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Abstract
A major challenge in practical quantum computation is the ineludible errors caused by the interaction of quantum
systems with their environment. Fault-tolerant schemes, in which logical qubits are encoded by several physical qubits,
enable to the output of a higher probability of correct logical qubits under the presence of errors. However, strict
requirements to encode qubits and operators render the implementation of a full fault-tolerant computation
challenging even for the achievable noisy intermediate-scale quantum technology. Especially the threshold for fault-
tolerant computation still lacks experimental verification. Here, based on an all-optical setup, we experimentally
demonstrate the existence of the threshold for the fault-tolerant protocol. Four physical qubits are represented as the
spatial modes of two entangled photons, which are used to encode two logical qubits. The experimental results
clearly show that when the error rate is below the threshold, the probability of correct output in the circuit, formed
with fault-tolerant gates, is higher than that in the corresponding non-encoded circuit. In contrast, when the error rate
is above the threshold, no advantage is observed in the fault-tolerant implementation. The developed high-accuracy
optical system may provide a reliable platform to investigate error propagation in more complex circuits with fault-
tolerant gates.

Introduction
Error is inevitable in practical quantum computing

during encoding, operation, and decoding processes.
Although quantum error has been experimentally inves-
tigated1–12 in different physical systems and high-fidelity
quantum gates are achieved13–15, the experimental
demonstration of a complete fault-tolerant computa-
tion16–20 remains still a great challenge21. In a full fault-
tolerant implementation, quantum information proces-
sing, particularly including a set of universal quantum
computation gates, is additionally protected against
errors. The correct probability of the output from the
encoded fault-tolerant quantum circuit is higher than that

from the corresponding non-encoded circuit if the error
rate of the underlying hardware is below a threshold22–27.
Therefore, fault-tolerant encoding may be essential to
achieve future large-scale quantum computation28,29.
Practical quantum advantage may be achievable even

under the presence of errors by applying the noisy
intermediate-scale quantum (NISQ) technology30.
Although a complete fault-tolerant computation with
practical application is still beyond the reach of NISQ
technology, fault-tolerant quantum circuits could be
demonstrated in a small system21,31,32 to show the effec-
tiveness of noise mitigation in logical qubits and even
implement some practical applications with NISQ
technology33.
In ref. 21 a special fault-tolerant protocol is proposed for

a small system consisting of five qubits, of which one is
regarded as an ancillary qubit and the others are used to
encode logical qubits. In this protocol, encoding, decod-
ing, and some gates, such as single-qubit Pauli operators
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σx and σZ, and the two-qubit controlled-not (CNOT)
operator (these Clifford operators are not universal), can
be implemented fault tolerantly in logical space with the
help of post-selection. It is shown that errors in this pro-
tocol cannot be corrected. Following this protocol, fault-
tolerant error detection of encoding has been demon-
strated in trapped ions34, superconducting qubits35, and
the IBM quantum devices36–38. However, the key aspect of
the quantum circuit implementing with fault-tolerant
operations, that is, the existence of the threshold of error
rate below which the circuit is realized in a fault-tolerant
manner, has not been explicitly demonstrated.
In this work, we experimentally demonstrate the

threshold of error rate for quantum circuits formed with
fault-tolerant gates implemented in an all-optical setup.
Based on the encoding method, we encode two logical
qubits using four qubits which are mapped to the optical
path information of two entangled photons. Besides the
preparation stage, we experimentally implement a single-
qubit Hadamard gate and a two-qubit CNOT gate in the
logical space to form a complete quantum circuit in which
error gates are imported based on the bit-flip error. When
comparing the output probabilities of the encoded circuit
and those of non-encoded circuit, we could determine the
fault-tolerant threshold of the error rate. Our results
clearly demonstrate that when the error rate remains
below the threshold, the probability to obtain correct
output results in the fault-tolerant circuit is higher than
that of the corresponding non-encoded circuit. On the
other side, if the error rate is above the threshold, no
benefit is obtained from the fault-tolerant implementation.

Results
Following the encoding protocol introduced in the

Materials and Methods, two logical qubits are encoded

with four physical qubits, where the encoded space only
involves an even number of |1〉 in physical qubits. The four
physical qubits are mapped to coincident modes of two
entangled photons. This method of mapping the qubits to
optical spatial modes could simulate the operation of the
individual qubit with the evolution of spatial modes39. By
coherently adjusting spatial modes, single- and two-qubit
gates can be conveniently realized. Logical state 00j il ¼
ð 0000j i þ 1111j iÞ= ffiffiffi

2
p

can be fault tolerantly prepared with
post-selection following the circuit presented in Fig. 1b
starting from the initial physical state |0000〉. In this pro-
tocol, a set of quantum gates, such as σx, Hadamard, and
CNOT gates, operated on logical qubits can be imple-
mented in a fault-tolerant manner. As a result, a circuit,
only formed by these fault-tolerant gates, is implemented
fault tolerantly and there exists a threshold of the error
rate. Our main task is to experimentally demonstrate the
existence of the threshold in the fault-tolerant circuit.
A complete fault-tolerant circuit includes preparation,

evolution (containing a set of gates), and measurement,
and an error may occur at any stage of the circuit. For
simplicity, in the Materials and Methods, we describe an
operator with an error on qubits by its ideal quantum
operation followed by an error gate E (assumed to be the
same for all the operations). The noisy measurement can
be decomposed into error operation E and the ideal
measurement (IM). As illustrated in Fig. 1c (non-encoded
circuit), the evolution stage consists of a Hadamard
operation on the second logical qubit, H2, followed by a
two-qubit CNOT operation CNOT21 in which the first
(target) qubit is controlled by the second qubit. Figure 1d
shows the corresponding encoded circuit implementing
these two logical operations.
Errors in preparation, evolution, and measurement, are

considered in both non-encoded and encoded circuits, in
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Fig. 1 Quantum circuits with fault-tolerant gates under the presence of errors. a Spatial modes on each side, A and B which are bipartite
entangled, are marked as |00〉, |01〉, |10〉, and |11〉 (ket symbols are omitted for brevity). The basis of four physical qubits, say |0001〉, is denoted as the
coincidence count between the mode |00〉 on A side and the mode |01〉 on the B side. b The circuit of preparing logical qubit state |00〉l from the
initial state |0000〉. c Non-encoded circuit includes stages of the preparation, evolution, and measurement starting from logical state |00〉l with errors.
Hadamard gate (H) is applied to the second logical qubit followed by a CNOT gate CNOT21. Error gates E are imported throughout the circuit. IM
denotes ideal measurement. d The complete fault-tolerant circuit implementing logical operations H2 and CNOT21. In CNOT operation, error gate E
affects only the target qubit

Sun et al. Light: Science & Applications          (2022) 11:203 Page 2 of 9



which the error gate is assumed to be E = σx with error
rate ϵ= 1− p and p being the correct probability, thus
establishing a coherent error. Experimentally controlling
and identifying the error rate ϵ in each gate is the key
process in our study. The probability of successful output
can be defined as Fp=Tr[ρideal. ρexp] (a function of p),
where ρideal and ρexp are ideal and experimental output
states, respectively. To demonstrate the fault-tolerant
circuit, we should confirm that the probability of suc-
cessful output, Fp, in a fault-tolerant circuit (Fig. 1d) is
higher than that in a non-encoded circuit (Fig. 1c), fp,
obtained with the same hardware when correct prob-
ability p is above a threshold. The detailed calculations of
Fp and fp are presented in the supplementary information.

Experimental setup
On each side of two regions A and B, optical spatial

modes, as shown in Fig. 2a, are prepared by using a group
of calcite beam displacers (BDs) that separate a beam into
two parallel beams with orthogonal polarizations40,41.
Using the classical entanglement between the polarization
and spatial modes of the single photon42 on each side,
amplitudes between different spatial modes change
accordingly by adjusting angles of related half-wave plates
(HWPs). To generate the logical state |00〉l, spatial modes
are prepared to be |00〉 and |11〉 on both sides A and B. In
order to realize coincidences between |00〉A and |00〉B, |
11〉A and |11〉B, initial entangled photons Φj i ¼
HAHB þ VAVBð Þ= ffiffiffi

2
p

, where |H〉 (|V〉) denotes horizontal
(vertical) polarization of photons, are imported into A and
B, respectively. With the polarization of every mode

adjusted as |00〉A = |00〉B = |H〉 and |11〉A = |11〉B = |V〉,
00j il ¼ 0000j i þ 1111j ið Þ= ffiffiffi

2
p

is achieved, and more
details are introduced in Materials and Methods.
In an experiment, as shown in Fig. 2b, a continuous-wave

diode laser with a wavelength of 404 nm and a bandwidth
of 0.048 nm is used to pump a 20-mm-long periodically
poled KTP (PPKTP) crystal with the help of a polarized
Sagnac interferometer43 to generate polarization-entangled
photons |Φ〉. Based on this entangled source, Fig. 2c shows
|00〉l could be achieved with several BDs and HWPs which
are adjusted along the preparation circuit shown in Fig. 1d.
Similar implementation of logical operations H2 and
CNOT21 is introduced in the supplementary information.
In the measurement stage which is constructed to measure
outputs of preparation and evolution (H2 and CNOT21),
four spatial modes on ea0ch side are stepwise combined
together with a group of BDs and HWPs. By rotating those
HWPs, related spatial modes are selected to detect with the
help of a polarization analysis unit (PAU) consisting of a
quarter-wave plate, an HWP, and a polarization beam
splitter. At last, photons on each side are counted by a
single-photon detector (SPD), and signals of two SPDs are
dealt by a coincidence device. Note that during the com-
bination process, large optical path differences occur
among several beams due to the unbalanced displacement,
which are compensated with birefringent crystals (see
Materials and Methods).
In an experiment, the error gate is realized by adjusting

the deviation of HWPs’ angles. To determine the error
rate ϵ= 1− p in every stage, we detect probability dis-
tributions of output spatial modes directly by a two-
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Fig. 2 Experimental setup for verification of fault-tolerant threshold in quantum circuits. a Experimental images of optical spatial modes on
sides of A and B is generated by exploiting a group of several beam displacers (BDs) and half-wave plates (HWPs). b The unit to prepare entangled
photon pairs. c Spatial mode evolutions of fault-tolerant circuits including the stages of preparation, logical operations (H2 and CNOT21), and
measurement. Output spatial modes on each side of every stage are detected with removable detectors (RDs), which are built with single-photon
detectors (SPD) placed on two-dimensional movable platforms, for coincidence counts to estimate the imported error rate. Final spatial modes on
each side are combined together, where optical path differences among the modes on each side are offset by compensation crystals (CC), and then
measured with a quarter-wave plate (QWP), an HWP, and a polarization beam splitter (PBS). The coincidence device deals with the detected signals
from two sides and outputs the coincidence count
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dimensional movable SPD. Error rate ϵ is then estimated
by comparing experimental probability distributions of all
modes with the ideal prediction calculated through the
error model (see Materials and Methods). The probability
of successful output, Fp, can be obtained by projecting the
output state onto an ideal logical state basis. Concretely,
we first obtain the total coincidence count Nt which is the
sum of eight modes with an even number of |1〉 on a
physical basis, i.e., the total count in the encoded space.
Output spatial modes are then projected to the ideal
logical state with achieving the photon count Ni. The
successful probability Fp is thus given by Fp=Ni/Nt. Note
that as both two counts are obtained in the same mea-
sured port, photon losses of optical elements are ignored.
We first demonstrate the high performance of Hada-

mard and CNOT gates on physical qubits in the experi-
ment. Quantum process tomography is performed44,45

(see Materials and Methods), and real parts of the
experimentally reconstructed density matrix of both gates
are shown in Fig. 3a, b, with fidelities of operational
matrices 97.59 ± 0.01% and 99.19 ± 0.02%, respectively.
The corresponding imaginary parts are small, which are
illustrated in the supplementary information.
To investigate fault-tolerant circuits, we prepare a logical

basis |00〉l starting from the initial state |0000〉 along the
circuit shown in Fig. 1b. Without importing error gates
artificially, detected probabilities of complete basis are
shown in Fig. 3c. Experimental results agree well with

theoretical predictions. We deduce the inherent experi-
mental error rate to be ϵ= 0.0007 ± 0.0001 (i.e.,
p= 0.9993 ± 0.0001). The output state, 00j il ¼
0000j i þ 1111j ið Þ= ffiffiffi

2
p

which could be treated as a single
qubit, is reconstructed by quantum state tomography and
depicted in the Bloch sphere on a basis {|0000〉, |1111〉}
with a probability of correct output 99.53 ± 0.07% (Fig. 3d).
In the evolution stage consisting of operations H2 and
CNOT21, the correct output probability of H2 reaches
99.17 ± 0.26% with success probability p= 0.9963 ± 0.0001.
The correct output probability of CNOT21·H2 reaches
97.98 ± 0.29% with success probability p= 0.9945 ± 0.0001.
Experimental results show that operations in this plat-

form are extremely accurate, allowing us to observe the
threshold effect in the fault-tolerant protocol. According
to the introduced methods, the error rate ϵ= 1− p is
estimated based on experimental probability distributions
of all modes. The illustrated results of ϵ= 0.034 for logical
operation H2 and ϵ= 0.032 for CNOT21·H2 are shown in
Fig. 4a, b, respectively. For the circuit implementing
logical operation H2, the threshold is p = 0.978 in theory.
This threshold is consistent with Fig. 4c, in which the
experimental probability of correct output, Fp, is larger
than the prediction fp of a non-encoded circuit detected in
the same experimental platform (see more details in
supplementary information) for p > 0.978, i.e., the right
yellow region. On the other hand, when p < 0.978, we
obtain Fp < fp. Experimental results of logical operation
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CNOT21·H2 are shown in Fig. 4d, in which the predicted
threshold is p= 0.968. The experimentally obtained Fp is
higher (lower) than the corresponding fp for p above (below)
the threshold.
It is worthy to point out that multiphoton components

in prepared photon pairs would reduce the successful
output probability. We also investigate the fault-tolerant
threshold based on 16 spatial modes of a single photon,
with detailed experimental results introduced in supple-
mentary. Comparing results obtained by using a single
photon and two entangled photons, the best probabilities
of successful output states in the single-photon frame-
work, are about Fp= 99.66 ± 0.07% for operation H2, and
Fp= 99.33 ± 0.02% for CNOT21, are higher than above
results. Also, error bars reduce since total counts increase
in the single-photon experiment. Still and all, the fault-
tolerant threshold is observed to be the same in both
single-photon and two-entangled-photon experiments.
Superior to the single-photon framework, the two-
entangled-photon work reveals much better scalable
properties of the experimental platform and provides the
potential to investigate more complex fault-tolerant
quantum computation.

Discussion
Using a concise fault-tolerant protocol, we experimen-

tally demonstrate the threshold of a complete fault-
tolerant circuit with a Hadamard gate and a CNOT gate
on logical qubits, besides preparing and measuring pro-
cesses, with the bit-flip error in each operator. Generally,
to verify a fault-tolerant protocol, the successful output
probability of any circuit, formed with fault-tolerant gates,
should be higher than that of the corresponding non-
encoded circuit when the error rate is below a threshold.
Note that rich encoding paths in the experimental setup
enable different circuits for physical qubits to realize the
same operations in logical space. However, only some
configurations are fault-tolerant (see more analyses in
supplementary information). Besides the circuit realized
in this work, to implement another different circuit, we
just need to rotate BDs and HWPs. And for some com-
plicated cases, we need simply to add more sets of BDs
and HWPs.
To completely demonstrate a universal fault-tolerant

quantum computation remains a long-standing challenge.
High-accuracy operations that can be achieved using
optical systems establish an appropriate platform to
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simulate the error propagation in fault-tolerant circuits,
especially to investigate the behavior of coherent errors21.
Also, based on this experimental platform, nonlocal errors
affecting the entangled property could be further inves-
tigated under this encoding framework. Moreover, despite
the limitation of the scale of an optical system, this work
facilitates the potential investigation of fault-tolerant
protocols with breakthroughs of large-scale experi-
mental implementations of quantum technology based on
silicon devices13–15, ion-trap46, superconductor47–49, and
ultra-cold atoms50.
Furthermore, the logical qubits constructed by physical

qubits in the encoded space provide a possible method to
accomplish many quantum information tasks. For exam-
ple, the entanglement purification, which is able to distill
the high-fidelity entangled states from the noisy low-
quality entangled source51–53, could be achieved with the
logic-qubit entanglement against bit-flip and phase-flip
errors54,55. Another illustration is the long-distance
quantum communication with logical qubits in which
the fault-tolerant Calderbank–Shor–Steane encoding
method is exploited to implement the ultrafast quantum
communication across long distances56–58.

Materials and methods
The strategy of encoding logical qubits
According to the FT protocol in ref. 21, two logical

qubits are encoded with four physical qubits as follows:

00j il¼ 0000j i þ 1111j ið Þ= ffiffiffi
2

p

01j il¼ 0011j i þ 1100j ið Þ= ffiffiffi
2

p

10j il¼ 0101j i þ 1010j ið Þ= ffiffiffi
2

p

11j il¼ 0110j i þ 1001j ið Þ= ffiffiffi
2

p
ð1Þ

where {|00〉l, |01〉l, |10〉l, |11〉l} represent the logical bases,
and {|0000〉, |0011〉, |0101〉, |0110〉, |1001〉, |1010〉, |
1100〉, |1111〉} represent the bases of four physical qubits
(the encoded space only involves even number of |1〉 in
physical qubits). The four physical qubits are mapped to
coincident modes of two entangled photons. As shown in
Fig. 1a, with optical spatial modes on each side marked as
|00〉, |01〉, |10〉, and |11〉, the basis of four physical qubits
is denoted as the coincidence count between two spatial
modes from the side A and B, respectively. As an
illustration, the coincident mode |mnij〉 ≡ |mn〉A ⊗ |ij〉B
(m, n ∈ {0, 1}A and i, j ∈ {0, 1}B), i.e., the intensity and
phase of basis |mnij〉 are related to the coincidence count
between modes |mn〉A and |ij〉B.

Analysis of circuits with error gates
We introduce the detailed method of dealing with the

error gates in the complete circuit. Here, taking the
Hadamard operation on the second qubit in the logical

space, as an illustration, the calculation is presented
below. The Hadamard gate operation on the second
logical qubit H2 is written as,

H2 ¼ σ I � H ð2Þ

with σ I ¼ 1 0
0 1

� �
being the identical operation and

Hadamard gate H ¼ 1 1
1 �1

� �
=

ffiffiffi
2

p
.

Denoting the state before H2 as ρhin, and after the
operation H2, the state becomes

ρev1 ¼ H2ρhinH
y
2 ð3Þ

Then the error gate E2 acts on the second logical qubit
and the final state is

ρh2 ¼ pρev1 þ 1� pð ÞE2ρev1E
y
2 ð4Þ

Similar methods are employed to analyze the other error
gates in the complete circuit which are introduced in the
supplementary information. Also, for the fault-tolerant
circuit in the physical space shown in Fig. 1b, we use the
same method to calculate the corresponding result. And
during the evolutions, the probability distribution of every
mode can be calculated step by step.
Using the above method, we can obtain the final state

after all the quantum gates including the desired gates and
error gates until the stage of ideal measurement. By
denoting the final experimental output state as ρout, the
success probability is achieved by projecting ρout to the
ideal output state ρideal which is the theoretical prediction
in the ideal circuit without the error gates. That means the
success probability is Tr[ρout.ρideal].
For example, for the H2 operation, the success probabilities

are fp= p− 2p2+ 2p3 for the non-encoded circuit and
Fp= p2(1+ 4p− 40p2+ 140p3− 280p4+ 336p5− 224p6+
64p7)/(1− 8p+ 88p2− 416p3+ 1104p4− 1792p5+
1792p6− 1024p7+ 256p8) for the fault-tolerant encoded
circuit. Comparing fp and Fp, it’s easy to find that when
p > 0.978, Fp > fp, which means the corresponding success
threshold is p= 0.978 and the error rate threshold is
1− 0.978= 0.022.
Analogously, for the CNOT21 · H2 operation, the success

probabilities are fp= p− 4p2+ 12p3− 16p4+ 8p5 for the
non-encoded circuit and Fp= p2(1− p− 49p2+ 518p3−
2884p4+ 10640p5− 28224p6+ 55776p7− 82880p8+
91648p9− 73216p10+ 39936p11− 13312p12+ 2048p13)/
(1− 14p+ 182p2− 1456p3+ 8008p4− 32032p5+ 96096
p6− 219648p7+ 384384p8− 512512p9+ 512512p10−
372736p11+ 186368p12− 57344p13+ 8192p14) for the
fault-tolerant encoded circuit. The success threshold is
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obtained as p= 0.968 when solving fp= Fp. And we further
check that when p > 0.968, Fp > fp.

The preparation of logical state |00〉l from two entangled
photons
The initial state of the optical spatial modes is in |0000〉

which equals |00〉A ⊗ |00〉B sharing the maximal
polarization-entangled state Φj i ¼ HAHB þ VAVBð Þ= ffiffiffi

2
p

on both sides. Following the parallel but inherently dif-
ferent method of the quantum walk of correlated pho-
tons59,60, with the help of ancillary qubit - polarization,
the preparation of logical state |00〉l starting from initial |
0000〉 is introduced below.
For the initial state |0000〉= |00〉A ⊗ |00〉B, the polar-

ization of the photons in the modes of |00〉A and |00〉B are
both along horizontal (|H〉) and vertical (|V〉).
1. After the first vertical beam displacer (BD) on the

side of A, the modes |00〉A splits into two modes
with orthogonal polarizations, i.e., |00〉A in the
polarization |H〉 and |10〉A in the polarization |V〉.
This implements a Hadamard gate on the first
physical qubit leading |0000〉 to the state
ð 00j iA� 00j iBþ 10j iA� 00j iBÞ=

ffiffiffi
2

p
.

2. With a horizontal BD on A’s side, the state becomes
00j iA� 00j iBþ 11j iA� 00j iB

� �
=

ffiffiffi
2

p
, which represents

the result after the CNOT operation between the
first and second physical qubits.

3. For the CNOT operation between the second and
third physical qubits, a vertical BD is added on B’s
side and the mode |00〉B splits into two modes with
orthogonal polarizations, i.e., |00〉B in the
polarization |H〉 and |10〉B in the polarization |V〉.
Due to the entangled property, the state becomes
00j iA� 00j iBþ 11j iA� 10j iB

� �
=

ffiffiffi
2

p
.

4. Using another horizontal BD on B’ side, the final
logical state |00〉l is prepared.

And the detailed illustration including a vivid figure
could be found in the supplementary information, as well
as the realizations of operations H2 and CNOT21.

Compensation of the interferometer
In the combination of optical modes, BDs are used to

constitute the interferometer. For a balanced inter-
ferometer constructed by two BDs with an HWP inserted
at 45°, the two beams have the same optical lengths. Since
these two beams are close to each other and suffer the
same environmental noise, this kind of interferometer is
inherently stable. While for an unbalanced inter-
ferometer, a compensation crystal (CC) is placed on the
path with a shorter optical length. In an experiment, the
optical path difference between two beams from a BD
with a length of 28.3 mm is about 2.28 mm. A length of
4-mm Lithium niobate (LiNbO3) crystal and several
quartz plates are exploited as the CC inserted in the

deflected beam to compensate for the different optical
lengths. In our work, the visibility of the interferometer is
very high to ensure that experimental measurement is
implemented with a successful probability of 99.2–99.8%
compared with the ideal project measurement. Note that,
the part caused by the error rate is not compensated in
the measurement and as a result, the decoherence
between this error part and other successful modes will
exist to match the error mode introduced in section I of
supplementary information.

Estimation of the value ϵ
In the experiment, the error rate ϵ is imported by

adjusting the deviation of HWPs’ angle. All intensities of
the 16 coincident modes are detected with the two-
dimensional movable detector on each side, which is
shown in Figs. 3c, 4a, b, to obtain the corresponding
probability distributions. The experimental probability
distributions of all coincident modes are used to estimate
the error rate ϵ by comparing with the ideal prediction
calculated through the error model introduced in section
I of supplementary information.

Details to perform the quantum process tomography
For the detailed tomography for a quantum process ε

with denoting the process density matrices χ, the output
of this process could be represented as ε(ρ)= ∑m,nχmnE-
mρEn

† for the input state ρ, where Em is one of the Pauli
operators {I, X, Y, Z}. For the n-qubit density matrices, the
number of elements χmn is 2

2n. Scanning the input state ρ
and performing the state tomography on the corre-
sponding output state ε(ρ), we can reconstruct the density
matrices χ with the maximum-likelihood method. In
detail, for a single-qubit quantum gate, first, we prepare
the six eigenstates of Pauli vectors, i.e., the states |H〉, |V〉,
Hj i± Vj ið Þ= ffiffiffi

2
p

, Hj i± i Vj ið Þ= ffiffiffi
2

p
, as the input states.

Then, for every input state, we perform the state tomo-
graphic measurement on the output state. At last, with the
complete information of input and output states, we
reconstruct the density matrices χ of the quantum gate
based on the Pauli operators {I, X, Y, Z} using the
maximum-likelihood technique. For a two-qubit quantum
gate, the input states are set as the product states |A〉|B〉,
where |A〉 and |B〉 are the six Pauli eigenstates on the
regions of A and B, respectively. And the other steps are
similar to the above description. Comparing the experi-
mentally reconstructed density matrices χexp with the
theoretical prediction χtheo, we can achieve the fidelity
Fide = Tr[χexp.χtheo].

Acknowledgements
This work was supported by the National Key Research and Development
Program of China (No. 2017YFA0304100), Innovation Program for Quantum
Science and Technology (Nos. 2021ZD0301200, 2021ZD0301400), National
Natural Science Foundation of China (Nos. 61725504, U19A2075, 61805227,

Sun et al. Light: Science & Applications          (2022) 11:203 Page 7 of 9



61975195, 12022401, 62075207, 11874343, 11774335, and 11821404), Key
Research Program of Frontier Sciences, CAS (No. QYZDY-SSW-SLH003), Science
Foundation of the CAS (No. ZDRW-XH-2019-1), Fundamental Research Funds
for the Central Universities (Nos. WK2470000026, WK2030380015,
WK2470000030), Anhui Initiative in Quantum Information Technologies (Nos.
AHY020100 and AHY060300), CAS Youth Innovation Promotion Association
(No. 2020447).

Author details
1CAS Key Laboratory of Quantum Information, University of Science and
Technology of China, Hefei 230026, China. 2CAS Center for Excellence in
Quantum Information and Quantum Physics, University of Science and
Technology of China, Hefei 230026, China. 3Hefei National Laboratory,
University of Science and Technology of China, Hefei 230088, China

Author contributions
K.S. designed and performed the experiment with the help of Z.-Y.H., Y.W., and
J.-K.L. K.S. analyzed the data with the help of X.-Y.X. and J.-S.X. Y.-J.H. take
charge of the theoretical proof in assistance of C.-F.Li. K.S. wrote the
manuscript. All authors read the manuscript and discussed the results. J.-S.X.,
C.-F.L., and G.-C.G. supervised the project.

Data availability
Source data are available for this paper. All other data that support the plots
within this paper and other findings of this study are available from the
corresponding author on reasonable request.

Competing interests
The authors declare no competing interests.

Supplementary information The online version contains supplementary
material available at https://doi.org/10.1038/s41377-022-00891-9.

Received: 30 March 2022 Revised: 8 June 2022 Accepted: 10 June 2022

References
1. Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81,

2152–2155 (1998).
2. Knill, E. et al. Benchmarking quantum computers: the five-qubit error cor-

recting code. Phys. Rev. Lett. 86, 5811–5814 (2001).
3. Chiaverini, J. et al. Realization of quantum error correction. Nature 432,

602–605 (2004).
4. Schindler, P. et al. Experimental repetitive quantum error correction. Science

332, 1059–1061 (2011).
5. Reed, M. D. et al. Realization of three-qubit quantum error correction with

superconducting circuits. Nature 482, 382–385 (2012).
6. Nigg, D. et al. Quantum computations on a topologically encoded qubit.

Science 345, 302–305 (2014).
7. Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin reg-

ister. Nature 506, 204–207 (2014).
8. Bell, B. A. et al. Experimental demonstration of a graph state quantum error-

correction code. Nat. Commun. 5, 3658 (2014).
9. Gong, M. et al. Experimental exploration of five-qubit quantum error-

correcting code with superconducting qubits. Natl Sci. Rev. 9, nwab011 (2022).
10. Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat.

Phys. 16, 875–880 (2020).
11. Egan, L. et al. Fault-tolerant control of an error-corrected qubit. Nature 598,

281–286 (2021).
12. Zhao, Y. W. et al. Realization of an error-correcting surface code with super-

conducting qubits. Preprint at https://arxiv.org/abs/2112.13505 (2021).
13. Noiri, A. et al. Fast universal quantum gate above the fault-tolerance threshold

in silicon. Nature 601, 338–342 (2022).
14. Xue, X. et al. Quantum logic with spin qubits crossing the surface code

threshold. Nature 601, 343–347 (2022).
15. Mądzik, M. T. et al. Precision tomography of a three-qubit donor quantum

processor in silicon. Nature 601, 348–353 (2022).

16. Shor, P. W. Scheme for reducing decoherence in quantum computer mem-
ory. Phys. Rev. A 52, R2493–R2496 (1995).

17. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77,
793–797 (1996).

18. Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist.
Phys. Rev. A 54, 1098–1105 (1996).

19. Grassl, M., Beth, T. & Pellizzari, T. Codes for the quantum erasure channel. Phys.
Rev. A 56, 33–38 (1997).

20. Bacon, D. et al. Universal fault-tolerant quantum computation on
decoherence-free subspaces. Phys. Rev. Lett. 85, 1758–1761 (2000).

21. Gottesman, D. Quantum fault tolerance in small experiments. Preprint at
https://arxiv.org/abs/1610.03507 (2016).

22. Knill, E., Laflamme, R. & Zurek, W. H. Threshold accuracy for quantum com-
putation. Preprint at https://arxiv.org/abs/quant-ph/9610011 (1996).

23. Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant
error rate. SIAM J. Comput. 38, 1207–1282 (2008).

24. Gottesman, D. Fault-tolerant quantum computation with local gates. J. Mod.
Opt. 47, 333–345 (2000).

25. Raussendorf, R. & Harrington, J. Fault-tolerant quantum computation with
high threshold in two dimensions. Phys. Rev. Lett. 98, 190504 (2007).

26. Auger, J. M. et al. Fault-tolerance thresholds for the surface code with fabri-
cation errors. Phys. Rev. A 96, 042316 (2017).

27. Fukui, K. et al. High-threshold fault-tolerant quantum computation with ana-
log quantum error correction. Phys. Rev. X 8, 021054 (2018).

28. Gottesman, D. An introduction to quantum error correction and fault-tolerant
quantum computation. Preprint at https://arxiv.org/abs/0904.2557 (2009).

29. Bermudez, A. et al. Assessing the progress of trapped-ion processors towards
fault-tolerant quantum computation. Phys. Rev. X 7, 041061 (2017).

30. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79
(2018).

31. Rosenblum, S. et al. Fault-tolerant detection of a quantum error. Science 361,
266–270 (2018).

32. Puri, S. et al. Stabilized cat in a driven nonlinear cavity: a fault-tolerant error
syndrome detector. Phys. Rev. X 9, 041009 (2019).

33. Bravyi, S. et al. Quantum advantage with noisy shallow circuits. Nat. Phys. 16,
1040–1045 (2020).

34. Linke, N. M. et al. Fault-tolerant quantum error detection. Sci. Adv. 3, e1701074
(2017).

35. Takita, M. et al. Experimental demonstration of fault-tolerant state preparation
with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017).

36. Vuillot, C. Is error detection helpful on IBM 5Q chips? Quantum Inf. Comput. 18,
949–964 (2018).

37. Harper, R. & Flammia, S. T. Fault-tolerant logical gates in the IBM quantum
experience. Phys. Rev. Lett. 122, 080504 (2019).

38. Cane, R. et al. Experimental characterization of fault-tolerant circuits in small-
scale quantum processors. IEEE Access 9, 162996–163011 (2021).

39. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev.
Mod. Phys. 79, 135–174 (2007).

40. Xu, J. S. et al. Simulating the exchange of Majorana zero modes with a
photonic system. Nat. Commun. 7, 13194 (2016).

41. Xu, J. S. et al. Photonic implementation of majorana-based berry phases. Sci.
Adv. 4, eaat6533 (2018).

42. Töppel, F. et al. Classical entanglement in polarization metrology. N. J. Phys. 16,
073019 (2014).

43. Kim, T., Fiorentino, M. & Wong, F. N. C. Phase-stable source of polarization-
entangled photons using a polarization Sagnac interferometer. Phys. Rev. A 73,
012316 (2006).

44. O’Brien, J. L. et al. Quantum process tomography of a controlled-NOT gate.
Phys. Rev. Lett. 93, 080502 (2004).

45. Wang, P. F. et al. Single ion qubit with estimated coherence time exceeding
one hour. Nat. Commun. 12, 233 (2021).

46. Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-
trap quantum computer. Nature 417, 709–711 (2002).

47. Barends, R. et al. Superconducting quantum circuits at the surface code
threshold for fault tolerance. Nature 508, 500–503 (2014).

48. Kelly, J. et al. State preservation by repetitive error detection in a super-
conducting quantum circuit. Nature 519, 66–69 (2015).

49. Arute, F. et al. Quantum supremacy using a programmable superconducting
processor. Nature 574, 505–510 (2019).

50. Yang, B. et al. Cooling and entangling ultracold atoms in optical lattices.
Science 369, 550–553 (2020).

Sun et al. Light: Science & Applications          (2022) 11:203 Page 8 of 9

https://doi.org/10.1038/s41377-022-00891-9
https://arxiv.org/abs/2112.13505
https://arxiv.org/abs/1610.03507
https://arxiv.org/abs/quant-ph/9610011
https://arxiv.org/abs/0904.2557


51. Huang, C. X. et al. Experimental one-step deterministic polarization entan-
glement purification. Sci. Bull. 67, 593–597 (2022).

52. Ecker, S. et al. Remotely establishing polarization entanglement over noisy
polarization channels. Phys. Rev. Appl. 17, 034009 (2022).

53. Yan, H. X. et al. Entanglement purification and protection in a super-
conducting quantum network. Phys. Rev. Lett. 128, 080504 (2022).

54. Zhou, L. & Sheng, Y. B. Purification of logic-qubit entanglement. Sci. Rep. 6,
28813 (2016).

55. Zhou, L. & Sheng, Y. B. Polarization entanglement purification for con-
catenated Greenberger-Horne-Zeilinger state. Ann. Phys. 385, 10–35 (2017).

56. Munro, W. J. et al. Quantum communication without the necessity of quan-
tum memories. Nat. Photonics 6, 777–781 (2012).

57. Muralidharan, S. et al. Ultrafast and fault-tolerant quantum communication
across long distances. Phys. Rev. Lett. 112, 250501 (2014).

58. Ewert, F., Bergmann, M. & van Loock, P. Ultrafast long-distance quantum
communication with static linear optics. Phys. Rev. Lett. 117, 210501 (2016).

59. Peruzzo, A. et al. Quantum walks of correlated photons. Science 329,
1500–1503 (2010).

60. Jiao, Z. Q. et al. Two-dimensional quantum walks of correlated photons. Optica
8, 1129–1135 (2021).

Sun et al. Light: Science & Applications          (2022) 11:203 Page 9 of 9


	Optical demonstration of quantum fault-tolerant threshold
	Introduction
	Results
	Experimental setup

	Discussion
	Materials and methods
	The strategy of encoding logical qubits
	Analysis of circuits with error gates
	The preparation of logical state &#x0007C;00&#x0232A;l from two entangled photons
	Compensation of the interferometer
	Estimation of the value &#x003F5;
	Details to perform the quantum process tomography

	Acknowledgements
	Acknowledgements




