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Graphene-driving novel strain relaxation towards
AlN film and DUV photoelectronic devices
Hieu. P. T. Nguyen 1✉

Abstract
Graphene-driving strain-pre-store engineering enables the epitaxy of strain-free AlN film with low dislocation density
for DUV-LED and the unique mechanism of strain-relaxation in QvdW epitaxy was demystified.

Group III-nitride semiconductor owns direct energy
bands and wide bandgap and thus can be widely used in
high-efficiency ultraviolet (UV) photo-electronic emitters
and detectors1–3. Recently, UV light-emitting diode (UV-
LED) based on AlGaN has received tremendous attention
due to its broad applications including sterilization, poly-
mer curing, biochemical detection, non-line-of-view
communication, and special lighting4,5. Compared with
traditional UV light-source using mercury, xenon, argon,
deuterium, or excimer, UV-LEDs provide several advan-
tages such as mercury-free environmental protection,
compact and portable, low power consumption, low
operating voltage, etc.6. In 1998, Han et al.7 utilized
Al0.2Ga0.8N/GaN as a multiple quantum well (MQW)
structure and successfully demonstrated the world’s first
UV-LED with a wavelength shorter than 360 nm. How-
ever, its light output power (LOP) is only 13 μW at a
current of 20mA, and the external quantum efficiency
(EQE) is less than 1%. In 2006, Taniyasu et al.8 reported
that AlN based p-type/intrinsic/n-type (PIN) and metal-
insulator-semiconductor (MIS) LEDs showed a peak
luminous wavelength at 210 nm, which was the shortest
luminous wavelength ever obtained using III-nitride
semiconductor, with an EQE of only 6–10%. Hirayama
et al.9 reported the record EQE exceed 20% at 20mA for
an emission wavelength of 275 nm. Over the past two
decades, AlGaN-based deep UV LEDs (DUV-LEDs) have
made significant progress both in terms of LOP and EQE.

From the current overall situation, the EQE reported for
DUV-LEDs is mostly below 10% or even 5%, which still
has a lot of room for improvement compared with the full-
fledged longer wavelength near-ultraviolet and blue LEDs.
Among the multiple factors that restrict the qualitative

leap in the photo-electronic properties of DUV-LEDs, the
epitaxial quality of the structure is the most prominent
part. The AlN film, which is the basic template layer of
AlGaN-based DUV-LEDs, is usually epitaxially grown on a
hetero-substrate due to its lack of cost-effective homo-
genous substrate10. Due to the intractable problem of
mismatch between the substrate and the AlN epilayer,
heteroepitaxy will inevitably introduce various defects
inside the epilayers11,12. In this regard, several techniques
have been proposed and great progress have been made in
the epitaxial growth of AlN templates, such as epitaxial
lateral overgrowth (ELO) technology on patterned sap-
phire substrates (PSS) and patterned AlN/sapphire tem-
plates including micron-sized and nano-sized patterns13,14.
The above method does reduce the dislocation density of
the AlN epilayer to a certain extent, but it is helpless to
eradicate the residual stress inside the crystal, which will
lead to the nonuniformity of the Al distribution in the
upper AlGaN layer accompanied by wafer bending,
severely limiting the device performance15,16.
A recent publication by Chang et al.17 reported the

successful realization of strain-free AlN films with low
dislocation density by graphene-driven strain pre-storage
engineering and demonstrated its application on high-
performance DUV-LED. More importantly, the research
team also proposed a unique strain relaxation mechanism
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in quasi-van der Waals (QvdW) epitaxy, different from
the previous “interface displacement” theory previously
thought18, which was expected to allow continuous
modulation of the strain state of the QvdW epitaxy AlN
film by adjusting the initial nucleation morphology of the
epilayers. The key strategy for growing high-quality
strain-free AlN films on the graphene layer is presented
in Figure 2a of this paper17. Briefly, N2 plasma treatment
was used to convert graphene grown on sapphire to
defect-rich graphene, so that the nucleation of AlN mainly
occurred at N-deficient sites through Al–N bond as the
fulcrum. Subsequently, AlN was densely nucleated on
defect-rich graphene, and then rapidly expanded into
films by graphene-driven vdW epitaxy. By characterizing a
series of crystal qualities and stress states of the as-grown
AlN films with various thicknesses, the researchers found
that the dislocation density of epilayer illustrated an
anomalous sawtooth-like evolution, instead of a simple
decreasing with the increase of film thickness (Fig. 3b)17.
More importantly, the presence of graphene provided an
additional source of tensile strain for the epitaxy system
compared to its counterpart on bare sapphire, resulting in
the final graphene-based strain-free AlN film, as shown in
Fig. 3f17. Meanwhile, the DFT calculation results
demonstrated that the graphene-driven nucleation of AlN
with small-size high-density during the initial growth
process pre-stored additional tensile strain at the initial
stage of growth, which just offseted the compressive strain
effect of the hetero-mismatch. Further, the as-fabricated
AlN/graphene-based DUV-LED exhibited excellent per-
formance in terms of structural quality, luminous effi-
ciency, and wavelength stability, proving that this growth
strategy can effectively improve the photo-electronic
properties of the device.
The photo-electronic performance of DUV-LED devices

is generally limited by critical issues associated with the
poor quality and large strain of the nitride material system
caused by the inherent mismatch of heteroepitaxy. This
work achieves a strain-free AlN film with low dislocation
density by graphene-driving strain-pre-store engineering
and demonstrates its application on high-performance
DUV-LED. Through both experimental and theoretical
analysis, the researchers reveal the unique mechanism of
strain-relaxation in QvdW epitaxy, and state that it is
expected to realize further modulation of epilayer with
various strain states by adjusting the nucleation density of
initial AlN growth. The valuable perceptions of this work
reveal multiple beneficial effects of graphene on nitride

growth, which not only provides useful inspiration for the
diversified development of 2D materials, but also provides
reliable way for developing the practical application of
graphene in the fields of nitride-based optoelectronic and
high-power electronic devices.
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