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Abstract
The photovoltaic performance of perovskite solar cell is determined by multiple interrelated factors, such as perovskite
compositions, electronic properties of each transport layer and fabrication parameters, which makes it rather
challenging for optimization of device performances and discovery of underlying mechanisms. Here, we propose and
realize a novel machine learning approach based on forward-reverse framework to establish the relationship between
key parameters and photovoltaic performance in high-profile MASnxPb1-xI3 perovskite materials. The proposed
method establishes the asymmetrically bowing relationship between band gap and Sn composition, which is precisely
verified by our experiments. Based on the analysis of structural evolution and SHAP library, the rapid-change region
and low-bandgap plateau region for small and large Sn composition are explained, respectively. By establishing the
models for photovoltaic parameters of working photovoltaic devices, the deviation of short-circuit current and open-
circuit voltage with band gap in defective-zone and low-bandgap-plateau regions from Shockley-Queisser theory is
captured by our models, and the former is due to the deep-level traps formed by crystallographic distortion and the
latter is due to the enhanced susceptibility by increased Sn4+ content. The more difficulty for hole extraction than
electron is also concluded in the models and the prediction curve of power conversion efficiency is in a good
agreement with Shockley-Queisser limit. With the help of search and optimization algorithms, an optimized Sn:Pb
composition ratio near 0.6 is finally obtained for high-performance perovskite solar cells, then verified by our
experiments. Our constructive method could also be applicable to other material optimization and efficient device
development.

Introduction
Since the perovskite solar cells (PSCs) are proposed by

Kojima et al. in 20091, they have been studied extensively
with a rapid rise in power conversion efficiency (PCE)2–5

which exceeds 25.5% in single-junction PSC6. Organic
metal halide perovskites (OMHPs) bestowed with out-
standing optoelectronic properties are beneficial for high-

performance PSCs, including tunable band gap, low exciton
binding energy, high light absorption coefficient and long
carrier diffusion length7–10. One of the most typical
OMHPs is methylammonium lead tri‐halide (MAPbI3),
which has attracted intensive interest and is one of the most
promising materials for developing low-cost and solution-
processed optoelectronic technology4,11. Despite the rising
efficiency records for PSC devices, the efficiency for single-
junction MAPbI3-based device is limited by the band gap
(≈1.6 eV), which is higher than the optimal range of
Shockley-Queisser (S-Q) limit (≈1.35 eV)12. To exceed the
S-Q limit, recently all-perovskite tandem solar cells (PTSCs)
composed of wide-bandgap subcells and low-bandgap

© The Author(s) 2022
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Hao Zhang (zhangh@fudan.edu.cn) or
Yiqiang Zhan (yqzhan@fudan.edu.cn)
1School of Information Science and Technology, Fudan University, Shanghai
200433, China
2College of Information, Mechanical and Electrical Engineering, Shanghai
Normal University, Shanghai 200234, China
Full list of author information is available at the end of the article

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

www.nature.com/lsa
http://orcid.org/0000-0002-1331-3060
http://orcid.org/0000-0002-1331-3060
http://orcid.org/0000-0002-1331-3060
http://orcid.org/0000-0002-1331-3060
http://orcid.org/0000-0002-1331-3060
http://orcid.org/0000-0002-8201-3272
http://orcid.org/0000-0002-8201-3272
http://orcid.org/0000-0002-8201-3272
http://orcid.org/0000-0002-8201-3272
http://orcid.org/0000-0002-8201-3272
http://creativecommons.org/licenses/by/4.0/
mailto:zhangh@fudan.edu.cn
mailto:yqzhan@fudan.edu.cn


subcells have been proposed and proven to possibly further
increase the efficiency, considering improved utilization of
solar energy13,14. Tin (Sn), as an environmentally-safer
element in the same group of periodic table with Pb, can
replace Pb in MAPbI3 crystal partially or completely to form
Sn-Pb alloying or Sn-based crystals, i.e. MASnxPb1-xI3

13,
which can tune the band gap of Sn-Pb alloys between 1.1 eV
and 1.6 eV by varying stoichiometric ratios of Sn to Pb15–18.
Therefore, MASnxPb1-xI3 has been considered as the most
promising candidate for high-efficiency single-junction
PSCs or low-bandgap subcells in PTSC, responsible for
absorbing low-energy photons13,19–21. Much effort has been
devoted and the efficiency for mixed Sn-Pb PSCs has
increased to 18.6% in PTSCs with MA as A site22, and
23.3% in Sn-Pb PSC with MA-FA-Cs as A site23, which is
approaching the recorded efficiency achieved in single-
junction Pb-based PSCs. However, for the goal of exceeding
the efficiency of Pb-based PSCs and reaching S-Q limit in
the future, it still needs a lot of optimization. The unsa-
tisfactory performance for mixed Sn-Pb PSCs is mainly due
to the poor morphology of fabricated Sn-based perovskites
resulted from Sn vacancies formed by easy oxidation of
Sn2+ to Sn4+ in ambient environment20,24, and partially
hindered by the insufficient understanding of the photo-
voltaic properties of mixed Sn-Pb perovskites, such as the
underlying mechanisms for manipulations of band gap and
photovoltaic-related parameters.
Current investigations of high-efficiency PSC devices

require delicate control of chemical synthesis, laborious
experimental steps, substantial resource input and a long
research cycle to optimize the perovskite compositions,
material of each transport layer, interfacial changes and
other related parameters, with the purpose to establish the
relationship between desirable PSC properties and fabri-
cation parameters. However, due to the huge chemical
space for mixed Sn-Pb alloys, the trial-error experiments
are tedious as well as time and energy consuming, and
sometimes it is beyond reach of providing a thorough
investigation. Machine learning (ML) as a new tool
learning from known data to solve intractable and com-
plicated problems, can establish complex nonlinear rela-
tionship between input parameters and output property
to make rapid prediction without prior knowledge25.
Moreover, with increasing amount of experimental data,
the established model could be continuously optimized
and its prediction ability could be further improved. At
present, there are reports on the prediction of perovskite
band gap using ML method26–30, and some published
studies have used ML to design organic solar cells (OPVs)
and predict the performance of OPVs31–33. Sahu et al.
used 13 important microscopic properties of organic
materials to build a ML model for predicting PCE of
OPVs and constructed a dataset for 280 small molecule
OPV systems34. David et al. utilized a database consisting

of 1850 entries of OPV characteristics, performance and
stability data and employed a sequential minimal opti-
mization regression model as means of determining the
most influential factors governing the solar cell stability
and PCE35. However, few researches extend similar
method to PSCs and ML is rarely used to find the rela-
tionship of PSC performance with material properties.
Although Odabaşı et al. demonstrated the influencing
factors of PSC performance using ML according to a large
number of published papers36, their work is mainly based
on statistical analysis and a clear description about the
underlying physics needs to be given. Li et al. predicted
the band gap of perovskite materials and PCE of PSCs
through ML37 and the physical law learned by ML was
explored. However, currently most work using ML is
purely conducting simulations, and researches on PSCs
combined simulations and experiments are still lacking.
In the present work, we propose a forward-reverse

framework for the first time, to establish the relationship
between key parameters and photovoltaic performances
and realize the optimization of photovoltaic performances
in mixed Sn-Pb PSCs. In the process of forward design,
firstly, we establish a ML model that predicts the band gap
(Eg) of OMHP materials with varied composition, and
verify the Eg model by experiments. Then, considering the
energy levels of OMHP and carrier transport layers, the
models that predict PSC performance (short-circuit cur-
rent Jsc, open-circuit voltage Voc, fill factor FF and PCE)
are designed and implemented without prior information.
The mechanisms behind different performance models
are analyzed in detail and several physical rules are con-
cluded as well. Finally, with the goal of high PCE, three
features (Sn-Pb ratio, Eg and the publication time of
reported article) are used to build PCE model and directly
retrodict the optimal OMHP composition. To the best of
our knowledge, this process has not been reported on
PSCs before. Based on the predicted optimal proportion
for mixed Sn-Pb PSCs, we fabricate the samples and the
predicted results are verified.

Results
Machine learning models
The OMHP with formula of ABX3 is studied, where the

cation A is methylammonium CH3NH3
+ (MA+), B is the

inorganic cation lead (Pb2+) or Tin (Sn2+), and X is iodide
(I-), and the basic device structure of PSC can be divided
into two types according to the different contact materials
with ITO: regular (n–i–p) and inverted (p–i–n)38. The
device performance is determined by the optical and
electrical properties of OMHP, such as exciton binding
energy, carrier mobility, the highest occupied molecular
orbital (HOMO), the lowest unoccupied molecular orbital
(LUMO), etc. The HOMO/LUMO level and interfacial
properties of electron transport layer (ETL) and hole
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transport layer (HTL) could also affect the performance of
PSCs. The forward-reverse framework we propose, to
study the mixed Sn-Pb perovskites, as shown in Fig. 1,
includes two procedures: forward analysis and reverse
engineering. The task of forward analysis procedure is to
establish the Eg and device-performance models using
ML, and that of reverse engineering procedure is to pre-
dict the optimization parameters of mixed Sn-Pb per-
ovskites and experimental realization.
We apply five algorithms to different missions in both

procedures, including linear regression (LR), support
vector regression (SVR), k-nearest neighbor regression
(KNR), random forest regression (RFR), gradient boosting
regression (GBR) and neural network (NN), which can be
implemented by Scikit-learn39 and TensorFlow40. In the
reverse exploration, the established ML model is further
inversely analyzed to carry out a search of maximum PCE
value under some restrictions using genetic algorithm
(GA) or Bayesian optimization algorithm (BO), which are
implemented by Python packages (bayesian-optimiza-
tion41 and deap42). Related detailed explanations of these
algorithms are provided in Supplementary notes.
Special care should be taken when preparing the data in

ML modeling. During the preparation of ML dataset for
Eg model, the repeated data points with the same Sn-Pb
ratio and Eg is counted once, and if a given ratio

corresponds to different reported values of Eg, we keep all
of those values to avoid data bias. For example,
MASn0.75Pb0.25I3 has four reported Eg values, i.e. two
1.18 eV, one 1.17 eV and one 1.27 eV. We keep one data
point for 1.18 eV and two data points for 1.17 eV and
1.27 eV. To explore which elemental property under dif-
ferent Sn-Pb ratios is more dominant in determining the
Eg of MASnxPb1-xI3, 14 physicochemical parameters43 are
used as descriptors of inputs for Eg regression model (see
Table S1), and the SHAP (Shapley Additive exPlanations)
method44 is used to obtain the contribution of each fea-
ture to the Eg model.
When building the ML model to predict photovoltaic

performance of PSCs including Jsc, Voc, FF and PCE, three
parameters are used as input parameters: i) the band gap (Eg)
of OMHPmaterial, ii) the energy difference (ΔH) between the
HOMO of HTL and OMHP material, iii) the energy differ-
ence (ΔL) between the LUMO of ETL and OMHP material.
The schematic energy band diagrams of n–i–p and p–i–n
structures are presented in Fig. 1. For n–i–p or p–i–n, ΔH
and ΔL are both calculated by ΔH ¼ HTLHOMO �
OMHPHOMO and ΔL ¼ OMHPLUMO � ETLLUMO.
Before reverse design, it is important to rebuild the PCE

model for PSCs that involves features including Sn-Pb
ratio, the Eg of OMHP and annual improvement of
material qualities and optimization of processing (denoted

CH3NH3
+

I–

Pb2+

Sn2+

Optimal composition

Forward analysis

Reverse engineering

Underlying physics

E
T

L O
M

H
P H

T
L

E
T

L

O
M

H
PH

T
L ΔLΔL

OMHP

HTL

ETL

h+ h+h+

e-

e-

e- e- e-

e-n-i-p p-i-n

a

b

c

J–V curve

Voltage

C
ur

re
nt

Vmp, Jmp
Jsc

Voc

ΔH ΔH

Fig. 1 The flow chart of proposed forward–reverse method. For forward analysis. a OMHP material information is fed into a machine learning
model to predict the band gap; b the device structure of regular (n–i–p) and inverted (p–i–n), which represents PSC information and is also
combined to construct other ML models. c Through ML the performances of PSCs are predicted, and underlying physics could be revealed and
analyzed with huge data produced. Then based on the forward results, the optimal composition of OMHP with suitable band gap is reversely
deduced for high-performance PSC
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by publication date of research article) inspired from time
series prediction. Since there is relatively uniform stan-
dard for PCE testing of PSCs, it is meaningful to use
publication date as a feature to help the model explore the
PCE progress trend of PSCs with passage of time. Due to
the difference of preparation technologies, the perfor-
mance of devices obtained by different research groups at
the same ratio could also be different. So we use the
maximum PCE result corresponding to each ratio in each
year. Then, based on the mentioned model, the virtual
design of OMHP materials is carried out by GA or BO.
It should be noted that, the data points are collected

from published articles21,37 which are randomly divided
into a training set and a test set in ratios of 90% and 10%.
The dataset for ΔH and ΔL used to build the PCE model is
shown in Figure S1 with 181 data points. To build the Eg
prediction model, 43 data points are used from the per-
formance model after discarding duplicate material
composition data with the same reported value of Eg. In
the model of reverse exploration, the data points with best
PCE for a given preparation method in different pub-
lication times are chosen. For these models, we use 5-fold
cross validation to optimize the hyper parameters of ML
algorithm based on a Python library called hyperopt45,
which could effectively speed up the search of the values
of multiple hyper parameters. The test subset is only used
to test the quality of the built model. We evaluate the
performance of constructed models by three indicators
(the coefficient of determination R2, root mean square
error RMSE and mean absolute error MAE).

Material design by ML: band gap
To utilize the solar energy to the maximum extent, the

minimum Eg of mixed Sn-Pb perovskites used as the low-
bandgap subcells to absorb low-energy photons, are cri-
tical to maximize the PCE of PTSCs. Moreover, manip-
ulating the Eg by an appropriate ratio is also critical for the
realization of high-efficiency and environmentally friendly
single-junction PSCs based on mixed Sn-Pb perovskites.
As previously reported, the valence bands (VBs) of
MAPbI3/MASnI3 crystals are formed by the antibonding
states of I-p and Pb/Sn-s atomic orbitals, and the con-
duction band (CBs) are formed by the antibonding states
of I-p and Pb/Sn-p atomic orbitals. When the ratio of Sn
increases in MASnxPb1-xI3 alloys, the VB/CB levels
undergo the shift from −5.45 eV/-3.90 eV (x= 0) to
−5.47 eV/-4.17 eV (x= 1) respectively16 and Pb-p as CB
and antibonding states of I-p and Sn-p as VB, which
subsequently leads to the well-known bowing effect in the
Eg of MASnxPb1-xI3. However, the previously reported Eg
values denoted as black dots in Fig. 2a are not directly
linearly or parabolically dependent on the ratio x, since
replacing of Pb by Sn will cause lattice compression and
octahedral tilting in MASnxPb1-xI3 structure, and
increasing the former or enhancing the latter will increase
or decrease the Eg

13. To reveal the underlying mechanism
of the Eg in mixed Sn-Pb perovskites, we retrieve the
contributions from elemental properties and structural
information of mixed Sn-Pb perovskites by building the
ML-bandgap model using 14 physicochemical parameters
listed in Table S1 as inputs.
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Sn-Pb ratio as input and the experimentally measured values. The light gray dots are collected reported data points for comparison. The inset shows
actual values versus predicted results by GBR model for test set and our experimental samples marked with red and blue dots, respectively. The black
line represents the ideal situation of the prediction (predicted results are equal to actual values). The smaller the distance between data point and
black line, the better and more reliable the prediction. The subplot of inset shows the convergence of model accuracy

Cai et al. Light: Science & Applications          (2022) 11:234 Page 4 of 12



Due to the limited available Eg data, we only use tradi-
tional ML method without NN. Five ML methods (LR, SVR,
KNR, RFR and GBR) are used to build the Eg model with 14
features as input and the results are listed in Table 1. The
GBR algorithm performs best with the corresponding
values of R2, RMSE and MAE of 0.9172, 0.0386, and 0.0325,
respectively. The SHAP method is used to further interpret
the GBR-bandgap model44. The calculated feature impor-
tance ranking produced from the GBR and SHAP library is
shown in Fig. 2b, with x-axis labeled as the SHAP value
representing the impact on Eg value, and the red and blue
colors indicating high and low values of a given feature,
respectively. The top five features which are most important
on the formation of Eg are weighted first ionization energy
Eip, Mulliken’s electronegativity of B-site Een, LUMO, tol-
erance factor Tf and unit cell lattice edge α3o , respectively.
Obviously, LUMO plays a more important role than
HOMO does, which is in good agreement with the large
energy difference of -0.27 eV in CB and the small one of
-0.02 eV in VB when Pb is replaced by Sn in MASnxPb1-xI3
alloys mentioned above. In fact, when replacing Pb by Sn,
Een and Tf increase, and Eip, LUMO and α3o decrease.
However, as shown in Fig. 2b, only the decreasing Eip and
increasing Een clearly decrease the Eg. The decreasing
LUMO when the ratio of Sn increases leads to the simul-
taneous increase and decrease of Eg, which is consistent
with the bowing effects as shown in Fig. 2a. In a similar way,
the replacing of big Pb atoms by small Sn atoms changes
the structural characteristics, and subsequently decreases α3o
and increases Tf, which also leads to the simultaneous
increase and decrease of Eg, as shown in Fig. 2b.
To reduce the complexity and facilitate the PSC-device

design, we further build a new Eg model based on one-
dimensional feature (Sn-Pb ratio) as input. In this case, the
GBR algorithm also performs best with the corresponding
values of R2, RMSE and MAE of 0.9072, 0.0408, and 0.0283,
respectively, as listed in Table 1. To verify the precision of
our new ML-bandgap model, we experimentally fabricate a

series of new mixed Sn-Pb perovskite samples with various
compositions. The measured and GBR-predicted Eg along
with reported results is shown as inset in Fig. 2c, with blue
dots denoting our experimental results and red dots
denoting previously reported results. The experimental Eg
values are deduced by Tauc plot (Fig. S2). It shows that our
trained Eg model could not only predict the data in test set,
but also accurately predict Eg of the new MASnxPb1-xI3
samples. As previously mentioned, the replacing of Pb by Sn
leads to significant changes in structure, e.g. lattice com-
pression, octahedral tilting, and in electronic properties, e.g.
VB/CB reconstructing, which thus results in a complicated
dependence of Eg on Sn ratio in mixed Sn-Pb perovskites.
To further reveal the dependence of Eg on Sn ratio, as
shown in Fig. 2c, the ratio-dependent Eg for mixed Sn-Pb
perovskite predicted by our new ML-bandgap model (red
line), which match well with our fabricated ones (black
dots), manifests itself with asymmetrically bowing shape
and a minimum value of 1.198 eV of at the Sn ratio of
93.3%. The optimized Sn ratio for the S-Q limit at the Eg of
1.35 eV is predicted to be 10.0%, 12.2% and 23.3%.

Perovskite solar cell design: photovoltaic performance
As mentioned above, both n-i-p and p-i-n PSC devices

are under study here as shown in Fig. 1b and are composed
of a thin-layer photoactive OMHP absorbers sandwiched
between two transport layers ETL and HTL, which are used
to selectively transport electrons and holes to cathode and
anode respectively. Ideally, incident photons are absorbed
with nearly unity efficiency by OMHP film, and densities of
photo-generated nonequilibrium free carriers in CB and VB
can be evaluated by the quasi-Fermi level splitting (QFLS),
i.e. QFLS ¼ Ee

F � Eh
F where Ee=h

F is the quasi-Fermi level for
electrons and holes respectively, which is also the open-
circuit voltage (Voc) of the PSC devices in the S-Q theory.
The values of Voc are deterioted mainly by the unwanted
nonradiative combinations occurring at the surface defects
or grain boundaries in the OMHP film. Then the photo-
generated electrons and holes are selectively extracted by
the ETL and HTL to the cathode and anode respectively,
and generate currents, e.g. Jsc at short-circuit condition. The
extraction efficiency of carriers from OMHP film is mainly
affected by the surface qualities and the energy differences
between OMHP and HTL/ETL, i.e. ΔH (ΔL). The values of
ΔH (ΔL) are generally larger than or equal to zero, since
negative ones will introduce extraction barriers between
OMHP film and transport layers, but they can not be too
large to induce significant energy loss at the interface and
form the transport barriers between transport layers and
electrodes, which in turn may decrease Jsc. For example, in
our case, the HOMO and LUMO of OMHP are -5.4 eV and
-3.9 eV respectively, and the work functions of working
anode (Au)/cathode (Al) are -5.1 eV and -4.3 eV, respec-
tively. When ΔH (ΔL) between HTL (ETL) and OMHP film

Table 1 The comparison of prediction performance of Eg
models with different features and ML regression
algorithms by three evaluation metrics (R2, RMSE and
MAE). The best results are highlighted in bold.

Method 14 features One feature

R2 RMSE MAE R2 RMSE MAE

LR 0.6864 0.0751 0.0630 0.6064 0.0841 0.0707

SVR 0.8775 0.0469 0.0422 0.8221 0.0565 0.0516

KNR 0.8997 0.0425 0.0340 0.8833 0.0458 0.0365

RFR 0.9105 0.0401 0.0284 0.9065 0.0410 0.0344

GBR 0.9172 0.0386 0.0325 0.9072 0.0408 0.0283
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is higher than 0.3 (0.4) eV, HTL-anode (ETL-cathode)
extraction potential barriers is generated. Generally, the
open-circuit voltage Voc relates to the short-circuit current
Jsc by the expression,

Voc ¼ nidkBT
q

ln
Jsc
j0
þ 1

� �
ð1Þ

where nid is the ideality factor and j0 is the dark
generation current. The electric power is zero at both
open- and short-circuit conditions, and reaches a max-
imum power point at which the voltage Vmp and current
Jmp give the fill factor FF of a PSC device, i.e. FF = VmpJmp/
JscVoc. Empirically FF can be written as46,

FF ¼ vm
vm þ 1

voc � ln vm þ 1ð Þ
voc 1� e�vocð Þ ð2Þ

where vov ¼ Voc=nidkBT and vm ¼ voc � ln voc þ 1�ð
ln vocÞ. Subsequently PCE is given by ηPCE ¼ Jsc ´ FF ´
Voc=Psun, where Psun is the total incoming solar energy.
For the mixed Sn-Pb perovskite as the OMHP film in PSC
under study here, the increasing of Sn introduces more Sn
vacancies and oxided Sn4+ in the OHMP, which may
enhance the non-radiative recombination via Shockley-
Read-Hall and Auger recombination processes at the
defects, decreasing Voc and Jsc, even though Eg is tuned to
the optimized value predicted by the S-Q theory. There-
fore, to achieve the maixmum PCE for MASnxPb1-xI3-
based PSC devices, a detailed optimization process
regarding the influence on Jsc, Voc and PCE from Eg, ΔH
and ΔL is necessary.
Similiar to the aforementioned process, the influences

of Eg, ΔH and ΔL on photovoltaic performances of mixed
Sn-Pb PSC devices, i.e. Voc, Jsc, FF and PCE, are investi-
gated using ML methods, and the performances of dif-
ferent ML algorithms are listed in Table 2, in which
experimental Eg, ΔH and ΔL are used as inputs, as

comparison to those using predicted Eg as inputs listed in
Table S2. In both simulations, NN behaves better than
others, which confirms the superiority of NN in dealing
with complex cases. By comparison, we find that, for Jsc,
using the predicted Eg as feature, the model metrics is
improved, but for FF model, using the predicted Eg will
worsen the model. For PCE and Voc models, whether the
predicted Eg is used, the model results change little. In
addition, no matter what kind of situation and target, the
values of R2 of all models are significantly greater than 0.5,
which means the built models can give relatively accurate
prediction. The reason for large variation of metrics in FF
with different models might be that the factors affecting
FF are complex, and the dependence on involved features
is beyond our collected data. The performances of NN in
our dataset for four targets are shown in Figure S3, and
the descent process of training/test set loss values during
NN training is provided in Figure S4, both of which verify
the convergence of our NN model. Herein, we set ΔH and
ΔL from −0.35 eV to 1.00 eV and Eg from 1.15 eV to
1.65 eV in the prediction set.
The relationships of Jsc and Voc with Eg are shown in

Fig. 3, with the bar indicating standard deviation. As we
know, in the S-Q theory, Jsc deceases and Voc increases
when Eg increase, where nonradiative recombination are
totally neglected. However, as shown in Fig. 3a, in the Eg
regions ranging roughly from 1.15 eV to around 1.25 eV
and 1.40 eV to 1.50 eV, which are corresponding to low-
bandgap-plateau (LBP) (rich-Tin, >50% Sn) and defective-
zone (DZ) (poor-Tin, <20% Sn) regions respectively, Jsc
increases when Eg increase, which are consistent with the
unchanged or decreasing Voc with increasing Eg as shown
in Fig. 3d. The deviation observed in predicted Jsc and Voc

from the S-Q theory captured in our model, which was
experimentally observed recently in ((HC(NH2)2)0.83
Cs0.17)(Pb1-ySny)I3 family of perovskite materials as well47,
is due to the significant nonradiative recombination at the
deep level traps induced by structural disorders (DZ) and

Table 2 The prediction performance of different regression algorithms for four targets (FF, Jsc, Voc and PCE) in designing
PSCs device using experimental Eg, ΔH and ΔL as inputs

Method FF Jsc Voc PCE

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

LR 0.4750 14.3140 8.1743 −0.0676 5.3079 2.9698 0.6047 0.1345 0.0968 0.3422 4.0129 2.8447

SVR 0.2937 16.6026 7.4239 0.1519 4.7310 2.4441 0.4389 0.1602 0.1084 0.5518 3.3124 2.2708

KNR 0.4580 14.5433 6.9755 0.7913 2.3471 1.8209 0.8022 0.0951 0.0557 0.6229 3.0385 2.5294

RFR 0.5698 12.9566 6.9801 0.5262 3.5362 2.3123 0.6068 0.1341 0.0936 0.6598 2.8858 2.2669

GBR 0.5477 13.2863 7.1833 0.0239 5.0754 2.7716 0.6873 0.1196 0.0884 0.7651 2.3982 1.8816

NN 0.9096 4.5641 3.4786 0.8378 2.6438 1.6301 0.9024 0.0347 0.0289 0.9026 1.9626 1.5439

The best results are highlighted in bold and NN behaves the best among competitive algorithms due to higher R2 and smaller RMSE and MAE
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enhanced susceptibility of Sn2+ to oxidation (LBP).
Similar to the situation in ((HC(NH2)2)0.83Cs0.17)(Pb1-y
Sny)I3 perovskites, in the poor-Tin (DZ) region, the
replacing of Sn in neat Pb perovskites induces local het-
erogeneity around Sn sites along with overall lattice
compression and octahedral tilting, and such crystal-
lographic distortion leads to energetic disorder near the
band edges accommodating deeper traps formation,
accompanied with a rapid change in Eg as shown in
Fig. 2a. Therefore, the nonradiative Jsc are enhanced in the
DZ region. However, in the rich-Tin (LBP) region, due to
the cease of volume compression in the compositional
perovskites, crystallographic and electronic stabilities are
achieved, as shown in Fig. 2a as well. Since Sn content is
beyond 50% in the LBP region, the subsequently enhanced
electric susceptibility resulted from increased Sn4+ con-
tent also deteriorates the photovoltaic performances (Jsc
and Voc).
For ΔH and ΔL, the photo-generated carrier transport is

not only affected by extraction barriers Δ, but also by the
type of transport layer material, fabrication processing,
etc. Thus it is complicated to obtain optimized Jsc and Voc

by manipulating ΔH and ΔL. As shown in Fig. 3b, c, the
changes of Jsc with ΔH and ΔL are similar and it is not
conducive to Jsc as ΔH (ΔL) is too large or too small.
However, as shown in Fig. 3e, f, different from Jsc, the
maximum value of Voc does not appear in the region
where ΔH (ΔL) is equal to zero. To further analyze the
extraction barrier related to Jsc and Voc with different fixed
Eg values in detail, 2D-contour maps of maximum Jsc and
Voc prediction with different Eg are calculated and shown
in Fig. 3g–l, where x-axis and y-axis represent ΔH and ΔL,
respectively. The lighter color indicates the higher Jsc and
Voc. And for simplication, the values of Eg are chosen as
1.20 eV, 1.30 eV and 1.50 eV to conduct further analysis,
which belong to the LBP, normal and DZ regions,
respectively.
For Jsc as shown in Fig. 3g–i, as the Eg increase from

1.20 eV→1.30 eV→1.50 eV, the values of Jsc overally
decreases, which is consistent with the S-Q theory. When
ΔH (ΔL) is much lower than zero, it means there is a big
potential barrier between OMHP material and HTL
(ETL), which will block the direct transfer of carriers and
consequently decrease the current. When ΔH (ΔL) is
much higher than zero, it could increase the speed of the
carriers as they pass through transport layer, but this
could also lead to induce energy loss at the interface and
transport barrier between the transport layer and the
electrode, and thus decreasing Jsc. Figure 3g–i also show
that, when ΔL is negative, it is possible to manipulate ΔH
to achieve the maximum Jsc, but not vice versa. Take
Fig. 3h as an example. The maximum Jsc appears at ΔH =
0.2 eV and ΔL = -0.2 eV, i.e, there is 0.2 eV barrier
between ETL and OMHP and 0.2 eV positive energy

difference between HTL and OMHP. In this condition,
the maximum Jsc of 21.7 mA/cm2 achieves. Conversely,
for ΔH = -0.2 eV and ΔL = 0.2 eV eV, the value of Jsc
drops (2.5 times) to 9.8 mA/cm2, which should be due to
the more difficult extraction for holes in HTL compared
with electron extraction in ETL, since holes possess larger
effective mass and smaller mobility compared to elec-
trons48. Therefore in the actual PSC design, employing
excellent hole transport would lead to high photovoltaic
performance49,50.
For Voc as shown in Fig. 3j–l, as the Eg increase from

1.20 eV→1.30 eV→1.50 eV, the values of Voc overally
increase, which is consistent with the S-Q theory as well.
The difficulty of hole extraction in HTL can also be
observed. For example, as shown in Fig. 3l, the maximum
Voc appears in the region of ΔH = 0.2 eV and ΔL =
-0.2 eV, which means 0.2 eV barrier between ETL and
OMHP can promote the accumulation of electrons at the
interface subsequently enlarging QFLS within OMHP and
thus Voc. Because the transport of holes in OMHP is more
difficult than electrons, positive ΔH is required to facil-
itate the hole extraction, which could reduce the con-
centration of holes in OMHP thus reducing unwanted
nonradiative recombination.
For the goal PCE, Fig. 3m shows a 4D-scatter plot of

predicted PCE based on NN algorithm, where ΔH and ΔL
are changed from -0.35 eV to 1.00 eV and Eg is changed
from 1.15 eV to 1.65 eV, which reveals that, the highest
PCE values are in the range of 1.30 eV to 1.40 eV. To
further analyze the relationship between PCE and Eg, the
maximum PCE of each Eg is extracted from Fig. 3m and
plotted in Fig. 4, where the theoretical prediction by S-Q
theory under AM1.5 G radiation is also shown. Both S-Q
limit and our ML results show that the ideal Eg of 1.35
eV12,51,52, and the trend of both lines is also consistent,
which is an astonishing finding since only data from
MASnxPb1-xI3 system are used in our model without pro-
viding any information about the solar spectrum. The peak
at about 1.60 eV is probably due to the extensive use of this
material by researchers and the continuous optimization
achieved for the performance of PSCs on this material.
In addition, in order to obtain the relationship of PCE

with ΔH and ΔL in the different values of Eg, 2D-contour
maps are also drawn in Fig. 3n–p. The region of highest
PCE shifting from smaller ΔH, ΔL to higher ΔH, ΔL with
the increase of Eg of OMHP material, was also observed in
perovskite materials of ABX3-type (A=MA/FA/Cs+,
B=Pb/Sn2+, X=Br/Cl/I-)37, which manifests the extensi-
bility of our ML model to general OMHP systems. Fur-
thermore, it is interesting that as we compare Fig. 3n–p
with Fig. 3g–l, the improvement of goal PCE at 1.30 eV
(near optimal Eg) is mainly due to enhanced Jsc because
both maximum region and contour overlap. For com-
parison to further check our model, according to Eq. (2),
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the filling factor FF can be obtained with ML-predicted
Voc values and the ideality factor nid of 2.5 is deduced
according to Eq. (1), and finally PCE can be obtained. The
calculated dependence of PCE on Eg, ΔH and ΔL is shown
as Figure S5, which is reasonably consistent with the ML-
predicted results as shown in Fig. 3n–p.

Reverse engineering
In order to further verify the effectiveness of ML, we

have performed experimental tests. Through forward
analysis, the process of OMHP material selection and PSC
design are completed, but the relationship between Sn-Pb
ratio and PCE of PSC cannot be directly given, that is, to
determine which ratio could give the corresponding
maximum predicted PCE. Therefore, in this section, a
data-driven reverse engineering is proposed to explore
potential property of MASnxPb1-xI3 material used in PSCs
based on one-step spin coating process and inverted
structure.
Due to the reduction of dataset resulting from the limit

of spin coating process and device structure, as previously
mentioned, three features of Sn-Pb ratio, Eg and the
publication time of reported article are taken to build a
new PCE model based on GBR algorithm. Then the
established GBR model is further inversely analyzed to
lead a search of maximum PCE using BO and GA. The
search conditions of 10 initial points alongwith 20 itera-
tions, and the population size of 100 alongwith 20 gen-
erations are used for BO and GA, respectively. The
element Sn in the B-site has the doping ratio from 0.5 to
1.0 with step 0.001, and the second element Pb is given
the remaining doping ratio, because the Eg obtained by

doping Sn in this range has the opportunity to obtain the
maximum PCE according to previous forward analysis,
while reducing the content of Pb as much as possible to
reduce the toxicity of obtained OMHP. Figure S6 shows
the fitness of PCE to the search round and shows how it
changes with the optimization variable. GA presents a
more stable and efficient exploration process than BO.
However, both GA and BO give very close maximum
PCE, i.e., 18.23% for MA1.0Sn0.624Pb0.376I3 by GA and
18.22% for MA1.0Sn0.636Pb0.364I3 by BO, respectively.
With the previous settings, we select a series of ratios

from 0.5 to 1.0 for experimental validation under the set
fabrication processing. As reported in previous works, the
perovskite crystallization processes53, grain boundary
management54, interface engineering55 and charge trans-
port layer selection56 were proved to be critical aspects
toward high-efficiency perovskite solar cells. Every precise
tuning of above sections in each experimental condition is
definitely difficult and time consuming. For now, we do
not conduct special optimization for devices and choose a
trade-off fabrication process to adapt all conditions to
keep the consistency of the processing condition for dif-
ferent ratios to make the horizontal comparability more
obvious. Actually, we focus on the curve trend and the
obtained results are shown in Fig. 5, which reveals good
consistency between experimental data and prediction
trend in PCE distribution. The ratios corresponding to the
best PCE obtained by GA and BO are near the region of
highest experimental result, which illustrates the ration-
ality and accuracy of our model. Moreover, in the range of
experimental preparation, the PCE of device deviated
from the optimal composition becomes very poor. The
corresponding plots of Jsc, Voc and FF for these devices are
provided in Figure S7. Compared with the prediction of
18%, the efficiency corresponding to optimal ratio in our
experiment still has much room for development that
needs further experimental optimization. At present, the
best efficiency obtained by Sadhanala et al. in set range of
Sn content is 10% at 0.6 that ratio is close to our pre-
diction. Specific data are provided in Table S3. With the
accumulation of samples in the future, the optimization
measures, such as considering additives, selecting better
transport layer materials, etc., should be considered. In
addition, our proposed ML approach in the forward-
reverse framework can be applied to other perovskites
materials with similar structures, such as ABX3-type
perovskite materials (A=MA/FA/Cs+, B= Pb/Sn2+,
X= Br/Cl/I-).

Discussion
Combining with ML technology, we have proposed an

efficient forward-inverse method to research
MASnxPb1-xI3 material and explore high-performance
PSCs. We use real experimental data aiming at getting
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more practical results. During forward analysis, the Eg
model of MASnxPb1-xI3 is first built with 14 physico-
chemical parameters and Sn-Pb ratio as input respec-
tively, and the asymmetrically bowing relationship
between Sn-Pb ratio and Eg of OMHP is found, which
match well with our fabricated ones. For the performance
models of PSC, the established NN-based models exhibit
satisfactory prediction for underlying data points and
provide some guidance and new discoveries for PSC
devices. The relationship of Jsc, Voc and PCE with Eg of
OMHP and energy level difference (ΔH/ΔL) are analyzed
in detail respectively. The relationship of Jsc and Voc with
Eg matches the theoretical results well in most case. The
deviation of Jsc and Voc in LBZ and DZ region from the
S-Q theory is also captured by our model, which is
experimentally observed recently. The conclusion that
hole extraction is more difficult is both obtained in Jsc and
Voc models. And the highest PCE of single-junction PSCs
at about 1.35 eV is predicted without any prior informa-
tion, which is quite consistent with the theoretical result
of S-Q limit. Then in the reverse engineering, the optimal
ratio of Sn in MASnxPb1-xI3 within a set range is directly
obtained for high-performance PSCs and inference results
fit well with experimental validation.
With the proposed target-driven approach, the physical

laws obtained are reasonable and the predictions are
verified experimentally in MASnxPb1-xI3 system. Our
designed method could be expected to provide deeper
understanding of physical phenomena as well as explore
new functional materials and high-performance devices.
For complex systems involving multiple variables, this
method could give results significantly faster. With the
accumulation of a database, it could also constantly learn
with itself to obtain stronger predictive ability to give
more helpful and accurate guidance.

Materials and methods
Materials
SnI2 (99.999% purity) was purchased from Alfa Aesar. N,

N-dimethylform-amide (DMF), dimethyl sulfoxide (DMSO)
and SnF2 (99% purity) were purchased from Sigma-Aldrich.
Methylammonium iodide (MAI) was purchased from
Dyesol. Chlorobenzene was purchased from Thermo Fisher.
PEDOT:PSS aqueous solution (Al 4083) was purchased
from Heraeus Clevios. PbI2 was purchased from TCL.

Mixed tin-lead perovskite film fabrication
A stock solution of 1.4M MAPbI3 solution (i.e. 0% Sn)

was prepared by dissolving 1113mg MAI and 3227mg PbI2
in 5mL of a mixed solvent of 7:3 DMF:DMSO by volume. A
stock solution of 1.4M MASnI3 (i.e. 100% Sn) with 10%
molar excess of SnF2 with respect to the SnI2 content was
prepared by dissolving 1113mg MAI, 2604mg SnI2, 219mg
SnF2 in 5mL of a mixed solvent of 7:3 DMF:DMSO by
volume. Solutions with Sn content = 0, 15, 25, 30, 35, 45,
50, 55, 65, 70, 75, 85, 95, 100% were prepared by mixing the
0% and 100% Sn stock solutions in the appropriate ratio.
Solutions with Sn content = 62, 62.4, 63.6, 64, 66, 68% were
prepared through mixture of the 60% Sn solution with the
70% Sn solution. The precursor solution was stirred for at
least 2 h at room temperature. Prior to spin-coating, the
perovskite solution was filtered with a 0.22 μm PTFE syr-
inge filter. The perovskite precursors with different Sn
content were spin-coated onto the ITO/PEDOT:PSS sub-
strates at 5000 rpm for 30 s. During the spin-coating, 750 μL
of toluene was dropped onto the spinning substrates. Then
perovskite films were annealed at 100 °C for 10min to form
mixed tin-lead perovskite films.

Mixed tin-lead perovskite solar cell fabrication
ITO-glass was cleaned using acetone, surfactant, deio-

nized (DI) water, ethanol with ultrasonication for 30 min
sequentially and dried with N2 flow. ITO-glass was further
cleaned by O2-plasma treatment for 15min. PEDOT:PSS
aqueous solution was then deposited on the ITO at
4000 rpm for 50 s followed by annealing on a hotplate at
175 °C for 60min in ambient air. The perovskite films
were prepared on the ITO/PEDOT:PSS using mixed tin-
lead perovskite film fabrication method described above.
After the deposition of the perovskite film, C60 (20 nm)/
BCP (3 nm)/Ag (100 nm) were sequentially deposited by
thermal evaporation.

Material characterization
The transmission spectra and absorption spectra were

both measured using F20-UV thin-film analyzer (FIL-
METRICS) at wavelength range between 300 nm and
1100 nm. Tauc plots of absorption spectra to determine
the impact of different Sn contents on perovskite band
gaps was calculated by absorption spectra.
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Device characterization
The J–V curves of PSCs were measured using a Keithley

2602B source in N2 filled glove box at room temperature
under AM 1.5G condition at an intensity of 100mW/cm2,
calibrated by a standard Si solar cell (PVM937, Newport).
The light source was a 450 watt xenon lamp (Oriel solar
simulator, 94023 A). The active area of PSCs was 0.107 cm2,
defined by the cross of patterned Ag and ITO electrode, and
further calibrated by the microscope. The J–V curves were
tested both at forward scan (from −0.2 V to 0.7 V, step
0.04 V) without any pre-conditioning before the test.

Acknowledgements
This work is supported by the National Natural Science Foundation of China
(grant numbers 61774046 and 11374063), and by Shanghai Municipal Natural
Science Foundation under Grant Nos. 19ZR1402900.

Author details
1School of Information Science and Technology, Fudan University, Shanghai
200433, China. 2College of Information, Mechanical and Electrical Engineering,
Shanghai Normal University, Shanghai 200234, China. 3Center of Micro‐Nano
System, Fudan University, Shanghai 200433, China. 4Department of Physics,
Chemistry and Biology, Linköping University, Linköping SE-58183, Sweden.
5Key Laboratory of Micro and Nano Photonic Structures and Department of
Optical Science and Engineering, Fudan University, Shanghai 200433, China.
6Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City,
Zhejiang 322000, China

Author contributions
Y.Z. and X.C. conceived the idea. X.C. did ML prediction and F.L. did
experimental realization. X.C., F.L. and Y.Z. co-wrote the paper with all authors
contributing to discussions and to finalizing the manuscript.

Competing interests
The authors declare no competing interests.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41377-022-00924-3.

Received: 15 February 2022 Revised: 13 June 2022 Accepted: 30 June 2022

References
1. Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for

photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
2. Lee, M. M. et al. Efficient hybrid solar cells based on meso-superstructured

organometal halide perovskites. Science 338, 643–647 (2012).
3. Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic

hybrid perovskite solar cells. Nat. Mater. 13, 897–903 (2014).
4. Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar

cells. Nat. Photonics 8, 506–514 (2014).
5. Yang, W. S. et al. Iodide management in formamidinium-lead-

halide–based perovskite layers for efficient solar cells. Science 356,
1376–1379 (2017).

6. National Renewable Energy Laboratory (NREL). Best research-cell efficiency
chart. (2022). https://www.nrel.gov/pv/cell-efficiency.html.

7. Oga, H. et al. Improved understanding of the electronic and energetic land-
scapes of perovskite solar cells: high local charge carrier mobility, reduced
recombination, and extremely shallow traps. J. Am. Chem. Soc. 136,
13818–13825 (2014).

8. Wehrenfennig, C. et al. High charge carrier mobilities and lifetimes in orga-
nolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

9. Zhang, W. et al. Ultrasmooth organic-inorganic perovskite thin-film formation
and crystallization for efficient planar heterojunction solar cells. Nat. Commun.
6, 6142 (2015).

10. Jacobsson, T. J. et al. Exploration of the compositional space for mixed lead
halogen perovskites for high efficiency solar cells. Energy Environ. Sci. 9,
1706–1724 (2016).

11. Liu, D. Y. & Kelly, T. L. Perovskite solar cells with a planar heterojunction
structure prepared using room-temperature solution processing techniques.
Nat. Photonics 8, 133–138 (2014).

12. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p-n
junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

13. Gu, S. et al. Tin and mixed lead–tin halide perovskite solar cells: progress and
their application in tandem solar cells. Adv. Mater. 32, 1907392 (2020).

14. Eperon, G. E. et al. Perovskite-perovskite tandem photovoltaics with optimized
band gaps. Science 354, 861–865 (2016).

15. Ogomi, Y. et al. CH3NH3SnxPb1-xI3 perovskite solar cells covering up to 1060
nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).

16. Hao, F. et al. Anomalous band gap behavior in mixed Sn and Pb perovskites
enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc.
136, 8094–8099 (2014).

17. Tsai, C. M. et al. Role of tin chloride in tin-rich mixed-halide perovskites applied
as mesoscopic solar cells with a carbon counter electrode. ACS Energy Lett. 1,
1086–1093 (2016).

18. Zhao, B. D. et al. High open-circuit voltages in tin-rich low-bandgap
perovskite-based planar heterojunction photovoltaics. Adv. Mater. 29,
1604744 (2017).

19. Rajagopal, A. et al. Highly efficient perovskite–perovskite tandem solar cells
reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1702140
(2017).

20. Lin, R. X. et al. Monolithic all-perovskite tandem solar cells with 24.8% efficiency
exploiting comproportionation to suppress Sn(II) oxidation in precursor ink.
Nat. Energy 4, 864–873 (2019).

21. Wang, C. L. et al. Low-bandgap mixed tin-lead perovskites and their appli-
cations in all-perovskite tandem solar cells. Adv. Funct. Mater. 29, 1808801
(2019).

22. Chang, C. Y. et al. Solution-processed conductive interconnecting layer for
highly-efficient and long-term stable monolithic perovskite tandem solar cells.
Nano Energy 55, 354–367 (2019).

23. Kapil, G. et al. Tin-lead perovskite solar cells fabricated on hole selective
monolayers. ACS Energy Lett. 7, 966–974 (2022).

24. Wei, M. Y. et al. Combining efficiency and stability in mixed tin–lead perovskite
solar cells by capping grains with an ultrathin 2D layer. Adv. Mater. 32,
1907058 (2020).

25. Li, Z. Z. et al. Thermodynamic stability landscape of halide double perovskites
via high-throughput computing and machine learning. Adv. Funct. Mater. 29,
1807280 (2019).

26. Ramprasad, R. et al. Machine learning in materials informatics: recent appli-
cations and prospects. npj Computational Mater. 3, 54 (2017).

27. Liu, Y. et al. Materials discovery and design using machine learning. J. Mate-
riomics 3, 159–177 (2017).

28. Schleder, G. R. et al. From DFT to machine learning: recent approaches to
materials science–a review. J. Phys. Mater. 2, 032001 (2019).

29. Liu, Z. et al. Computational functionality-driven design of semiconductors for
optoelectronic applications. InfoMat 2, 879–904 (2020).

30. Zhao, X. G. et al. JAMIP: an artificial-intelligence aided data-driven infra-
structure for computational materials informatics. Sci. Bull. 66, 1973–1985
(2021).

31. Lopez, S. A. et al. Design principles and top non-fullerene acceptor candidates
for organic photovoltaics. Joule 1, 857–870 (2017).

32. Nagasawa, S., Al-Naamani, E. & Saeki, A. Computer-aided screening of con-
jugated polymers for organic solar cell: classification by random forest. J. Phys.
Chem. Lett. 9, 2639–2646 (2018).

33. Sun, W. B. et al. The use of deep learning to fast evaluate organic photovoltaic
materials. Adv. Theory Simul. 2, 1800116 (2019).

34. Sahu, H. et al. Toward predicting efficiency of organic solar cells via machine
learning and improved descriptors. Adv. Energy Mater. 8, 1801032 (2018).

35. David, T. W. et al. Enhancing the stability of organic photovoltaics through
machine learning. Nano Energy 78, 105342 (2020).

36. Odabaşı, Ç. & Yıldırım, R. Performance analysis of perovskite solar cells in 2013-
2018 using machine-learning tools. Nano Energy 56, 770–791 (2019).

Cai et al. Light: Science & Applications          (2022) 11:234 Page 11 of 12

https://doi.org/10.1038/s41377-022-00924-3
https://www.nrel.gov/pv/cell-efficiency.html


37. Li, J. X. et al. Predictions and strategies learned from machine learning to
develop high-performing perovskite solar cells. Adv. Energy Mater. 9,
1901891 (2019).

38. Sani, F. et al. Advancement on lead-free organic-inorganic halide perovskite
solar cells: a review. Materials 11, 1008 (2018).

39. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res.
12, 2825–2830 (2011).

40. Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous
distributed systems. (2016). https://arxiv.org/abs/1603.04467v1.

41. Nogueira, F. Bayesian Optimization: open source constrained global optimi-
zation tool for Python. (2014). https://github.com/fmfn/BayesianOptimization.

42. Fortin, F. A. et al. DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res.
13, 2171–2175 (2012).

43. Shi, L. et al. Using data mining to search for perovskite materials with
higher specific surface area. J. Chem. Inf. Modeling 58, 2420–2427
(2018).

44. Lundberg, S. M. & Lee, S. I. A unified approach to interpreting model
predictions. In Proceedings of the 31st International Conference on Neural
Information Processing Systems 4765–4774 (Long Beach: MIT Press,
2017).

45. Bergstra, J., Yamins, D. & Cox, D. D. Hyperopt:a python library for optimizing
the hyper parameters of machine learning algorithms. In Proceedings of the
12th Python in Science Conference 13–20 (Austin, Texas: SciPy Organizers,
2013).

46. Nayak, P. K. et al. Photovoltaic efficiency limits and material disorder. Energy
Environ. Sci. 5, 6022–6039 (2012).

47. Klug, M. T. et al. Metal composition influences optoelectronic quality in mixed-
metal lead–tin triiodide perovskite solar absorbers. Energy Environ. Sci. 13,
1776–1787 (2020).

48. Xing, G. C. et al. Long-range balanced electron- and hole-transport lengths in
organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

49. Seo, J. Y. et al. Novel p-dopant toward highly efficient and stable perovskite
solar cells. Energy Environ. Sci. 11, 2985–2992 (2018).

50. Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8%
and 0.3-V voltage loss. Science 369, 1615–1620 (2020).

51. Zong, Y. X. et al. Homogenous alloys of formamidinium lead triiodide and
cesium tin triiodide for efficient ideal-bandgap perovskite solar cells. Angew.
Chem. Int. Ed. 56, 12658–12662 (2017).

52. Zong, Y. X. et al. Lewis-adduct mediated grain-boundary functionalization for
efficient ideal-bandgap perovskite solar cells with superior stability. Adv. Energy
Mater. 8, 1800997 (2018).

53. Liu, H. et al. Modulated crystallization and reduced VOC deficit of mixed lead-
tin perovskite solar cells with antioxidant caffeic acid. ACS Energy Lett. 6,
2907–2916 (2021).

54. Zhang, L. et al. Grain boundary passivation with dion–jacobson phase per-
ovskites for high-performance Pb–Sn mixed narrow-bandgap perovskite solar
cells. Sol. RRL 5, 2000681 (2021).

55. Zhang, L. et al. Surface defect passivation of Pb–Sn-alloyed perovskite film by
1,3-propanediammonium iodide toward high-performance photovoltaic
devices. Sol. RRL 5, 2100299 (2021).

56. Gómez, P. et al. Pyrene-based small-molecular hole transport layers for efficient
and stable narrow-bandgap perovskite solar cells. Sol. RRL 5, 2100454 (2021).

Cai et al. Light: Science & Applications          (2022) 11:234 Page 12 of 12

https://arxiv.org/abs/1603.04467v1
https://github.com/fmfn/BayesianOptimization

	Data-driven design of high-performance MASnxPb1-nobreakxI3 perovskite materials by machine learning and experimental realization
	Introduction
	Results
	Machine learning models
	Material design by ML: band gap
	Perovskite solar cell design: photovoltaic performance
	Reverse engineering

	Discussion
	Materials and methods
	Materials
	Mixed tin-lead perovskite film fabrication
	Mixed tin-lead perovskite solar cell fabrication
	Material characterization
	Device characterization

	Acknowledgements




