times faster in its inference speed per image (see Table 1)
and delivers better reconstruction quality on all the test
samples, as highlighted by the yellow arrows and the
zoomed-in regions in Fig. 2.
To further showcase the generalization ability of FIN,

we separately trained four FIN models using lung tissue,
prostate tissue, salivary gland tissue, and Pap smear
hologram datasets (i.e., one type of sample for each net-
work model), and blindly tested the trained models on
unseen FOVs from four types of samples using M= 3 raw

holograms for each FOV. Similar to our conclusions
reported in Fig. 2, Fig. 3a also shows that the FIN model
trained using each sample type can successfully generalize
to other types of samples. Even when FIN was only
trained using relatively sparse samples such as Pap smear
slides, the resulting network model successfully general-
ized to reconstruct the raw holograms of connected tissue
sections that significantly deviate from the structural
distribution and sparsity observed in Pap smear samples.
The success of the reconstruction performance of FIN
was also quantified using the structural similarity index
(SSIM)51 across all four FIN networks that were trained
using different types of samples (see Fig. 3b), demon-
strating the superior generalization of these FIN models
regardless of the distribution shifts observed between the
training and testing data.
Next, we evaluated the hologram reconstruction per-

formance of FIN when only two input holograms were
measured, i.e., M= 2. For this, we trained ten different
FIN models from scratch using the same human lung
tissue sections but with different sets of z2,1 and z2,2, such
that the sample-to-sensor distances for different FIN
models were different. These trained FIN models were
then blindly tested on new lung tissue sections from new
patients (internal generalization); Fig. 4 reports the
amplitude and phase root mean square error (RMSE) of
the reconstructed holographic images generated by FIN
(M= 2) and MH-PR (M= 2) for different combinations
of z2,1 and z2,2. Both the amplitude and phase RMSE
values show that FIN achieves a significant reconstruction
quality improvement compared to MH-PR (M= 2), and
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Fig. 2 Internal and external generalization of FIN. Each output of FIN and MH-PR algorithm is generated using the same raw holograms (M= 3).
FIN was trained on human lung tissue samples only, and the internal generalization part uses unseen lung tissue holograms from new patients. The
external generalization directly applies the same trained FIN model to new types of samples, i.e., Pap smear, prostate tissue, and salivary gland tissue
samples, never seen by the network before. The ground truth for each sample is obtained through the MH-PR algorithm that used M= 8 raw
holograms captured at different sample-to-sensor distances
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the RMSE values of FIN models are consistently better
with different sample-to-sensor distances varying from
300 μm to 600 μm. The visualization of the reconstructed
holograms shown in Fig. 4 further confirms the same
conclusion that FIN achieves consistently better image
reconstruction compared to MH-PR for various combi-
nations of z2,1 and z2,2. We also confirmed that the same
conclusions apply to the external generalization tests of
FIN (M= 2).

In addition to MH-PR based comparisons, we also
extended our performance analysis to other deep
learning-based phase retrieval and hologram reconstruc-
tion methods. For this additional set of comparisons, we
used a state-of-the-art deep learning model based on a
recurrent convolutional neural network, termed RH-M,
that was developed for multi-height holographic image
reconstruction42. Using the same training hologram data,
we trained FIN and RH-M models for different M values,

Table 1 Inference time comparison of FIN, RH-M, and MH-PR Algorithms

Number of trainable parameters Inference time (s/mm2) Parallelized inference time (s/mm2)

FIN (M= 3) 11.5 M 0.52 0.04

FIN (M= 4) 11.5 M 0.56 0.04

RH-M (M= 3) 14.1 M 4.84 1.96

RH-M (M= 4) 14.1 M 5.76 2.08

MH-PR (M= 2) N/A 10.36 N/A

MH-PR (M= 3) N/A 14.19 N/A

The parallelized inference time is measured when the batch size is set to 20 for both FIN and RH-M
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the blind testing results of which are compared in Fig. 5.
As for the internal generalization performance shown in
Fig. 5, both FIN and RH-M can successfully generalize to
new lung tissue samples from new patients. However, for
the external generalization to new sample types (prostate
and salivary gland tissue as well as Pap smear samples),
FIN provides superior image reconstruction performance
even though it uses a smaller number of trainable para-
meters compared to RH-M (see Table 1); in comparison,
RH-M has reconstruction artifacts on external testing sets
for both M= 3 and M= 4, also confirmed by the sig-
nificantly lower SSIM values (for RH-M reconstructions)
reported in Fig. 5.
In addition to its superior generalization performance,

FIN also has faster inference speed compared to deep
learning-based or iterative phase retrieval algorithms. In
Table 1, we compared the inference time of FIN, RH-M,
and MH-PR algorithms. Noticeably, FIN has the shortest
inference time among these methods using any number of
raw input holograms. For the case of M= 3, FIN is ~9.3-
fold faster than RH-M and ~27.3-fold faster than MH-PR,
which highlights the computational efficiency of our
network. We can further accelerate the inference speed of
FIN by using parallelization, which reduces the compu-
tation time to 0.04 s/mm2 under an image batch size of 20
(see Table 1). We should also note that the number (M) of
input holograms has a negligible impact on the inference
time of FIN, since it uses a fixed channel size for most
parts of the network model, and M only affects the first
1 × 1 convolutional layer. That is why the inference times
of FIN (M= 3) and FIN (M= 4) are approximately the

same as shown in Table 1. Refer to the Methods section
for further details.
To further demonstrate the advantages of FIN, we

performed a transfer learning-based comparison; for this,
we transferred FIN and RH-M models to unseen sample
types to compare their generalization performance as
shown in Table 2 (see the Methods). In this comparison,
the original models of FIN and RH-M were trained on
lung tissue sections and then separately transferred to Pap
smear, human prostate, and salivary gland tissue sections,
creating 3 models for each method. The transferred FIN
and RH-M models were then tested on blind test sets of
the corresponding sample types. Table 2 reveals that (1)
FIN outperforms RH-M in all cases, and (2) RH-M gains
significant performance improvement after transfer
learning on all three types of samples that were never seen
before. On the contrary, FIN only got differential
improvement after the corresponding transfer learning
step, due to its originally strong generalization to new
types of samples (see Table 2).

Discussion
We demonstrated an end-to-end phase retrieval and

hologram reconstruction network that is highly general-
izable to new sample types. FIN outperforms other phase
retrieval algorithms in terms of both the reconstruction
quality and speed. This method presents superior gen-
eralization capability to new types of samples without any
prior knowledge about these samples or any fine-tuning of
its trained model. This strong external generalization of
our model mainly stems from the regularization effect of
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the SPAF modules in its architecture. In a lensfree holo-
graphic imaging system, the Fourier transforms of the
fields at the sample plane and the measurement plane are
related by a frequency-dependent phasor, which can be
effectively learned through the element-wise multi-
plication module in SPAF. The strong external

generalization of FIN allows the model to be robust and
effective on testing data distributions that are different
from the training data distribution, which can result from
e.g., imaging set-up misalignments, poor signal-to-noise
(SNR) ratio, and sample related deformations or changes.
The application of FIN for different imaging methods to
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Fig. 5 A comparison of the generalization performance of FIN and RH-M. Both FIN and RH-M are trained using only human lung tissue samples
and the internal generalization part uses unseen FOVs from new lung tissue samples (new patients). The external generalization tests directly apply
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Table 2 Reconstruction performance comparison between FIN and RH-M

Lung (int.) Pap

smear (ext.)

Prostate (ext.) Salivary

gland (ext.)

Pap smear

(transfer, int.)

Prostate

(transfer, int.)

Salivary

gland

(transfer, int.)

FIN

(M= 3)

Amp. SSIM 0.799 ± 0.034 0.780 ± 0.022 0.808 ± 0.026 0.785 ± 0.039 0.826 ± 0.024 0.822 ± 0.016 0.763 ± 0.046

Phase SSIM 0.710 ± 0.080 0.637 ± 0.067 0.526 ± 0.079 0.664 ± 0.067 0.818 ± 0.053 0.554 ± 0.064 0.596 ± 0.109

RH-M

(M= 3)

Amp. SSIM 0.568 ± 0.020 0.635 ± 0.031 0.527 ± 0.033 0.526 ± 0.080 0.750 ± 0.037 0.591 ± 0.026 0.576 ± 0.073

Phase SSIM 0.497 ± 0.072 0.647 ± 0.067 0.325 ± 0.055 0.504 ± 0.151 0.779 ± 0.072 0.462 ± 0.090 0.515 ± 0.148

FIN

(M= 4)

Amp. SSIM 0.812 ± 0.031 0.817 ± 0.022 0.815 ± 0.027 0.790 ± 0.047 0.813 ± 0.026 0.817 ± 0.024 0.757 ± 0.044

Phase SSIM 0.739 ± 0.075 0.732 ± 0.063 0.555 ± 0.074 0.701 ± 0.096 0.826 ± 0.054 0.564 ± 0.059 0.584 ± 0.123

RH-M

(M= 4)

Amp. SSIM 0.567 ± 0.026 0.640 ± 0.037 0.518 ± 0.032 0.514 ± 0.087 0.723 ± 0.034 0.586 ± 0.025 0.569 ± 0.099

Phase SSIM 0.549 ± 0.071 0.613 ± 0.067 0.338 ± 0.062 0.473 ± 0.172 0.785 ± 0.056 0.444 ± 0.098 0.509 ± 0.153

Mean and standard deviation values were calculated on test sets consisting of ~50 unique FOVs for each sample type. Int. internal generalization, ext. external
generalization
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potentially build cross-modality generalization is left as
future work.
Besides, SPAF modules provide a global receptive field

to FIN, in contrast to the limited, local receptive fields of
common CNNs. The global receptive field helps the FIN
model more effectively process the holographic diffraction
patterns for various samples, regardless of the morphol-
ogies and dimensions of the objects. In fact, previous
research has already shown that end-to-end hologram
reconstruction requires a larger network receptive field,
which can be partially addressed by using e.g., dilated
convolution42. In our method, the Fourier transform
intrinsically captures the global spatial information of the
sample and thus provides a maximized receptive field for
FIN, contributing to its performance gain over CNN-
based hologram reconstruction models reported in Fig. 5.
Like FIN, other deep neural networks52 have also utilized
learnable spatial Fourier transform modules for inference,
for example, to successfully map the initial and/or
boundary conditions of partial differential equations
(PDEs) and infer numerical solutions.
Unlike fully convolutional networks, in FIN archi-

tecture, the size of the input raw hologram FOV is fixed at
the beginning, i.e., we cannot use a larger FOV in the
testing phase because of the element-wise multiplication
in our SPAF module. A larger FOV raw hologram can be
reconstructed using FIN by dividing the hologram into
smaller FOVs and running them through FIN in parallel.
This parallelization of a large FOV hologram recon-
struction is feasible since FIN has a significant speed
advantage in its inference, and can reconstruct ~1 mm2

sample area within 0.04 sec using a standard GPU (see
Table 1). The total inference time for an image FOV with
~4000 × 3000 pixels can be reduced to ~0.07 sec after
parallelization, allowing real-time hologram reconstruc-
tion and imaging using FIN. This fast inference speed of
FIN also opens up new opportunities to establish gen-
eralizable deep learning models for a broad spectrum of
computational imaging tasks.

Materials and methods
Holographic Imaging
A lens-free in-line holographic microscope was utilized

to capture the raw holograms of the specimens. A
broadband light source (WhiteLase Micro, NKT Photo-
nics) and an acousto-optic tunable filter (AOTF) were
used as the illumination source emitting 530 nm light.
The image sensor was a complementary metal-oxide-
semiconductor (CMOS) RGB image sensor (IMX081,
Sony). The light source, sample, and the CMOS image
sensor were aligned vertically. The sample was directly
placed between the light source and the sensor such that
the sample-to-source distance (z1) was about 10 cm, and
the sample-to-sensor distance (z2) ranged from 300 to

600 μm. The CMOS sensor was placed on and controlled
by a 6-axis stage (MAX606, Thorlabs) to perform lateral
and axial shifts. All hardware was connected to a com-
puter and controlled by a customized LabVIEW program
to capture holograms automatically.
All the human samples involved in this work were

deidentified and prepared from existing specimens that
were captured before this research. Human prostate,
salivary gland, and lung tissue slides were provided by the
UCLA Translational Pathology Core Laboratory (TPCL).
Pap smear slides were prepared by the UCLA Department
of Pathology.

Pre-processing
The captured raw holograms were firstly processed by a

pixel super-resolution algorithm18,53,54. The 6-axis stage
was programmed to automatically capture in-line holo-
grams at 6 × 6 lateral positions with sub-pixel shifts. The
super-resolution algorithm estimated the relative shifts
for each hologram and merged these holograms using a
shift-and-add algorithm18. The effective pixel size of the
generated super-resolved holograms decreases to 0.37 μm
from the original CMOS pixel size of 2.24 μm. The
resulting super-resolved holograms were cropped into
unique patches of 512 × 512 pixels, without any overlap.
Hologram datasets of each sample type were partitioned
into training and testing sets, at a ratio of 6:1, comprising
~600 unique FOVs in each training set and ~100 FOVs
for the testing set. The testing FOVs were strictly obtained
from different whole slides (new patients) excluded in the
training sets.
The ground truth sample fields were retrieved by an

iterative multi-height phase retrieval algorithm18. At each
sample FOV, M= 8 in-line holograms were captured at
different sample-to-sensor distances, which were later
estimated by an autofocusing algorithm using the edge
sparsity criterion55. In each iteration, the estimated sam-
ple field is digitally propagated to each hologram plane
using the angular spectrum propagation56. The propa-
gated complex field is updated according to the mea-
surement at each hologram plane, by averaging the
amplitude of the propagated field with the measured
amplitude and retaining the new estimated phase. One
iteration is completed after all the hologram planes are
used, and this MH-PR algorithm converges within 100
iterations.

Network structure
The FIN network architecture has a Residual in Residual

architecture shown in Fig. 1, inspired by RCAN57 to have
a deeper network structure and better information flow.
Our network, FIN, consists of several SPAF modules with
a long skip connection to form the large-scale residual
connection, in conjunction with two 1 × 1 convolutional
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layers at the head and tail of the network. Each SPAF
group contains two recursive SPAF modules, which share
the same parameters to improve the network capacity
without significantly enlarging the size of the network. A
short skip connection is introduced for every SPAF group
to form the middle-scale residual connection, and a small-
scale residual connection is used to connect the inputs
and outputs of each SPAF module. SPAF module, as
shown in Fig. 1b, has a linear transformation applied to
the tensor after it was transformed into the frequency
domain using the 2D Discrete Fourier transform, follow-
ing a similar architecture as in Ref. 52; a half window size
of k is applied to truncate the higher frequency signals,
i.e.,

F 0
j;u;v ¼

Xc

i¼1

Wi;j;u;v � Fi;u;v; u; v ¼ 0; ± 1; ¼ ; ± k; j ¼ 1; ¼ ; c

where F 2 Cc;2kþ1;2kþ1 is the truncated frequency domain
representation of the input to the SFAP module after
performing the 2D Discrete Fourier Transform, W 2
Rc;c;2kþ1;2kþ1 represents the trainable weights, c is the
channel number, and k is the half window size. After this
linear transformation, the inverse 2D Discrete Fourier
transform is used to obtain the processed data back in the
spatial domain, followed by a PReLU activation function.

PReLU xð Þ ¼ x; if x � 0

ax; otherwise

�

where a is a learnable parameter.
To adapt the SPAF module to high-resolution image

processing in a deeper network, we shrank the matrix W
allowing a significant model size reduction. The optimized
linear transformation is defined as

F 0
j;u;v ¼ W 0

j;u;v �
Xc

i¼1

Fi;u;v; u; v ¼ 0; ± 1; ¼ ; ± k; j ¼ 1; ¼ ; c

where F 2 Cc;2kþ1;2kþ1 is the truncated frequency com-
ponents, and W 0 2 Rc;2kþ1;2kþ1 represents the trainable
weights.
To further optimize the network structure for high-

resolution holographic image reconstruction, a set of
decreasing half window sizes (k) was chosen for the SPAF
modules. Specifically, both of the SPAF modules in each
SPAF group have shared hyperparameters, and we set a
decreasing half window size k for the SPAF groups in the
sequence of the network structure, which forms a
pyramid-like structure. This pyramid-like structure pro-
vides a mapping of the high-frequency information of the
holographic diffraction patterns to low-frequency regions
in the first few layers and passes this low-frequency
information to the subsequent layers with a smaller

window size, which better utilizes the features at multiple
scales and at the same time considerably reduces the
model size, avoiding potential overfitting and general-
ization issues.

Network implementation
The networks are implemented using PyTorch58 with

GPU acceleration and are trained and tested on the same
computer with an Intel Xeon W-2195 CPU, 256 GB
memory, and NVidia RTX 2080 Ti GPUs. During the
training phase, the input FOVs of 512 × 512 pixels were
randomly selected from the training hologram dataset,
and data augmentation was applied to each FOV, which
includes random image rotations of 0, 90, 180, or 270
degrees.
The training loss is the weighted sum of three different

loss terms:

Lloss ¼ αLMAE þ βLcomplex þ γLpercep

where α, β, and γ are set as 0.5, 1, and 0.5, respectively.
The MAE loss and complex domain loss can be expressed
as:

LMAE ¼
Pn

i¼1 yi � ŷij j
n

Lcomplex ¼
Pn

i¼1 F yð Þ � FðŷÞj j
n

where y is the ground truth, ŷ is the network’s output, n is
the total number of pixels, and F stands for the 2D
Discrete Fourier Transform operation. For the perceptual
loss term59, we used a pre-trained VGG16 network as the
feature extractor to minimize the Euclidean distance
between the low-level features of the reconstructed
images and the ground truth images.
The trainable parameters of the deep neural network

models were learned iteratively using the Adam optimi-
zer60 and the cosine annealing scheduler with warm
restarts61 was used to dynamically adjust the learning rate
during the training phase. Every model went through
1,000 epochs and we selected the best one with the lowest
validation loss. When performing transfer learning to a
new sample type (e.g., Table 2), we transferred FIN and
RH-M models using a smaller dataset containing 100
unique FOVs of the target sample type.
In the testing phase, a batch of test holograms with the

same resolution (512 × 512 pixels) is fed to the network,
and the inference time for one FOV at a time (batch size is
set to 1) is 0.52 s/mm2. Additionally, using the same
Nvidia RTX 2080 Ti GPU, the inference can be paralle-
lized with a batch size of 20, resulting in 0.04 s/mm2

inference time (Table 1).
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