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Chaotic microlasers caused by internal mode
interaction for random number generation
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Abstract
Chaotic semiconductor lasers have been widely investigated for generating unpredictable random numbers,
especially for lasers with external optical feedback. Nevertheless, chaotic lasers under external feedback are hindered
by external feedback loop time, which causes correlation peaks for chaotic output. Here, we demonstrate the first self-
chaotic microlaser based on internal mode interaction for a dual-mode microcavity laser, and realize random number
generation using the self-chaotic laser output. By adjusting mode frequency interval close to the intrinsic relaxation
oscillation frequency, nonlinear dynamics including self-chaos and period-oscillations are predicted and realized
numerically and experimentally due to internal mode interaction. The internal mode interaction and corresponding
carrier spatial oscillations pave the way of mode engineering for nonlinear dynamics in a solitary laser. Our findings
provide a novel and easy method to create controllable and robust optical chaos for high-speed random number
generation.

Introduction
Random numbers are crucial in the generation of

cryptographic keys for classical and quantum crypto-
graphy systems, the reliability of modern networked
society, and stochastic simulation, etc.1–4. Pseudorandom
numbers can be generated by using deterministic algo-
rithm programs but with limited unpredictability, which
reduces the randomness and associated security. Physical
entropy sources, such as electronic and photon noise,
thermal noise in resistors, and frequency jitter in oscilla-
tors, have been applied to generate non-deterministic
truly random number sequences5–7. However, due to the
low signal level associated with physical noise, non-
deterministic random number sequence generation rates
from stochastic processes are usually less than 100 Mbit
s−18. High-bandwidth chaotic semiconductor lasers have
been widely investigated for the generation of random

numbers8–21 and secure communications22–24. Based on
decay rates of electric field, population inversion, and
polarization, lasers were classified as class A, B, and C
governed by one, two, and three equations, respectively25.
The chaotic laser was first demonstrated without an
external perturbation for a class C laser. As class B lasers,
semiconductor lasers governed by two equations are hard
to exhibit chaotic output without external perturbations.
But semiconductor lasers are extremely sensitive to
external perturbations because their lasing frequency is
affected by carrier density. Chaotic semiconductor lasers
were realized by using external optical feedback8–14 and
optical injection20,26. Furthermore, chaotic behaviors were
investigated for integrated semiconductor lasers with a
passive feedback cavity, or with a mutual coupling inte-
grated microlasers15–19,27.
Under continuous perturbations of an external optical

injection or delayed optical feedback, semiconductor
lasers can exhibit strong nonlinear dynamics, such as
periodic oscillations and chaos. However, time-delay
periodicity imprinted in the laser output leads to recur-
rences in the outcome from chaotic lasers with external
optical feedback28,29, which reduces the randomness and
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security in random number generation, and post-
processing is usually required to obtain truly random
numbers. Moreover, the dynamical behaviors are sensitive
to the parameters of the perturbations and precise
adjustment is essential to realize specific nonlinear
dynamics of interest. A chaotic solitary laser without
external perturbations is a prominent configuration for
random number generation due to its robust and simple
scheme. Low-dimensional chaos in polarization-resolved
output power was reported for a free-running quantum-
dot vertical-cavity surface-emitting laser, which was gen-
erated by nonlinear mode competition including carrier
spin relaxation30,31. Lasing of multiple transverse modes
was demonstrated in wave-chaotic microcavity lasers for
suppressing lasing instabilities32, and spatiotemporal
interference of many lasing modes with stochastic spon-
taneous noises were used for massively parallel ultrafast
random bit generations in a specially designed chip-scale
laser33. In the past decades, deformed microcavities have
attracted a great attention, especially for realizing direc-
tion emission microlasers, because of the transition of
incident angles for mode light rays inside the micro-
cavity34. Recently, the internal field patterns of different
optical modes in deformed silicon microdisks were
experimentally mapped for different dynamic states35. A
phase-space tailoring scheme was reported to regulate
photon transport in a chaotic microcavity, and control of
far-field pattern was verified experimentally for a
quantum-dot microlaser36. However, a chaotic mode is
not directly related to chaotic output for a deformed
microcavity laser.
In this article, we propose a novel approach to manip-

ulate the temporal dynamics of a solitary semiconductor
microlaser by nonlinearly coupling of two transverse
modes inside the microcavity. Chaotic output is realized
from the total output of the deformed microcavity laser
without external optical or electric perturbations, which
allows to form a simple, small, and robust random signal
source. As in a microdisk resonator, polygonal resonators
can also support high-Q whispering-gallery modes with
the mode light rays undergoing total internal reflection. A
dual-mode lasing square microlaser was demonstrated
with an adjusted mode frequency interval37, and a
circular-sided hexagonal resonator was designed to
enhance mode Q factor38. Here, we design a circular-sided
hexagonal microresonator (CSHM) to enhance passive
mode Q factors and adjust the mode frequency interval.
For a microcavity with high passive mode Q factors, we
can realize dual-mode lasing for the fundamental and first
order transverse modes with near threshold gain, mainly
determined by the other losses, e.g., material absorption
loss. In a dual-mode lasing microlaser, mode beating can
lead to oscillations of the photon density and carrier
density caused by stimulated emission, especially as the

mode interval is close to the laser relaxation oscillation
frequency. Moreover, the oscillation of the carrier density
will result in side peaks for lasing modes as under external
electric modulation, and lead to nonlinear coupling for
the two lasing modes because the oscillation frequency is
the frequency interval of the two lasing modes. Using a
rate equation model including internal mode interaction,
we predict nonlinear dynamic states including chaotic
state for a dual-mode lasing microlaser. Furthermore, we
fabricate CSHM lasers and demonstrate nonlinear dyna-
mical states including period-oscillation states and chaotic
state, using a solitary CSHM laser. The chaotic state is
verified with a positive K2-entropy of K2 ≈ 2.9 ns−1, and
physical random numbers at 10 Gb s−1 verified by statis-
tical tests are obtained directly from the total output
intensity of the microlaser. The solitary microcavity laser
with chaotic total output intensity and period-oscillations
provides a simple scheme for high-speed random number
generation and the investigation of nonlinear dynamics.

Results
Chaotic principle for a dual-mode microlaser
To realize dual-mode lasing with a tunable mode fre-

quency interval, we choose a circular-side hexagon
microcavity with a ring electrode. The circular-side can
enhance mode Q factors for realizing dual mode lasing of
the fundamental and first order transverse modes, and the
deformation magnitude of circular-side can be used for
adjusting mode interval to enhance nonlinear dynamics
inside the microcavity. Furthermore, a ring-pattern
electrode is designed for further adjusting the mode
interval as for the square microcavity laser in37. A CSHM
is simulated for transverse electric (TE) modes, i.e., the
domination polarization for a compressively stressed
laser wafer. As shown in Fig. 1a, a deformation amplitude

δ is defined as δ ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � a=2ð Þ2

q
, where a and r are

the hexagonal flat-side length, the radius of the circular
arc, and w and θ are the width of the output waveguide
and the acute angle between the waveguide and the
diagonal of the hexagon, respectively. The wavelengths of
the fundamental and first-order transverse modes (H0 and
H1) versus deformation amplitude δ are plotted in Fig. 1b,
for the CSHM with a= 10 μm and w= 1.5 μm. The
wavelengths of H0 and H1 redshift with δ at different rates
and cross at about δ= 1.01 μm. In addition, a refraction
index offset Δn inside a ring with external and inside radii
of 9.5 and 4.5 μm is applied to model the influence of a
current injection window. As Δn increases with injection
current due to the temperature rising, the wavelength of
H0 approaches to that of H1 and becomes longer even-
tually, which indicates the mode frequency interval can
also be adjusted by injection current. The passive mode Q
factors are plotted in Fig. 1c, where the mode Q factors of
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H0 and H1 are greater than 1 × 104 suitable for dual-mode
lasing, as the practical mode Q factors limited by material
absorption loss are in the order of 103. In addition, two
degenerate modes with near mode Q factors are obtained
for H0 and H1 respectively. The insets in Fig. 1c are z-
direction magnetic field distributions |Hz0| and |Hz1| for
H0 and H1 modes at the wavelengths of 1550.83 and
1550.92 nm, respectively. Based on the mode field dis-
tributions, we can define a cross coefficient proportional
to Hz0H*z1 as shown in Eq. (S2) (see the Supplementary
Information). The real part of the cross coefficient is
plotted in Fig. 1d, which indicates in-phase and antiphase
sections of the mode fields in red and blue colors. The in-
phase and antiphase sections will result in positive and
negative mode beating intensities, and carrier density will
oscillate at beating frequency of the two modes caused by
the variation of stimulated emission. In the following, a
rate equation model was setup for a dual-mode lasing
microcavity laser with internal interaction including the
oscillation of carrier density in the two sections due to the
mode beating.
Different rate equation models were used to analyze

nonlinear dynamics of a solitary laser system. For
example, bistable operation and chaotic state were stu-
died for a two-section semiconductor laser under sinu-
soidal current modulation, using a rate equation with

inhomogeneous excitation and spatial distribution of
carrier lifetime39. The complex nonlinear behaviors were
caused by different parameters, such as lifetimes, of the
two sections. In addition, complex periodic and chaotic
intensity fluctuations were characterized for a solid-state
laser with intra-cavity frequency doubling crystal using
an intensity rate equation model40. Nonlinear dynamic
behaviors of low-frequency mode intensity fluctuations
were investigated using the rate equations with multiple
modes in two orthogonal polarizations. But longitudinal
mode beating phenomena were not accounted in the
intensity equations. By using field equations, we set up a
rate equation model including the influence of mode
beating intensity and internal mode injections for a dual-
mode lasing microlaser. As shown in Fig. 1d, the in-phase
and anti-phase for the mode fields occupy about a half
region, which will interchange at the mode frequency
interval between H0 and H1. By simply dividing the
microcavity into two sections of A and B with the same
sign of the products, we expect the carrier densities in
each section will oscillate with the beating optical
intensity due to the consumption of stimulated emission.
As shown in Fig. 2a, the mode beating intensity and
carrier oscillation at the beating frequency will cause side
peaks for lasing modes at the mode frequency interval
and result in strong mode interactions. Accounting the
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Fig. 1 Simulated diagram and mode characteristics. a Schematic diagram of a CSHM with flat sides replaced by arc sides. b Mode wavelengths
versus δ for H0 and H1 modes, indicated by circle and square symbols, respectively. The modes with the same longitudinal-mode numbers are
indicted by the same symbols and connected by lines, for the CSHM with a= 10 μm and w= 1.5 μm. c Mode Q factors versus mode wavelengths at
δ= 1.01 μm. Inset: Magnetic field (|Hz|) distributions of mode H0 and mode H1. d Real part of cross coefficient distribution for the H0 and H1 mode
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internal mode interaction between H0 and H1 and
dividing the microcavity into the A and B sections, we set
up a comprehensive rate equation model for the CSHM
laser similar as in41,42

dNp

dt ¼ ηI
qV � Np

τe
� vg

P

m;m0
Kp
mm0gpRe EmE�

m0
� �

m;m0 ¼ 0; 1; p ¼ A;Bð Þ
dEm tð Þ
dt ¼ � 1

2τm
Em tð Þ þ 1

2 vg 1þ iαð ÞP
m0

KA
mm0ΓgA þ KB

mm0ΓgB
� �

Em0 tð Þ

ð1Þ
where the slowly varying complex field of transverse mode
m is Em tð Þ ¼ Em tð Þj j exp jΦm tð Þð Þ, the mode phase is
Φm tð Þ ¼ ϕm tð Þ þ ωm �Ωð Þt with a reference frequency
Ω, and the mode frequency interval is Δf ¼ ω1 � ω0ð Þ=2π.
m and m′ = 0 and 1 is corresponding to the fundamental
and first order transverse mode, respectively, τm is mode
lifetime determined by passive mode Q factor and internal
absorption loss, α is the linewidth enhancement factor, p=
A and B represents the two sections, Np, gp and Kp

mm0 are
carrier density, gain and the mode field overlap coefficient

of mode m and m′ in section p (see Supplementary
Information for more details).
The rate equations with the parameters (see Equation

S1 and Table S1) were solved using a fourth order
Runge–Kutta integration with a time step of 1 ps to
generate the time series of the output photon density S,
and Fourier transforms were used to produce the optical
and radio frequency (RF) signal spectra. The extremum-
bifurcation diagram in Fig. 2b, calculated by searching for
the local maxima and minima of S, shows the internal
mode injection locking with a constant intensity, as the
mode frequency interval Δf is smaller than 3 GHz, and
strong mode interactions result in a great number of
extrema as Δf increases from 3 to 13 GHz. In addition to
the chaotic region around resonance frequency fr about
10 GHz, chaotic states appear around the frequency
interval Δf= 5 GHz. As shown in Fig. S1, the RF spectra
have strong resonance peak at fr as Δf= 5 GHz ≈ fr /2. The
lasing spectra are shown in Fig. 2c at Δf= 10.6, 13, and
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15 GHz, corresponding to chaotic state, period-two, and
period-one oscillations, respectively. The nonlinear
dynamics change from complex to simple with the further
increase of Δf because the carrier density oscillates weakly
as Δf is much larger than the relaxation oscillation
frequency.
The simulated output intensities were evaluated using

the Grassberger–Procaccia (G–P) algorithm to estimate
the correlation dimension ν and the K2-entropy (Kolmo-
gorov entropy)43,44. The output data can be categorized as
periodic or quasiperiodic, chaotic, and purely stochastic
signals when K2 is zero, positive, and infinity, respec-
tively43. For the time series at Δf= 10.6 GHz, the corre-
lation integral CD(ε) shows a linear correlation with the
radius of the ball ε at small values in logarithmic scale in
Fig. 2d, and the corresponding slope of the curve con-
verges to the correlation dimension of ν ≈ 3.50, as shown
in Fig. 2e from D= 12 to 15. Taking into accounting
2 GHz bandwidth of ADC (analog-to-digital converter) as
in the experiment, we get the correlation dimension ν of
3.91 in Fig. S2d. Furthermore, the K2-entropy of K2= 19
and 3.2 ns−1 is derived directly using the chaotic output
series of the rate equations at Δf= 10.6 GHz and
accounting 2 GHz bandwidth of ADC, respectively, as
shown in Fig. 3, which verifies the chaotic characteristic of
the time series.

Experimental realization of a solitary chaotic microlaser
A CSHM laser with a= 10 μm, w= 1.5 μm, δ= 1.01 μm

and θ= 55° as shown in inset of Fig. 5a is tested at tem-
perature 287 K controlled by a thermoelectric cooler,
which has a ring-patterned contact window for selective
electric injection to adjust the mode frequency interval37.
Figure 4a shows the schematic of the experimental setup.
The lasing spectra at 27 and 31mA are shown in Fig. 4b

with the main lasing modes around 1553 and 1565.5 nm,
respectively. The mode wavelengths of H0 and H1 and
corresponding wavelength intervals are presented in Fig.

4c versus the injection current. The mode wavelengths
increase with the injection current mainly due to the
heating effect. But the wavelength interval first increases
with the injection current from 24 to 29mA caused by the
increase of carrier density accompanying lasing mode
jumping from about 1553 to 1565.5 nm. Then the wave-
length interval keeps near constant from 30 to 36 mA due
to the compensation of the increases of carrier density
and temperature, and finally decreases with the injection
current as it is larger than 36mA mainly caused by
heating effect. The wavelength interval decreases with the
increasing current, indicating a larger redshift rate of the
mode at shorter wavelength side. Taking the simulation
results into account, we estimate that the mode at shorter
wavelength side is the H0 mode, i.e., the mode wavelength
interval in Fig. 4c is (λ1 − λ0).
Detailed lasing spectra are plotted in Fig. 5, which

indicate complicated nonlinear dynamical states due to
mode interaction and mode redshift. Near single-mode
operation at short wavelength side is obtained at 20 mA
with a side-mode suppression ratio about 10 dB. Four
main peaks around 1552.3 nm with intensity differences
less than 2 dB and mode frequency intervals of 4–9 GHz
are observed at 24 mA in Fig. 5a, which can be assigned as
the fundamental and first-order transverse modes
including degenerate modes, and similar spectra are
observed from 22 to 24mA. More lasing mode will result
in strong mode competition. In fact, it was found that
dual-mode lasing state is easy to realize chaotic state than
single mode lasing state under external optical feedback45.
Multi-mode lasing with such small intervals can result in
complicated nonlinear processes as predicted in Fig. 2.
Two longitudinal modes marked as HA and HB with a free
spectral range of about 12 nm have near the same inten-
sity as shown in Fig. 5a and the inset of Fig. 5b at 26 mA,
due to the redshift of the gain spectrum with the increase
of injection current. At 38mA, two main lasing modes
around 1567.2 nm with a frequency interval 18.2 GHz are
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observed with two clear four-wave mixing (FWM) peaks
in Fig. 5b, and additional peaks of period-two oscillation
appear at 44 mA due to the small mode frequency interval
of 16.5 GHz, as carriers can oscillate with a large ampli-
tude at 16.5 GHz.

Identification of chaos output
Furthermore, the output of the CSHM laser was

amplified by an erbium-doped fiber amplifier (EDFA) and
converted to an electrical signal by a 40 GHz-bandwidth
photodetector, and the AC component with AC coupling
was measured by an oscilloscope with 2 GHz-bandwidth
and 8-bit ADC. The output radio-frequency (RF) spectra
at I= 22, 23, and 24 mA are plotted in Fig. 6a with the
noise spectrum measured at I= 0. The output RF spectra
are noise like flat spectra with flatness within ±5 dB in the
bandwidth of 11.6 GHz46. The output waveforms are
measured using an oscilloscope at a sampling rate of 10
GSa s−1 and plotted in Fig. 6b at I= 25.6 mA, which
shows noise-like intensity oscillations with an auto-
correlation function (ACF) as shown in Fig. 6c. The ACF
has the full width at half maximum of 1 ns and exhibits no
specific sidelobes in a long range of 2 μs, which are dif-
ferent from optical feedback chaotic lasers45.
The chaotic outputs at I= 25.6 mA are verified using

the G-P algorithm and the calculated results are presented
in Fig. 6d–f. The quantity of ln(CD(ε)) converges to a
linear scale versus ln(ε) with increasing D in Fig. 6d, and
the correlation dimension ν is converged to about 3.92.

Furthermore, K2-entropy is estimated as K2 ≈ 2.9 ns−1 as
shown in Fig. 6f, which verifies the chaotic characteristics
of the laser output data. The correlation dimension ν of
3.92 and K2-entropy K2 ≈ 2.9 ns−1 are agreement very well
with ν= 3.91 in Fig. S2d, accounting the 2 GHz band-
width of ADC, and K2 ≈ 3.2 ns−1 in Fig. 3b obtained from
the chaotic output series of the rate equations at Δf=
10.6 GHz. Finally, random bits were generated from the
temporal waveforms by retaining 2 of the least significant
bits (LSBs) of each sample for the microlaser. The gen-
erated random bit sequences are verified by the National
Institutes of Standards and Technology Special Publica-
tion 800-22 statistical test suite. A total of 120 sequences,
each with a size of 1 Mbit, were collected and tested. As
shown in Fig. 7, the random bits generated at a bit rate of
10 Gbit s−1 (5 GS s−1 × 2 bits) pass the test. However,
random bits generated at higher bit rate cannot pass the
test, such as retaining 3 of the LSBs of each sample. In
addition, the size of random bit data tested is partly
limited by the storage capacity of the oscilloscope. We
expect to realize higher bandwidth of random bits using
an oscilloscope with a larger bandwidth.

Discussion
In summary, internal mode interaction has been pro-

posed and demonstrated for realizing chaotic and period
oscillation states without external perturbation in a dual-
mode lasing microcavity laser. A rate equation model
based on field equations is set up to account the internal
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mode interaction including the oscillations of mode
beating intensity and carrier density. Dual-mode lasing of
the fundamental and the first order transverse modes
guarantees strong carrier oscillation inside the laser cavity
due to mode beating, which enhances the mode interac-
tion. Chaotic dual-mode lasing laser is predicted using the
rate equation without external perturbation. The chaotic
semiconductor microlaser and physical random number
generation are demonstrated experimentally, with the
results in good agreement with the theoretical prediction.
The procedure in revealing the underlying mechanism of
the internal interaction between two transverse modes
gives a new understanding of the nonlinear dynamical
process in the semiconductor microlasers. Enhancing
mode Q factors and tuning mode intervals by using cir-
cular sides and a ring electrode pave the way for mode
engineering in polygonal microcavities. The mode engi-
neering to enhance the nonlinear dynamics in semi-
conductor microlasers provides stable and robust optical
sources for random number generations.

Materials and methods
Mode characteristics simulation
The mode characteristics of the deformed hexagonal

micro resonator were simulated by using a two-
dimensional finite element method (FEM) (COMSOL
Multiphysics 5.0) with a cell step of 25 nm. The CSHM
has a constant refractive index of 3.2 corresponding to an
AlGaInAs/InP laser wafer, and laterally confined by
divinylsiloxane-bisbenzocyclobutene (DVS-BCB) with a
refractive index of 1.54, which is coated for the planar-
ization of the fabricated microlasers. A perfectly matched

layer (PML) is used to terminate the calculation region,
and the distances between the PML and the resonator
edge are larger than 2 μm to ensure the accuracy of the
numerical calculation.

Experimental data acquisition
The CSHM lasers were fabricated using an AlGaInAs/

InP compressively-strained multiple quantum wells laser
wafer by contacted photolithography and inductively
coupled plasma etching technique38,47. The lasers were
cleaved over the output waveguide and bonded with the
p-side up on an AlN submount. The optical output from
the CSHM laser is collected by a single mode fiber and
then analyzed by an optical spectrum analyzer (OSA,
YOKOGAWA, AQ6370C) with a resolution of 0.02 nm.
Alternatively, the collected beam is amplified by an EDFA
and then filtered out the aimed longitudinal group (HA or
HB depending on the interest) by a band pass filter (BPF)
to reduce the influence of the other longitudinal modes.
The electric signal converted from the filtered light beam
by a photodetector (PD, 40 GHz bandwidth) are divided
into two lines. One of the lines is measured by an electric
spectrum analyzer (ESA, ROHDE&SCHWARZ, FSU,
26.5 GHz bandwidth) and the other line is measured by an
oscilloscope (OSC, ROHDE&SCHWARZ, RTO1024,
2 GHz bandwidth, 10 GSa s−1) to measure the temporal
waveform for random number generation.

Correlation dimension and the entropy
The outputs are evaluated using the G–P algorithm to

estimate the chaotic behavior43. To make the G–P algo-
rithm efficient for finite time series and reduce the noise

Linear-complexity
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Runs
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Fig. 7 Results of the NIST Special Publication 800-22 statistical tests. The random bits of 120 sequences, each with a size of 1 Mbit, were tested,
and the worst P-value and proportion are presented. At significance level α= 0.01, the success proportion should be in the range of 0.99 ± 0.027, and
the composite P-value should be larger than 0.0001 to ensure uniformity
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influence on the experimental data, we applied a modified
version of G–P algorithm48. For time series data F(m)
with N points m= 1 to N, as one-dimensional chaotic
trajectory, we can reassemble the data into D-dimensional
trajectory as N-D points of {F(1), F(2), …F(D)), (F(2), F(3),
…F(D+ 1)), …, ((F(N-D), F(N-D+ 1), …F(N)}, with the
embedding dimension of D. A correlation integral CD(ε) is
defined as the average number of points inside a ball of
radius ε centered at one point, where ε is the distance
between two points in the D-dimensional space. CD(ε) will
grow with the increasing of the radius as a power law of
CD εð Þ / εν . The correlation dimension ν and the K2-
entropy are then estimated from the correlation integral
curve by

ν ¼ d ln CD εð Þð Þ=d ln εð Þ ð2Þ

and

K2 ¼ ln CD εð Þ=CDþ1 εð Þ½ �=τ ð3Þ

as D and ε approach infinity and zero, respectively, where
τ is the sampling rate of the time series. The number of
temporal points used for the G–P algorithm is 4000 for
both of the simulation and experimental data. For re-
embedding procedure48, we use a window size of 12 and
three principal components. Generally, infinite is out of
range numerically, but these functions show good
convergence when the embedding dimension D is larger
than 2υ+ 149. So, we look for convergence in these
functions as we increase the vector size D.
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