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Abstract
In this review, we introduce the progress in the growth of large-aperture DKDP crystals and some aspects of crystal
quality including determination of deuterium content, homogeneity of deuterium distribution, residual strains,
nonlinear absorption, and laser-induced damage resistance for its application in high power laser system. Large-
aperture high-quality DKDP crystal with deuteration level of 70% has been successfully grown by the traditional
method, which can fabricate the large single-crystal optics with the size exceeding 400 mm. Neutron diffraction
technique is an efficient method to research the deuterium content and 3D residual strains in single crystals. More
efforts have been paid in the processes of purity of raw materials, continuous filtration technology, thermal annealing
and laser conditioning for increasing the laser-induced damage threshold (LIDT) and these processes enable the
currently grown crystals to meet the specifications of the laser system for inertial confinement fusion (ICF), although
the laser damage mechanism and laser conditioning mechanism are still not well understood. The advancements on
growth of large-aperture high-quality DKDP crystal would support the development of ICF in China.

Introduction
Inertial confinement fusion has attracted the worldwide

attention as one of the most promising means to obtain
clean energy in the future, which has practical application
prospects in solving the problem of energy shortage. In
2021, the National Ignition Facility (NIF) at Lawrence
Livermore National Laboratory (LLNL) has made a major
step forward, which has finally achieved 70% conversion
efficiency, nearly reaching ignition1. NIF’s success gives
relevant researchers more encouragement. In the past, the
research on the growth and performance of large crystal
optics has been one of the challenges for the successful
construction and operation of NIF2–5. Large-aperture
potassium dihydrogen phosphate (KDP) and its deuter-
ated analog DKDP are applied as electro-optic switches
and frequency conversion crystals in ICF, which are

attributed to their excellent performance including wide
transmittance, high laser damage threshold, large non-
linear optical coefficient, the feature of growing to large
sizes and good processability2–4,6. In contrast with KDP
crystal, DKDP crystal is commonly used for third har-
monic generation (THG) due to its weak transverse sti-
mulated Raman scattering (TSRS), which can efficiently
reduce the probability of crystal damage in high power
laser systems7,8.
So far, laser-induced damage (LID) is still a challenging

problem for THG DKDP crystals in the development of
high power laser systems, which severely restricts the
energy fluence of the output laser and the useful life of
crystals. Laser-induced damage of crystal is a rather
complex process, which is determined by laser parameters
and crystal performance. The effect of laser parameters on
LID has been widely investigated including pulse dura-
tion, size of the beam spot, laser wavelength9–12. From the
perspective of the material, LID is related to intrinsic and
extrinsic factors. Intrinsic processes include linear
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absorption, nonlinear effects such as self-focusing, sti-
mulated scattering, collisional (electron avalanche), and
multiphoton absorption13–15, while extrinsic mechanism
could be thermal effects caused by microstructural defects
and absorbing inclusions in the materials13,16,17. The
understanding of laser-induced damage in DKDP crystal
helps to improve the crystal quality in the processes of
growth and fabrication, which have been proved by the
improvement on laser-induced damage thresholds (LIDT)
over the past years. However, the mechanism of LID for
THG DKDP crystals is not entirely understood yet and
the LIDT of DKDP crystals should be further improved
with the development of high power laser systems.
In this review, we present the progress of our research

on the growth of large-aperture DKDP crystals and some
aspects of crystal properties related to its application in
high-power laser systems during the past ten years. These
works include determination of deuterium content,
homogeneity of deuterium distribution, three-
dimensional (3D) residual strains, nonlinear absorption,
and laser-induced damage resistance. We hope these data
can be used for further improvement of the quality of the
large-aperture DKDP crystals to meet the stringent
requirements of the ICF project. Finally, we propose
several application prospects for the DKDP crystals.

Crystal growth
KDP type crystals are usually grown by the aqueous

solution method, which mainly includes traditional
temperature-reduction method2, solution circulating
method18, rapid growth method19. The traditional
temperature-reduction method has been widely used to
grow large KDP/DKDP crystals, which requires a long
growth period of more than two years with a slow growth
rate (1–2mm day−1). This will bring high risk and high
cost to large-size crystal growth. However, it is likely to
obtain high-quality large-size crystals by the traditional
method, which can meet the more stringent requirements
of quality and size for nonlinear optical crystals, especially
for the third harmonic generation (THG) crystal with
further development of the ICF engineering. The optimal
growth process is determined by studying the DKDP
crystal properties under different growth conditions
including raw material, growth method, seed orientation,
deuterium content20–23. Then large DKDP crystal has
been successfully grown by traditional method on these
bases (Fig. 1), which can fabricate the THG single-crystal
optics with the size exceeding 400 mm.
Rapid growth technology has become a hot research

topic since the 1990s, which can greatly increase the
crystal growth rate (up to 50 mm day−1)24. Compared to
the traditional method, the rapid growth method using a
point seed can greatly reduce the volume of regenerated
seed caps (the opaque region on the seed crystal) and

highly improve the crystal utilization rate. The key pro-
blem of realizing the rapid rate of crystal growth is the
stability and high supersaturation of an aqueous solution.
If supersaturation is not properly controlled, the crystal-
lization will occur not only on the crystal surfaces but also
on the invisible small crystal nucleus in the solution,
which will cause an undesirable spontaneous crystal in the
crystallizer and then lead to the failure of rapid growth for
large crystals. Nowadays, rapid growth technology has
been successfully developed to grow large-aperture high-
quality KDP crystals which can meet the requirements for
the fabrication of the optics needed for the ICF24–29.
At the same time, the point-seed rapid growth tech-

nology has been used to grow DKDP crystals. In 1999, N.
Zaitseva et al. designed a continuous filtration system for
rapid crystal growth which was used to obtain KDP and
DKDP crystals with sizes up to 55 cm30. Zhang et al.
successfully used point-seed rapid growth technology to
grow DKDP crystals with a deuterium content of 98%31,32.
In 2019, Cai et al. reported that a highly deuterated DKDP
crystal with sizes up to 318mm× 312mm× 265mm was
grown by the rapid-growth method33. This demonstrates
that growth by the rapid growth method not only shortens
the growth period but also avoids the disturbance of
monoclinic crystals, especially for the growth of highly
deuterated DKDP crystals. However, the pyramid-prism
interfaces in the rapidly grown crystals not only decrease
the optical properties of crystals but also lead to obvious
phase jump, which will cause the intensity modulation of
the propagation beam, especially for the third harmonic
beam modulation34–38. Researchers have changed the
initial seed orientation under the rapid growth conditions
to achieve a high yield of THG optics and eliminate the
pyramid-prism interfaces4,39–41.
For tripler DKDP crystals grown by rapid-growth

technology, although successfully producing the large-
size optics meeting NIF requirements at LLNL, the
material quality did not completely meet all NIF

Fig. 1 Photograph of large-size DKDP crystal grown by the
traditional method
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specifications. Therefore, all the tripler DKDP crystals
used in NIF were grown by the traditional method5. Chen
et al. successfully used the rapid growth method to grow a
cuboid DKDP crystal without a pyramidal sector41.
Whether the resulting material grown by this method
meets the requirements of the project needs to be further
verified.

Crystal characterization
Determination of deuterium content in DKDP crystal
Deuterium content is a very important parameter for

DKDP crystal, which is defined as the molar percentage of
deuterium in the total number of hydrogen atoms in the
crystal lattice. The chemical and physical properties of
DKDP crystals are highly sensitive to the deuteration level
of DKDP crystals, such as lattice parameters, phase-
transition temperature, refractive index, optical proper-
ties16,42–44. Therefore, an accurate measurement of the
degree of deuteration in DKDP crystal is extremely
important for its applications in high-power laser systems.
G. M. Loiacono et al. reported the variation in the fer-

roelectric transition temperature with deuteration in
1974, which was almost dependent linearly on its deu-
teration level45. Yaksin et al. presented that Raman scat-
tering spectra could be used to measure the deuteration
degree of DKDP crystals46. Huser et al. demonstrated that
the Raman shift of the main PO4 vibration peak varied
linearly with the deuteration level47. Li et al. proposed a
new method to measure the deuterium content of DKDP
crystals, which mainly used thermo-gravimetric apparatus
to weigh the initial DKDP crystal sample and products of
thermal decomposition48. Liu et al. found that there was a
linear relationship between refractive index and deutera-
tion degree of DKDP crystal, which might become a
potential method to determine the deuterium content49.
However, all of the above methods measured the variation
of the physical and chemical properties of crystals with
the deuterium content to determine the deuterium con-
tent of DKDP crystals indirectly.
The neutron scattering length of the deuterium atom is

larger than that of other atoms in DKDP crystal, so
neutron diffraction can be used as an effective technique
to directly determine the deuterium content of DKDP
crystals50,51. Neutron powder diffraction data were mea-
sured by the high-pressure neutron powder dif-
fractometer (Fig. 2). Table 1 showed the deuterium
content of DKDP crystals (Dc) grown from different
solution deuteration levels (Ds), which could be obtained
from the refined neutron diffraction data.
Then the results of neutron diffraction were used to

calibrate the relationship between the deuterium content
and the variation of PO4 vibration peak in Raman spectra
and the absorption bands in IR spectra, respectively.
According to the Raman shifts of PO4 vibration peak of

KDP and DKDP crystals with different degrees of deu-
teration (Fig. 3a), the relative Raman shift [Δν1=
ν1(KDP)− ν1(DKDP)] was used to determine the deu-
terium content of DKDP crystals. There was a linear
relationship between the relative Raman shift and Dc (Fig.
3b), as follows:

Dc %ð Þ ¼ 2:64 % cm�1
� ��1

h i
´ ν1ðKDPÞ � ν1ðDKDPÞ½ �

ð1Þ
where ν1(KDP) and ν1(DKDP) were the Raman shifts of
the PO4 vibration peak (cm−1) for KDP and DKDP
crystals, respectively.
Similarly, the dependence of the variation in β(O-H/D)

(it presents stretching vibration of the O-H or O-D bond)
and ν1(PO4) of the IR spectra on the deuterium content
was showed two different kinds of a linear relationship
between them (Fig. 4). When the degree of deuteration
was less than 73.8%, the linear relationship was shown as
follows:

Dc %ð Þ ¼ 0:75 % cm�1
� ��1

h i
´ β DKDPð Þ � β KDPð Þ½ �f

þ ν1 DKDPð Þ � ν1 KDPð Þ½ �g
ð2Þ

where β(KDP) and β(DKDP) were the β(O-H/D) absorp-
tion bands of KDP and DKDP crystals, respectively. When
the degree of deuteration was more than 73.8%, the
relationship could become the following Eq.:

Dc %ð Þ ¼ 1:681 % cm�1
� ��1

h i
´ β DKDPð Þ � β KDPð Þ½ �f

þ ν1 DKDPð Þ � ν1 KDPð Þ½ �g � 91:5

ð3Þ

Both spectral techniques could be applied to determine
the deuterium content of DKDP crystals with solution
deuteration level less than 92%, while IR spectroscopy
should be more suitable to measure more highly deuter-
ated DKDP crystals.

Homogeneity of deuterium distribution in DKDP crystal
It is well-known that the homogeneity of deuterium

distribution in DKDP crystals is very important for
optical applications. In the growth process of DKDP
crystals, the inhomogeneity of deuterium distribution is
closely related to the variation of growth parameters. For
a rapidly grown DKDP crystal with the size of 65 mm ×
65 mm× 113mm, the homogeneity of deuterium dis-
tribution was measured by the Raman spectra and the
results showed the maximum discrepancy of deuterium
content was 5.4%36. The effect of supersaturation on

Xu et al. Light: Science & Applications          (2022) 11:241 Page 3 of 15



deuteration distribution in DKDP crystal was further
investigated by Raman and infrared spectroscopy52. The
deuterium distributions in DKDP samples with different
deuteration levels were obtained (Fig. 5a) and then the
homogeneities between pyramidal and prismatic sections
were compared (Fig. 5b). The maximum discrepancy of
the average deuterium content between the two sections
was approximately 2% when the solution deuteration

level is 70%, while that of others was less than 1%. The
deuteration segregation coefficient of rapid-growth
DKDP crystal with high supersaturation was smaller
than that of traditional-growth crystal with low super-
saturation in solution with the same deuterium content
(Fig. 6). For the rapid-growth DKDP crystal grown with
different supersaturation, deuterium distributions in
crystals were shown in Fig. 7. The results indicated that
the deuterium content in the pyramidal section suffered
only minimal disruption from variations in super-
saturation, while that in the prismatic section presented a
large fluctuation (Fig. 7a). The difference in the average
deuterium content between the two sections increased
with increasing supersaturation, which indicated serious
inhomogeneity of deuterium distribution in the whole
crystal (Fig. 7b).

Table 1 The deuterium contents of DKDP crystals and
their growth solutions51

Ds(%) 0 40.0 55.0 65.0 80.0 92 98.0 99.5

Dc(%) 0 29.1 45.1 55.1 73.8 83.9 93.8 99.1

Reprinted with permission from51 Copyright, The Optical Society
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The deuterium homogeneities of large-size DKDP
crystals grown by traditional growth method and rapid
growth method were investigated in situ by Raman
spectroscopy, respectively37,53. The results indicated that

the inhomogeneity of deuterium content was estimated to
be 0.12% for the traditional-growth DKDP crystal, which
meant its influence on the third harmonic generation
(THG) efficiency could be neglected. However, the
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deuterium gradient was about 0.2% cm−1 for the rapid-
growth DKDP crystal, which will lead to about a 5%
reduction of the THG efficiency at 3 GW cm−2 of fun-
damental radiation37.

Residual strain and stress in single crystal
In the growing and machining process of DKDP crys-

tals, residual stress can be introduced in the crystal by the
lattice deformation, which may be caused by some una-
voidable changes such as the H/D isotopic exchange,
temperature variation, defect generation, introduction of
external forces50,54–56. The residual stresses not only
affect the mechanical properties of the crystal but also
affect the other properties. Thus, it is very important to
investigate the residual stress in DKDP crystal for its
applications in high power laser systems.
The residual stress in a single crystal is characterized

mainly by the photoelastic method, X-ray technique, and
neutron diffraction technique. Compared with the other

two methods, the neutron diffraction technique has
obvious advantages for its deep penetrability through
most of the materials without damage occurring, which
has been maturely applied to the research of stress and
strains in polycrystal materials57–59.
DKDP crystals with different deuterium contents were

grown by rapid growth method and the three-dimensional
(3D) residual strains in single crystals were investigated by
neutron diffraction technique52,60. The magnitude of resi-
dual strains (εij) in crystallographic coordinate was 10−3 to
10−4 and the normal strains along [001] direction were
always compressive (Table 2). Then according to the values
of macroscopic strains (εij)

60 and elastic stiffness constant
(Cij)

61, the residual stresses were calculated by Hooke’s law.
It was illustrated that the value of shear stress was much
smaller than that of normal stress and the magnitude of the
macro-strain in DKDP crystals was independent of the
deuterium content (Table 3). The average micro-strains of
the {323} faces were calculated from the values of full-width
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at half-maximum for the diffraction peaks (Fig. 8), which
indicated that there was a trend of increasing first and then
decreasing for the average the micro-strain, with the max-
imum value occurring at 50% deuterium. In addition, the
potential sources of the residual strains and stresses in single
crystals were attributed to the defects including dislocations,
interstitial defects, and vacancy defects. However, the

influence of these defects on the macroscopic stress needs
further research.

Nonlinear optical property of DKDP crystal
The absorption of UV light usually increases nonlinearly

with the irradiated laser intensity, which has become one of
the major problems for the frequency-conversion crystal. A.
Melninkaitis et al. found that when the energy density
increased from 0.1 J cm−2 to 3 J cm−2, the absorption of
KDP crystal with a length of 1 cm at 355 nm increased
1.9%62. The nonlinear absorption (NLA) is usually attributed
to multiphoton absorption. For the frequency-conversion
crystals, the NLA not only results in the energy loss of the
laser beam but also causes potential damage to the crys-
tals63,64. At present, the NLA of KDP crystals at different
wavelengths have been investigated, while the research for
the NLA of DKDP crystals has been few reported65–68.
The NLA of DKDP crystals with deuterium content of

70% was measured by the Z-scan method using the
nanosecond and picosecond Nd: YAG laser with a
wavelength of 355 nm, respectively69,70. Both results
showed that the NLA at 355 nm was assigned to two-
photon absorption (Fig. 9). The NLA and nonlinear
refraction (NLR) of DKDP crystals were obviously influ-
enced by thermal annealing, which decreased with
the increasing annealing temperatures (Figs. 10 and 11).

Table 2 The macro-strain εij in crystalline coordinate60

Dc(%) Dc ε11 ε22 ε33 ε23 ε13 ε12

0 0 0.00690(03) 0.00420(08) −0.00710(20) 0.00080(03) 0.00080(01) 0.00130(03)

9 0.09 0.00180(18) −0.00110(17) −0.00100(00) −0.00010(01) −0.00110(01) −0.00140(01)

45 0.45 0.00570(18) 0.00190(16) −0.00400(03) 0.00030(04) 0.00060(05) 0.00090(04)

50 0.5 0.00220(26) 0.00260(23) −0.00390(07) 0.00060(02) −0.00010(04) 0.00030(02)

63 0.63 0.00090(05) 0.00000(07) −0.00280(08) −0.00050(01) −0.00020(01) 0.00030(00)

73 0.73 0.00150(06) 0.00150(06) −0.00290(04) 0.00040(01) 0.00040(01) 0.00020(02)

99 0.99 −0.00030(19) 0.00160(03) −0.00210(03) −0.00010(02) −0.00010(05) −0.00010(01)

Reproduced with permission60 Copyright, Wiley-VCH

Table 3 The macro-stress in crystallographic coordinate (MPa)60

x 0 0.09 0.45 0.50 0.63 0.73 0.99

σ11 320.5 ± 3.1 107.5 ± 9.5 294.4 ± 9.7 77.0 ± 13.3 26.9 ± 3.7 52.0 ± 3.8 −50.5 ± 12.3

σ22 136.9 ± 6.4 −89.7 ± 9.4 36.0 ± 8.5 104.2 ± 11.7 −34.3 ± 4.5 52.0 ± 3.5 78.7 ± 2.9

σ33 −244.0 ± 10.9 −43.0 ± 3.6 −124 ± 2.1 −147.0 ± 1.4 −34.3 ± 5.4 −115.0 ± 3.0 −92.0 ± 3.3

σ23 7.8 ± 0.2 −8.4 ± 0.1 5.4 ± 0.3 1.8 ± 0.1 1.8 ± 0.1 1.2 ± 0.1 −0.6 ± 0.1

σ13 9.6 ± 0.4 −13.2 ± 0.1 7.2 ± 0.6 −1.2 ± 0.5 −2.4 ± 0.1 4.8 ± 0.1 −1.2 ± 0.6

σ12 9.6 ± 0.4 −1.2+ 0.1 3.6 ± 0.5 7.2 ± 0.3 −6.0 ± 0.2 4.8 ± 0.1 −1.2 ± 0.2

Reproduced with permission60 Copyright, Wiley-VCH

M
ic

ro
-s

tr
ai

n 
(%

)

Deuterium level (%)

0.16

0.18

0.20

0.22

0.24

0.14

0.12

20 40 60 80 1000

Fig. 8 The average value of the micro-strain of {323} each faces of
experimental sample60. Reproduced with permission60 Copyright,
Wiley-VCH

Xu et al. Light: Science & Applications          (2022) 11:241 Page 7 of 15



In addition, the laser-induced damage of 70% deuterated
DKDP crystal was considered to relate to NLA and NLR,
which should be further researched.

Improvements on laser-induced damage
resistance
The most important property of KDP and DKDP crystal

used as nonlinear optics in high power laser systems such
as NIF or SG III is the laser-induced damage resistance.
The mechanism of laser-induced damage for these mate-
rials and how to improve their resistance to laser damage
have attracted intensive attention since the construction of
the large-aperture laser system for the Inertial Confine-
ment Fusion. From the perspective on the microstructure
of crystalline materials, many microscopic-scale defects
such as impurities, dislocations, inclusions, growth
boundaries, etc. generated during the growth of single
crystals and their influences on laser induced damage have
been studied71–73. Along with the improvement in the
material manufacturing process, the above-mentioned
defects can be well removed or controlled at a very low
level, and studies have shown that the damage

phenomenon of crystal optics is not substantially related to
those defects. From the reported damage behavior and
mechanism of crystal optics irradiated by ultraviolet laser
with high fluences, the initial bulk damage of crystal is
related to the nano-scale cluster defects inside the mate-
rial, which become the light absorption center when
irradiated by high power laser16,74. The damage char-
acteristics of materials are closely related to the size and
density of absorbing defects. The distribution of such
absorbent defects is well below the detection limit of
common optical techniques, so it is difficult to obtain
complete information such as their chemical species, sizes,
and distribution characteristics.
At the beginning of research on DKDP crystal growth,

the effect of purity of raw materials and variable crystal
growth parameters on the laser-induced damage property
have been investigated. Although the thermal annealing
method which has been confirmed for effectively
improving the optical property of KDP crystal is seldom
used for DKDP crystal as its lower phase transition tem-
perature. Improved thermal annealing for DKDP crystal
will be introduced here, as well as laser conditioning.
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Moreover, the connection between the growth parameters
and the laser induced damage resistance of DKDP crystals
could be revealed from the defects generated during the
growth process. Some experiments and theoretical studies
on the effect of defects on the properties of KDP/DKDP
crystals will be present in the third section.

Impurities and growth conditions
Normally, there always exist some impurities in the

aqueous solution for DKDP crystal growth. The impu-
rities in the solution may come from starting salts, deut-
erated water, intention dopants, or dissolved materials of
the vessel. Even now the nature origin of bulk damage is
unclear, or no impurities or defects that are directly
related to the formation of pinpoint damage have been
detected. The impurities with ion state in the solution
could be absorbed on the growing surface and modify the
movement of the growth steps, the growth habit, and the
crystallinity of DKDP crystals.
In our previous work, we concentrated on impurities

from the starting salt. Sun et al.75 have used the con-
ventional temperature-reduction method to grow
KD2PO4 (DKDP) crystals from 85% deuterated solution
synthesized by two kinds of KH2PO4 (KDP) starting salts.
The crystals which were grown from material containing
higher-level metallic impurity (Fe~10 ppm) have more
ultraviolet optical absorption than that grown from
material with lower-level impurity (Fe~1 ppm). The
crystal grown with high purity material has superior laser
damage resistance at 1064 nm, but no significant differ-
ence (<15%) at 355 nm compared to the crystal grown
with lower purity material. Liu et al.76 have used three
kinds of KH2PO4 salts (named as A, B, and C; A and B
were purer than C, the mass content of main metal ions
were below 1 ppm) to grow DKDP crystals by conven-
tional and rapid growth methods, respectively. The 1-on-1
testing damage probabilities curves of these DKDP crys-
tals are shown in Fig. 12. For conventional growth, the
difference in material purity does not lead to a visible
variation of damage probabilities between the three
crystals A1, B1, and C1. Normally, the rapidly grown
crystals have poor laser damage resistance compared with
the conventionally grown crystals. However, there will be
comparable damage resistance to conventionally grown
crystals when the crystal is grown at a lower growth rate
(e.g., about 3 mm day−1 for crystal C2). With identical
other growth parameters, the damage resistance in DKDP
is slightly independent of raw material with the mass
content of main metallic impurity below 1 ppm.
Burnham et al.72 have reported that laser induced pin-

point bulk damage of DKDP crystals at 351 nm depends
on growth conditions such as growth temperature, and
continuous filtration. Negres et al.77 have proved that the
damage performance of DKDP crystals was dependent on

growth temperature and non-correlated with impurity
concentration. In addition, the damage resistance in
DKDP is independent of the growth rate at constant
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growth temperature. In our work, continuous filtration is
a key procedure during the process of large-aperture
DKDP crystal grown in a 1000 L crystallizer. It was found
that the samples from different locations within the boule
of conventionally grown DKDP crystal with continuous
filtration have a slight difference in laser damage resis-
tance at 355 nm (Table 4). Like the previous report, the
sample from the last grown pyramidal section (represent
material grown at low temperature) has higher laser
damage resistance. Moreover, we have grown four DKDP
crystals with 60% deuterated level at different tempera-
tures using the point seed technique but without con-
tinuous filtration. The aspect ratio of crystal grown at high
temperature is higher than that grown at low temperature.
The crystalline perfection and the laser induced damage
threshold at 1064 nm decrease with the decrease of
growth temperature. DeMange et al.78,79 have reported
that precursors responsible for damage initiation at
1064 nm are different from those at 355 nm. Thus, there
appears a different trend for laser damage resistance at
1064 nm.

Thermal annealing and laser conditioning
In addition to using high-purity raw materials and

optimizing growth processes, additives, dopants, and
post-treatment can also be used to improve the quality of
the KDP and DKDP crystals. The post-treatment includ-
ing thermal annealing and laser conditioning could be
used to increase the activation energy of lattice motion,
release excess energy, reduce the internal stress of the
crystal, and improve the crystallinity. Then the laser
damage resistance and optical homogeneity can be
improved.
Early in the 1980s, Swain et al.80,81 have investigated the

effect of subthreshold irradiation on the 1064 nm bulk
laser damage resistance of KDP crystals. The combination
of baking (thermal annealing) and laser irradiation with
sub-threshold fluence was more effective in improving the
bulk damage threshold for all laser pulse duration from 1
to 20 ns. Fujioka et al.82 also proved that the thermal

conditioning was effective for the rapidly grown crystals
to improve the damage threshold (1064 nm, 1 ns, 1- on - 1
test), as well as reducing the strain in the crystal. Guillet
et al. have reported that thermal annealing could indeed
improve laser damage resistance at 3ω for DKDP crystal,
the resistance increment depends on the pulse length83. In
Fu’s work84, the optical homogeneity of the samples for
KDP and DKDP have been improved after thermal con-
ditioning, while the laser damage threshold and light
absorption coefficient showed no significant change. Sun
et al. also confirmed that thermal conditioning was an
effective method to improve the transmittance in ultra-
violet wavelength and no improvement on laser damage
thresholds for both 1ω and 3ω75. The thermal annealing
temperature is usually below 363 K for DKDP crystals,
while the annealing temperature of KDP crystals is about
423 K. The relative low annealing temperature leads to no
significant improvement of thermal annealing on the laser
damage resistance for DKDP crystals. Thus, we investi-
gated in detail the high temperature phase transition of
KD2PO4 crystal. And a new annealing method was
developed by using silicone oil as a protective ambient
environment under higher temperatures, the hydrogen-
deuterium exchange can be inhibited under this envir-
onment85. After the annealing process (Fig. 13), the
crystallinity of the DKDP crystal is improved (Fig. 14).
Moreover, the improvement on 3ω laser damage resis-
tance after thermal annealing was confirmed by Cai et al.
(Fig. 15)70. This new thermal annealing method has been
set as an important procedure in our production of large-
aperture DKDP optics.
Since laser conditioning by pre-exposure to subthres-

hold laser pulse have been proved as an effective method
to improve the laser damage resistance for KDP and
DKDP crystals. Protocols for laser conditioning on optics

Table 4 The LIDTs of 70% DKDP crystal from different
locations within the boule by 1-on-1 and R-on-1
measurement

Samples Fluence (J cm−2, 5.8 ns, 355 nm)

1-on-1 R-on-1

1# (near seed cap) 0.8 2.9

2# (mid prism) 1.9 7.2

3# (late prism) 1.6 5.2

4# (last pyramid) 2.2 7.5
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Fig. 13 Annealing process for DKDP crystals with a deuterated level of
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used in large-aperture laser systems gain intensive atten-
tion from researchers, as well as the characteristics and
mechanisms of laser conditioning for KDP/DKDP crys-
tals11,86–90. Zhao and Hu have studied the absorption
property and mitigation of scattering defects for DKDP
crystals after laser conditioning91–93. We have measured
the laser induced damage threshold of many DKDP
crystals, one typical result is given in Table 5. It can be
seen that the LIDT of R-on-1 measurement which has the
effect of laser conditioning is obviously higher than that of
1-on-1 measurement. The efficiencies of laser condition-
ing are dependent on the growth process of DKDP crys-
tals. Liao et al. developed an Absorption Distribution
Model (ADM) to map the defect population variability in
DKDP crystals90. It’s necessary to use this kind of model
to optimize the laser conditioning protocol for crystals
with different damage qualities.

Defects for damage initiation in KDP/DKDP crystal
In the past decades, many efforts including experi-

mental measurements or theoretical studies have been
devoted to exploring the defects in KDP/DKDP crystals

which are thought to be relative to the laser damage
initiation94–103. The observed results based on micro-
scopic techniques such as laser scatter diagnostic and
fluorescence microscopy has indicated that the scattering
defects and fluorescent clusters didn’t strongly correlate
to the location of bulk damage sites94,98. The experimental
work using optical absorption and electron paramagnetic
resonance spectroscopies has identified four main
intrinsic (atomic) defects in KDP crystals, such as
[HPO4]

− center, [HPO4]
0 center, (H)0 atoms, and [PO3]

2−

center95–97. S. G. Demos et al.16 developed a novel
experimental approach to probe the electronic structure
of damage precursors. In their experiment, the sample
was irradiated to spatially and temporally overlapping 2ω
and 3ω pulses at various fluence combinations and the
density of pinpoint damage sites as a function of the ratio
of the 3ω effective fluence over the corresponding 2ω
fluence was estimated. The results could be reproduced
by using a multi-level electronic structure model. Based
on the experimental observations and the modeling
results, they proposed that clusters of holes trapped near
oxygen sites are the constituent defects of the damage
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precursors. However, it remains a challenge to directly
detect this kind of defect in experiment.
On the other hand, theoretical studies by density

functional theory have been carried out to investigate the
electronic structure of point defects in KDP crystal. The
modeling results such as band-gap narrowing or a new
state in the band-gap can explain the variation of optical
absorption property for this material. In our recent works,
the first-principle method was applied to investigate the
intrinsic, interstitial, and metal ion defects in KDP and
ammonium dihydrogen phosphate (ADP) crystals104–108.
However, crystal defects often do not exist singly but
combine to form clusters. Thus, Sui et al. have investi-
gated the structure, stability, and electronic structures of
the oxygen vacancy cluster defect and Fep

2− + Vo
2+

cluster defect for the KDP crystal. The partial density of
states (PDOS) of the oxygen vacancy and cluster defects
are shown in Figs. 16 and 17108. The concentration of
oxygen vacancy defects has little effect on the electronic
structure, only leading to the torsion of the surrounding

bonds. The defect state induced by Fep
2− defect could

introduce three defect states at 0.5, 1.2, and 4.0 eV,
respectively. When the Fep

2− + Vo
2+ cluster defect forms,

these defect states shift about 1.0 eV close to conduction

Table 5 Laser induced damage thresholds of tripler
samples for DKDP crystals

Raw materials 0%LIDT (J cm−2)

(355 nm, 8 ns)

0%LIDT (J cm−2)

(355 nm, 8 ns)

Conventional growth Rapid growth

1-on-1 R-on-1 Gain 1-on-1 R-on-1 Gain

A 8.5 16.9 2.0X 8.5 13.9 1.6X

B 9.6 13.9 1.4X 7.2 11.1 1.5X

C 8.1 15.8 2.0X 8.8 12.8 1.5X
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band minimum (CBM). This variation would influence
the transient optical absorption under irradiation by a
high-intensity laser pulse. As the most common defects in
KDP/DKDP crystals, we also studied the effect of dis-
location by theoretical modeling. The structure, total
system energies, electronic structures, and optical
absorption of the [010] and [011] screw dislocations in
KDP crystals have been investigated using the density
functional theory with Perdew-Burke-Ernzerhof and
Heyd-Suseria-Ernzerhof (HSE06) functionals109,110. The
results show that these dislocations would contribute to a
large nonlinear absorption, enhance the crystal to absorb
more laser energy, and decrease the laser-induced damage
threshold of the KDP crystal.

Conclusios and perspectives
Large-aperture high-quality DKDP crystals have been

successfully grown by the traditional method, which can
fabricate the large single-crystal optics with size exceeding
400mm. Raman spectroscopy as a non-destructive
detection method is applied to determine the deuterium
content and its distribution in DKDP crystal, which has
been calibrated by neutron diffraction. The three-
dimensional residual strains in DKDP crystals with dif-
ferent deuterium contents are investigated by neutron
diffraction technique. However, the pathway by which the
defects affect the macroscopic stress in the grown crystal
needs further research. The nonlinear absorption of 70%
deuterated DKDP crystal at 355 nm has been assigned as
two-photon absorption with the Z-scan method, which
may contribute to the laser-induced damage.
For the preparation of DKDP crystals with excellent

laser damage resistance, the purity of raw materials,
continuous filtration technology, thermal annealing and
laser conditioning are all key factors. Although the laser
damage mechanism and laser conditioning mechanism
are still not well understood, improvements of these
processes enables the grown crystals to meet the specifi-
cations of the ICF laser system. Another remaining
challenge is the lack of techniques to effectively char-
acterize defects associated with the laser damage initia-
tion. This makes it difficult to implement more efficient
process improvements to further enhance the damage
resistance of DKDP crystals. The simulation results of
theoretical calculations can provide further insights into
the experimental observations to a certain extent. Con-
sidering the difference brought about by isotopic effect,
developing the pseudopotential of deuterium atom can
make future theoretical calculations for DKDP crystals
more accurate. In addition, as nonlinear optical crystals
with outstanding performance, the applications of KDP/
DKDP crystals and their analogs in fourth frequency
generation, true zero-order waveplate, optical parametric

chirped pulse amplification (OPCPA) still require further
research.
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