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Abstract
Research on optical computing has recently attracted significant attention due to the transformative advances in
machine learning. Among different approaches, diffractive optical networks composed of spatially-engineered
transmissive surfaces have been demonstrated for all-optical statistical inference and performing arbitrary linear
transformations using passive, free-space optical layers. Here, we introduce a polarization-multiplexed diffractive
processor to all-optically perform multiple, arbitrarily-selected linear transformations through a single diffractive
network trained using deep learning. In this framework, an array of pre-selected linear polarizers is positioned between
trainable transmissive diffractive materials that are isotropic, and different target linear transformations (complex-
valued) are uniquely assigned to different combinations of input/output polarization states. The transmission layers of
this polarization-multiplexed diffractive network are trained and optimized via deep learning and error-
backpropagation by using thousands of examples of the input/output fields corresponding to each one of the
complex-valued linear transformations assigned to different input/output polarization combinations. Our results and
analysis reveal that a single diffractive network can successfully approximate and all-optically implement a group of
arbitrarily-selected target transformations with a negligible error when the number of trainable diffractive features/
neurons (N) approaches NpNiNo , where Ni and No represent the number of pixels at the input and output fields-of-
view, respectively, and Np refers to the number of unique linear transformations assigned to different input/output
polarization combinations. This polarization-multiplexed all-optical diffractive processor can find various applications in
optical computing and polarization-based machine vision tasks.

Introduction
With the increasing global demand for machine learn-

ing and computing in general, using light to perform
computation has been a rapidly growing focus area of
optics and photonics1–5. The research on optical com-
puting has a long history spanning decades of exciting

research and development efforts6–31. Motivated by the
massive success of artificial intelligence and deep learning,
in specific, a myriad of new hardware designs for optical
computing have been reported recently, including, e.g.,
on-chip integrated photonic circuits16–22, free-space
optical platforms23–28, and others29–31. Among these dif-
ferent optical computing systems, the integration of suc-
cessive transmissive diffractive layers (forming an optical
network) has been demonstrated for optical information
processing, such as object classification23,32–43, image
reconstruction38,44, all-optical phase recovery and quan-
titative phase imaging45, and logic operations46–48.
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A diffractive network is trained using deep learning and
error-backpropagation methods implemented in a digital
computer, after which the resulting transmissive layers are
fabricated to form a physical network that computes
based on the diffraction of the input light through these
spatially-engineered transmissive layers. Because the
computational task is completed as the light passes
through thin and passive optical elements, this approach
is very fast, and the inference process does not consume
power except for the illumination light. It is also scalable
since an increase in the input field-of-view (FOV) can be
handled by fabricating larger transmissive layers and/or
deeper diffractive designs with more successive layers
positioned one after another. Furthermore, both the phase
and the amplitude information channels of the input
scene/FOV can be processed by a diffractive optical net-
work, without the need for phase retrieval or digitizing,
vectorizing an image of the scene, which makes diffractive
computing highly desirable for machine vision applica-
tions38,44. Harnessing light-matter interactions using
engineered diffractive surfaces also enabled the inverse
design of optical elements for e.g., spatially-controlled
wavelength demultiplexing49, pulse engineering50, and
orbital angular momentum multiplexing/demultiplex-
ing51,52. It has also been shown that a diffractive network
can be trained by optimizing its diffractive layers to per-
form an arbitrary complex-valued linear transformation
between its input and output fields-of-view, demonstrat-
ing its computing capability for complex-valued matrix-
vector operations at the speed of light propagation
through a passive diffractive system.
All these results highlight the unique capabilities of

diffractive networks to manipulate various physical
properties of light, including e.g., its amplitude and phase
distribution, spatial frequency, spectral bandwidth, orbital
angular momentum, for performing specific computa-
tional tasks that are desired. As another important phy-
sical property of light, polarization specifies the
geometrical orientation of electromagnetic wave oscilla-
tions. Utilizing the polarization state of light has played a
pivotal role in numerous applications, including tele-
communications53–55, imaging56–61, sensing62–64, com-
puting65, and displays66,67. For example, polarization-
division multiplexing (PDM) has been used in tele-
communication systems to permit two channels of
information to be simultaneously transmitted using
orthogonal polarization states over a single
wavelength54,68.
Here, we report the design of polarization-multiplexed

diffractive optical networks to perform a group of arbi-
trary linear transformations using a common set of dif-
fractive layers that are jointly optimized to all-optically
perform each one of the target complex-valued linear
transformations at a different combination of input/

output polarization states. In our earlier work69, we
showed that a diffractive optical network composed of
spatially-engineered layers could all-optically perform an
arbitrary complex-valued linear transformation between
an input and output field-of-view with a negligible error
when the number of trainable diffractive elements/neu-
rons (N) approaches NiNo, where Ni and No represent the
number of pixels at the input and output FOVs, respec-
tively. In this work, we use polarization multiplexing
between the input and output FOVs of a diffractive net-
work to increase the capacity of diffractive computing and
all-optically perform a group of arbitrary linear transfor-
mations that are complex-valued. These polarization-
multiplexed diffractive network designs are not based on
birefringent, anisotropic or polarization-sensitive materi-
als; instead, our designs utilize standard diffractive sur-
faces where the phase and amplitude transmission
coefficients of each trainable diffractive feature are inde-
pendent of the polarization state of the input light. Using
a network design solely based on standard isotropic dif-
fractive materials makes our designs simpler in terms of
material selection, fabrication and scale-up; however, it
also makes the diffractive network insensitive to different
polarization states, and therefore, polarization-
multiplexed all-optical computation of different trans-
formations becomes impossible. To overcome this chal-
lenge, we used a non-trainable, pre-determined array of
linear polarizers (at 0°, 45°, 90° and 135°) within the dif-
fractive network that acted as polarization seeds for the
trainable isotropic diffractive layers to all-optically exe-
cute different linear transformations through input/out-
put polarization multiplexing (see Fig. 1a). Stated
differently, we used data-driven training and optimization
of isotropic diffractive layers to encode different linear
transformations into different input/output polarization
combinations, and this encoding is made possible by the
polarization mode diversity introduced by a non-trainable,
pre-determined array of linear polarizers within the dif-
fractive volume.
In our first implementation, we performed two different,

arbitrarily selected linear transformations (i.e., Np = 2)
using a diffractive network composed of four transmissive
layers that are jointly optimized using deep learning, where
the first target linear transformation was assigned to x (0°)
linear input and x linear output polarization combination,
and the second target linear transformation was assigned to
y (90°) linear input and y linear output polarization com-
bination. For this case of Np = 2, there are two different
schemes (Fig. 1b) to all-optically access/implement the
desired linear transformations: sequential (x and y input
polarization states encode the input information sequen-
tially, one after another) or simultaneous (x and y input
polarizations encode the input information at the same
time within the input FOV). Our numerical results
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(Figs. 2–5) reveal that one can successfully train a dif-
fractive network under each one of these operation modes
(sequential vs. simultaneous) to approximate the two tar-
get, arbitrary-selected linear transformations with a negli-
gible error when the number of trainable diffractive
neurons N approaches NpNiNo ¼ 2NiNo.
In our second implementation (Fig. 6), we performed

four different, arbitrary linear transformations (i.e., Np = 4)
using a diffractive network composed of eight transmissive
layers that are jointly optimized using deep learning and
examples of input/output fields corresponding to the
selected complex-valued linear transformations (ground
truth). In this case, the first target transformation was
assigned to x linear input and 45° linear output polarization
combination, the second target transformation was
assigned to y linear input and 135° linear output polariza-
tion combination, the third target transformation was
assigned to x linear input and 135° linear output polar-
ization combination and finally the fourth target

transformation was assigned to y linear input and 45° linear
output polarization combination. Our analyses of this
4-channel polarization-multiplexed diffractive system show
that when N � NpNiNo ¼ 4NiNo, all the target linear
transformations can be successfully approximated, follow-
ing a similar conclusion as in the first implementation case
(Np = 2).
Without the use of a non-trainable, pre-determined

array of linear polarizers acting as polarization seeds
within the network, none of these multiplexing results
could be achieved using isotropic diffractive materials, no
matter how they are trained or optimized, since they
would normally perform the same transformation under
different input polarization states.
Our results should not be confused with polarization-

multiplexed (or wavelength/illumination multiplexed)
projection of a set of desired complex fields at the output
of a metamaterial design; such multiplexed metamaterial
systems do not implement an arbitrary matrix
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Fig. 1 Schematic of polarization-multiplexed all-optical diffractive computing. a Optical layout of the polarization-encoded diffractive network,
where four isotropic diffractive layers and one array of linear polarizers are jointly used to perform two distinct, complex-valued linear transformations
between the input field i and the output field o by using polarization encoding/decoding at the input/output FOVs. b Schematic for the sequential
polarization access (SeqPA, left) mode and the simultaneous polarization access (SimPA, right) mode that can be used to operate the 2-channel
polarization-multiplexed diffractive network
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multiplication operation. Each input-output polarization
combination in our diffractive design represents an all-
optical implementation of a unique linear transformation
between the input and output FOVs. Therefore, for each

input-output polarization combination, infinitely many
different target complex fields can be all-optically syn-
thesized by the trained diffractive network in response to
different input field distributions; and this capability
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accurately defines the corresponding complex-valued
linear transformation at the output FOV for all the pos-
sible and infinitely many combinations of phase and
amplitude distributions at the input FOV.
A polarization-multiplexed diffractive network can

perform an arbitrary set of target linear transformations
using the same diffractive layers that all-optically imple-
ment a distinct complex-valued linear transformation at a
selected input/output polarization combination. We
believe that this unique framework will be valuable in
developing high-throughput optical processors and
polarization-based machine vision systems operating at
different parts of the electromagnetic spectrum. More-
over, the presented diffractive computing platform and
the underlying concepts can be used to develop
polarization-aware optical information processing sys-
tems for e.g., detection, localization, and statistical infer-
ence of objects with unique polarization properties.

Results
Throughout this section, the terms “diffractive optical

network,” “diffractive network,” and “diffractive pro-
cessor” are interchangeably used. The schematic of our
framework for 2-channel polarization-multiplexed all-
optical computing (Np = 2) is shown in Fig. 1a. A
polarization-encoded diffractive neural network, com-
posed of 4 trainable diffractive layers, is trained to all-
optically perform 2 distinct, complex-valued linear
transformations between the input and output FOVs
through 2 orthogonal polarization channels. The pre-
determined polarizer array (which is treated as non-
trainable) consists of multiple linear polarizer units with
four different polarization directions: 0°, 45°, 90° and 135°.
This non-trainable polarizer array is positioned close to
the center of the diffractive volume (i.e., between the 2nd

and 3rd trainable diffractive layers) so that the resulting
polarization modulation does not directly dominate the
output field; the former and latter diffractive layers are
jointly optimized to effectively communicate with the
polarizer array and all-optically implement the desired
group of linear transformations. More details about the
architecture, optical forward model and training details of
the polarization diffractive network can be found in the
Methods section.
We use i and o to denote the complex-valued, vector-

ized versions of the 2D input and output complex fields
located at the input and output FOVs of the diffractive
network, respectively, as presented in Fig. 1a. Based on the
scalar diffraction theory, here ix and ox represent the
column vectors of the complex fields generated by sam-
pling the x-polarized optical fields within the input and
output FOVs, respectively, and vectorizing the resulting
2D matrices in a column-major order. Similar to ix and ox,
iy and oy are their counterparts generated by sampling the

y-polarized optical fields within the input and output
FOVs, respectively. Based on this notation, (ix, iy) and (ox,
oy) can be considered to represent the input and output
channels of our polarization-multiplexed diffractive net-
work, respectively. In our analyses, the number of pixels
in the input and output FOVs are both taken as Ni = No =
82 = 64, such that each target linear transformation
matrix has 642 complex-valued entries.
In this first implementation with Np = 2, we randomly

generated two complex-valued matrices A1 and A2, each
with a size of Ni × No = 642, to serve as two unique
arbitrary linear transformations that we would like to all-
optically implement using a single polarization diffractive
network. Visualized in Fig. 2a with their amplitude and
phase components, these two matrices are independently
generated using different random seeds, and the differ-
ence between the two matrices can be found in Fig. S1.
We also randomly generated two training sets of
complex-valued vectors {i1} and {i2} with Ni = 64 as input
fields, and constructed the corresponding sets of output
field vectors {o1} and {o2} using o1 ¼ A1i1 and o2 ¼ A2i2,
respectively. For each one of these training sets, {i1} and
{i2}, we used 55,000 randomly generated complex fields in
our training process. A further increase in the size of this
training dataset (to e.g., >100,000 randomly generated
complex fields) could improve the transformation
approximation accuracy of the trained diffractive net-
works, but would not change the general conclusions of
this manuscript and therefore is left as future work.
Based on the given inputs of {i1} and {i2}, the ultimate

goal of training our polarization-multiplexed diffractive
network is to simultaneously compute the all-optical
output fields {o01} and {o02} to come close to the output
ground truth (target) fields {o1} and {o2}; this way, the all-
optical transformations A′1 and A′2 performed by the
trained single diffractive system represent an accurate
approximation to their ground truth (target) transforma-
tion matrices A1 and A2. It should be emphasized that we
are not aiming to train the diffractive network to imple-
ment the correct linear transformations for only a few
input-output field pairs. Instead, despite the limited
number of input/output field patterns used during the
training process, our goal is to generalize to any pairs of
(i1, o1) and (i2, o2) that satisfy o1 ¼ A1i1 and o2 ¼ A2i2.
More details about the training data generation can be
found in “Methods”.
To form two unique diffractive information processing

pipelines in the same diffractive network for performing
the linear transformations given by A1 and A2, as shown
in Fig. 1a we matched the input fields and the diffractive
output pairs, {(i1, o01)} and {(i2, o02)}, with the input and
output polarization channels of our diffractive system, i.e.,
ix ¼ i1, iy ¼ i2, ox ¼ o01 and oy ¼ o02. That is to say, the A
′1 transformation is performed by encoding the
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corresponding input field data i1 into the x-polarized
optical field within the input FOV, using e.g., an x-aligned
linear polarizer, and decoding (sampling) the x-polarized
component of the field within the output FOV as the
computed output field o01 using e.g., an x-polarized ana-
lyzer. We denote this diffractive information processing
channel as the channel ① in Fig. 1b. It is also a similar case
for the A′2 transformation, except this time the y polar-
ization is employed at the input and output FOVs, and
this diffractive information processing channel is denoted
as the channel ②. With this polarization encoding scheme,
there are potentially two modes to perform the data
inference through the same diffractive network: (1) in two
sequential, successive accesses to the diffractive system,
each time feeding the input data using its assigned
polarization channel, and obtaining the corresponding
output (see Fig. 1b, left); and (2) in single access to the
diffractive system, by feeding the input data of both of the
two polarization channels in parallel, and obtaining the
two corresponding outputs simultaneously (see Fig. 1b,
right). We term the former and latter approaches as the
“sequential polarization access” (SeqPA) mode and the
“simultaneous polarization access” (SimPA) mode,
respectively. We should emphasize that the fundamental
difference between these two modes of operation lies in
the input information: the SimPA mode can simulta-
neously accept both of the input polarization states (e.g., x
and y polarization) for encoding two different channels of
input information, while the SeqPA mode can accept a
single polarization state as its input so that only one
channel of input information is encoded at a given time.
Therefore, if the input FOV simultaneously encodes the
data to be processed in two different polarization states,
or if the time lag caused by switching between different
input polarization states is unacceptable (such as e.g., an
input FOV that includes a rapidly changing dynamic
scene with specific polarization information), then only
the SimPA mode would be suitable to process the input
encoding. Conversely, if the system is only required to
compute a single linear transformation at a given time, or
if the time lag caused by switching back and forth between
two different input polarization states is acceptable, then
SeqPA mode can be used. Detailed analyses of these two
modes of operation are presented in the following
subsections.

2-channel polarization-multiplexed all-optical diffractive
computing using the sequential polarization access
(SeqPA) mode
As shown in Fig. 1b, left, with the input data i1 and i2

being separately and sequentially fed into the polarization
channels ① and ②, respectively, the all-optical computed
outputs o01 and o02 are also collected successively using the
same diffractive network hardware. By employing this

SeqPA strategy, we trained polarization-multiplexed dif-
fractive networks with different numbers of trainable
diffractive neurons, i.e., N = {322, 442, 642, 922, 1282, 1802,
2562}, all using the same training datasets {(i1, o1)} and
{(i2, o2)} and the same number of epochs. To benchmark
the performances of these multiplexed diffractive net-
works, for each transformation dataset and N, we also
trained regular diffractive networks without the polarizer
array or any polarization encoding/decoding at the input/
output FOVs, which constitute our baseline. These reg-
ular diffractive networks, denoted as “No pol.” in our
analyses, are trained to approximate only one linear
transformation (i.e., either A1 or A2), and therefore they
are referred to as Np = 1 (no polarization multiplexing).
Figure 2b–e present the quantitative comparison of the

all-optical transformation results obtained using the
trained diffractive networks described above. Three dif-
ferent metrics were used to quantify the transformation
accuracy and generalization performance of these dif-
fractive networks: (1) the normalized transformation
mean-squared error (MSETransformation), (2) the cosine
similarity (CosSim) between the all-optical transforms and
the target transforms, and (3) the mean-squared error
between the diffractive network output fields and their
ground truth (MSEOutput). These performance metrics are
reported in Fig. 2b-d, as a function of the number of
diffractive neurons (N) used in each design. Note that the
transformation error of the polarization-multiplexed dif-
fractive systems is calculated per polarization channel.
More details about the formulations of these performance
metrics can be found in Methods. In Fig. 2b, it can be seen
that the transformation errors of all the trained diffractive
models monotonically decrease as N increases, which is
expected due to the increased degrees of freedom in the
diffractive processor. In the standard diffractive networks
without polarization multiplexing (dash-dotted curves
labeled with “No pol. A1” or “No pol. A2”), the transfor-
mation errors for implementing A1 or A2 are almost the
same (which indicates that these randomly selected
matrices, A1 and A2, represent similar computational
complexity; also see Fig. S1). The approximation errors of
these standard diffractive networks, No pol. A1 and No
pol. A2, both approach to 0 as N approaches NiNo ¼
642 � 4:1 k. In the polarization-multiplexed diffractive
models (solid curves labeled with “SeqPA ①” or “SeqPA
②”), the transformation errors MSETransformation for the two
distinct transforms computed through the two polariza-
tion channels are also very close to each other for all
values of N, demonstrating no bias toward any specific
polarization channel or transform. The approximation
errors of these polarization-multiplexed models approach
to 0 as N approaches NpNiNo ¼ 2NiNo ¼ 922 ≈ 8.2 k. This
finding indicates that compared with the baseline dif-
fractive models that can only perform a single transform,
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performing two unique transforms using polarization
multiplexing through the same diffractive model requires
the number of trainable neurons N to double. This con-
clusion is further supported by the results of the other two
performance metrics, CosSim (Fig. 2c) and MSEOutput (Fig.
2d) that both show the same trends as in Fig. 2b: for the
baseline diffractive models CosSim and MSEOutput

approach 1 and 0 as N approaches NiNo, respectively,
while for the polarization-multiplexed diffractive models,
the two metrics approach 1 and 0 as N approaches
NpNiNo ¼ 2NiNo. Apart from the metrics that are used to
evaluate the transformation performance, we also report
the output diffraction efficiencies (η) of these diffractive
models in Fig. 2e, which reveal that compared with the
baseline diffractive networks (No pol.), the diffraction
efficiencies of the polarization-multiplexed diffractive
models trained using the SeqPA mode reach a
similar level.
To further demonstrate the performance of our

polarization-multiplexed diffractive networks, in Fig. 3 we
show examples of the ground truth transformation
matrices (i.e., A1 and A2) and their counterparts (i.e., A′1
and A′2) resulting from the diffractive designs with N =
{442, 922, 1802}, along with the amplitude and phase
absolute errors. Exemplary complex-valued input-output
fields from the same set of diffractive designs are also
presented in Fig. 4. Figures 3 and 4 reveal that for both of
the polarization channels, when N � NpNiNo ¼ 2NiNo,
the all-optical transformation matrices and the output

complex fields very well match their ground truth targets
with negligible absolute errors, which are also in line with
the observations made in Fig. 2.

2-channel polarization-multiplexed all-optical diffractive
computing using the simultaneous polarization access
(SimPA) mode
As an alternative to the sequential polarization access

(SeqPA) used earlier, we also explored the use of the
simultaneous polarization access (SimPA) mode in our
all-optical computing framework. As shown in Fig. 1b,
right, in single access to the diffractive system, the input
complex-valued data i1 and i2 are fed into the polarization
channels ① and ②, respectively, and the all-optical dif-
fractive outputs o01 and o02 are collected at the same time
through two orthogonal polarization states at the output
FOV. Before we trained a new polarization-multiplexed
diffractive network from scratch using the SimPA mode,
we first took our earlier diffractive designs trained using
the SeqPA mode and tested them directly using the
SimPA mode by inputting both polarization channels ①

and ② at the same time, deviating from their training
scheme, which only used SeqPA. The results of blindly
testing the SeqPA-trained diffractive networks under the
SimPA mode are shown in Fig. S2, which reveals inference
results with significantly higher values of MSETransformation

and MSEOutput and decreased values of CosSim, all of
which indicate a performance degradation, when we
operate a SeqPA-trained diffractive network using the
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SimPA mode. As shown in Fig. S3, this performance
degradation is due to the “cross-talk” between the two
transformation channels when both of the input polar-
ization states are at the same time present, which was not
considered during the SeqPA-based training process.
These results highlight the necessity of training the dif-
fractive system from scratch under the SimPA mode, so
that the impact of this cross-talk can be taken into
account and minimized during the iterative design pro-
cess. A related mathematical analysis that supports the
same conclusion is reported in Supplementary Note 1.
After training our diffractive models from scratch using

the SimPA mode, we report their blind testing results in

Fig. 5 using the solid curves labeled with “SimPA ①” and
“SimPA ②”. The results of the new diffractive designs
trained using the SimPA mode demonstrate the success of
all-optically performing two different linear transforma-
tions in parallel using polarization multiplexing. Our
analysis (Fig. 5) also reveals the same conclusions dis-
cussed earlier for the models trained using the SeqPA
mode: the all-optical transformation performance of
polarization-multiplexed diffractive networks very well
match the ground truth, desired transformations as N
approaches NpNiNo ¼ 2NiNo. Furthermore, as shown in
Fig. 5d, the diffraction efficiencies achieved by the
polarization-multiplexed diffractive networks reach a
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similar level as their baseline counterparts that use the
same number of diffractive layers, but without the linear
polarizer array.
We further compared the blind testing results of these

two different modes of operation (SeqPA vs. SimPA) and
performed a cross-talk field analysis (see Fig. S3). We
found out that the amount of transformation cross-talk in
the diffractive models trained using the SimPA mode
(shown in the right column of Fig. S3c, d), is ~300-fold
lower when compared with the amplitude values of the
cross-talk observed in the diffractive designs trained using
the SeqPA mode (shown in the left column of Fig. S3c, d).
During the diffractive model training, these cross-talk
fields are gradually eliminated (penalized) using the
SimPA mode of operation to better approximate the
ground truth fields. However, for the diffractive models
trained under the SeqPA mode, such cross-talk fields are
ignored (i.e., remain non-penalized during the training
phase) since the SeqPA operation assumes successive
access to the diffractive network, one input polarization
state at a time. Stated differently, SeqPA trained dif-
fractive networks successfully approximate the target
transformations only when they are tested under the same
SeqPA mode of operation, and fail due to the field cross-
talk when tested under the SimPA mode.

4-channel polarization-multiplexed all-optical diffractive
computing
So far, we have demonstrated to perform all-optical

computing with 2-channel polarization multiplexing
through a single diffractive network. To further exploit
the polarization multiplexing capability of this diffractive
computing framework, next, we explored a 4-channel
polarization-multiplexed design for performing 4 different
arbitrarily-selected linear transformations through a sin-
gle diffractive network (i.e., Np = 4). Figure 6 illustrates
the schematics of this framework. As depicted in Fig. 6b,
by sequentially connecting one of the two input polar-
ization states with one of the two output polarization
states, four transformation channels, ①, ②, ③ and ④, can
be formed to all-optically perform Np = 4 distinct
complex-valued transforms using the same diffractive
processor. This 4-channel polarization-multiplexed
design operates in a similar way as the SeqPA mode,
where the different input data are separately and
sequentially fed into different input polarization channels.
Using this SeqPA operation mode, our diffractive system
can accurately perform 4 different complex-valued linear
transformations using the same passive diffractive layers,
in a single optical network. For example, when only one
polarization state (e.g., ix) is utilized to encode the input
data (i.e., i = ix = i1 = i3), we can measure the output
field at two orthogonal polarization states and simulta-
neously read out two computed outputs (i.e., oα = o1 and

oβ = o3), each corresponding to the result of a uniquely
different linear transformation (i.e. A1 or A3) computed
based on the same input; this capability enables parallel
optical information processing through the same
polarization-encoded diffractive network. The overall
design of this 4-channel diffractive system can be con-
sidered to utilize the remaining degrees of freedom in the
cross-talk channels of the 2-channel system. Additional
analysis that supports the same conclusions can be found
in Supplementary Note 1.
It is also worth noting that, compared to the 2-channel

polarization-multiplexed system reported earlier, the
polarization states for the output field sampling in this
4-channel system are selected to be 45° and 135° linear
polarization. This design choice is made to balance out
the diffraction efficiencies of the resulting 4 different
linear transformations that are all-optically performed by
the diffractive network. Stated differently, this design
choice introduces symmetry to all the input/output
polarization combinations that are each assigned to a
different linear transformation. In Fig. 6a, b, we denote the
two output fields corresponding to the linear polarization
directions at 45° and 135° as oα and oβ, respectively.
In the light of our earlier findings that point to the need

for more diffractive neurons in the case of Np = 2 when
compared to Np = 1, here we employed 8 successive
trainable diffractive layers to increase our degrees of
freedom for Np = 4 design (see Fig. 6a). Also, compared to
the earlier 2-channel polarization-multiplexed design, we
included an additional linear polarizer array with the same
configuration as before (with polarization orientations of
0°, 45°, 90° and 135°) to further enhance the spatial
diversity of polarization modes within the diffractive
processor. These two linear polarizer arrays are positioned
after the 3rd and 5th diffractive layers, respectively. Same
as the Np = 2 diffractive designs, these linear polarizer
arrays are pre-determined (i.e., non-trainable) and act as
“polarization seeds” within the trained diffractive network.
Next, we generated random data to train and test our

diffractive networks under Np = 4. In addition to the two
randomly generated ground truth transforms A1 and A2

that were earlier used for the 2-channel models, we ran-
domly generated two additional complex-valued trans-
forms A3 and A4 and accordingly constructed the training
and testing dataset consisting of the input and ground
truth output fields. These four ground truth (target)
transforms are visualized in Fig. 7a, and their differences
can be found in Fig. S1. Following the training of the
polarization-multiplexed diffractive networks with differ-
ent N, their transformation performance for Np = 4 is
analyzed in Fig. 7b–d based on the same set of perfor-
mance metrics that were used earlier. These results reveal
that, when N approaches NpNiNo ¼ 4NiNo ¼ 16:4 k, the
MSETransformation and MSEOutput of all the four diffractive
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transformations approach 0, while the CosSim approaches
1, demonstrating that all the target linear transformations
(A1, A2, A3 and A4) can be successfully approximated by a
single diffractive processor with a negligible error if N �
NpNiNo. This is the same conclusion that was reached
earlier for Np = 2.
To further demonstrate the success of these 4-channel

polarization-multiplexed diffractive systems, in Fig. S4 we
present the ground truth transformation matrices (i.e., A1,
A2, A3 and A4) and their diffractive counterparts (i.e., A′1,

A′2, A3′ and A4′) designed with N = {14.3k, 66.5k}, along
with the amplitude and phase errors made in each case.
Furthermore, exemplary complex-valued output fields
achieved by these diffractive systems are also shown in
Fig. S5, all of which confirm the success of the presented
4-channel polarization-multiplexed diffractive designs.
Finally, we also analyzed the output diffraction efficiencies
of these diffractive models, reported in Fig. 7e. The results
show that, compared to their counterparts without
polarization encoding (Np = 1), the polarization-
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multiplexed diffractive models with Np = 4 turn out to be
less power efficient (per transformation), with an effi-
ciency decrease of ~6 dB at the output FOV. This rela-
tively small difference in the output diffraction efficiencies
mainly stems from the different number of diffractive
layers used in these two systems: the baseline diffractive
systems without polarization encoding use 4 diffractive
layers, whereas the 4-channel polarization-multiplexed
systems are much deeper, utilizing 8 diffractive layers.
Considering that the optical field within a deeper system
with more diffractive layers propagates and spreads over a
longer axial distance, it exhibits a relatively lower dif-
fraction efficiency. Therefore, these results do not con-
tradict our previous conclusion that the diffraction
efficiency of the polarization-multiplexed diffractive net-
work is similar to that of the baseline diffractive system
when using the same number of diffractive layers.
Our results and analyses presented so far demonstrated

that a single polarization-multiplexed diffractive network
can all-optically compute four different complex-valued,
arbitrarily-selected linear transformations between its
input and output FOVs by using orthogonal linear
polarization states. In addition to linear polarization,
other polarization states can also be used, without loss of
generality, to perform the same multiplexed computa-
tional tasks. To demonstrate this capability, we used two
orthogonal circular polarization states (i.e., left- and right-
hand circular polarization) at the input of a polarization-
multiplexed diffractive network to encode the input
information; the output channels in this case included x
and y linear polarization states, i.e., the 4 different,
arbitrarily-selected linear transformations were each
assigned to one combination of circular-linear polariza-
tion. Our results, reported in Fig. S8, revealed that circular
input polarization-multiplexed diffractive processors
successfully approximated the target, complex-valued
linear transformations, when N approaches NpNiNo ¼
4NiNo ¼ 16:4 k, arriving at the same conclusion that we
had for linear input polarization states. In this diffractive
design, we used the same linear polarizer array (i.e., the
seed) within the diffractive network volume to

communicate between the circular polarization states at
the input FOV and the linear polarization states at the
output FOV, all-optically performing 4 different complex-
valued transformations through the same diffractive net-
work. A mathematical analysis of this design and its
relationship to earlier diffractive designs with linear input/
output polarization states is also provided in Supple-
mentary Note 1. Since any arbitrary polarization state can
be expressed through a superposition of orthogonal linear
or circular polarization states, the same diffractive design
can be extended to different input/output combinations
of other polarization states. As detailed in Supplementary
Note 1, a polarization-multiplexed diffractive processor
with Np = 4 can be designed by using input-output
combinations of 2 orthogonal input polarization states
(e.g., linear, circular or elliptical) and 2 orthogonal output
polarization states (e.g., linear, circular or elliptical), where
each input-output polarization combination all-optically
performs one of the target complex-valued transforma-
tions (A1, A2, A3, A4). Supplementary Note 1 further
proves that any additional transformation matrix Aa that
can be assigned to a new combination of input-output
polarization states of the diffractive network can be
written as a linear combination of A1, A2, A3 and A4.

Discussion
Our results and analysis demonstrated that, using

polarization multiplexing in a single diffractive network,
one can all-optically perform a group of complex-valued
arbitrary linear transformations at the same output FOV
of the diffractive network. In practical applications, these
different transformations can cover, for example, various
machine vision tasks, such as detection, classification, and
localization of objects, which can be programmed into
different input/output polarization states. These different
tasks could potentially be also performed by employing
multiple, separately-optimized diffractive networks, each
of which is dedicated to performing a single computa-
tional task. However, such an approach would require the
precise optical projection of an input FOV (while pre-
serving its phase and amplitude distribution and

(see figure on previous page)
Fig. 7 Diffractive all-optical transformation results for 4-channel polarization multiplexing of four distinct arbitrary linear transforms
(depicted in Fig. 6). a Amplitude and phase of the arbitrarily generated matrices A1, A2, A3 and A4, which serve as the ground truth (target) for the
diffractive all-optical transformations. b Curves representing the normalized mean-squared error between the ground truth transformation matrices
(A1, A2, A3 and A4) and the all-optical transforms (A′1, A′2, A3′and A4′, examples shown in Fig. S4) resulting from the trained diffractive networks as a
function of the number of diffractive neurons N. The solid curves are achieved by the 4-channel polarization-multiplexed diffractive systems, which
are compared with the dashed curves achieved by the regular diffractive networks trained with the same set of N but without polarization
multiplexing. For the polarization-multiplexed models, the results for the four polarization channels ①, ②, ③ and ④ are shown in separate curves but
jointly labeled with “Pol. ①/②/③/④” due to the spatial overlap of these curves. For the regular diffractive models without polarization multiplexing, the
results for all-optical approximation of A1, A2, A3 and A4 (individually) are shown in separate curves but jointly labeled with “No pol. A1/A2/A3/A4” due
to the spatial overlap of these curves. The space between the simulation data points is linearly interpolated. c Same as (b) but cosine similarity
between the all-optical transforms and their ground truth is reported. d Same as (b) but the mean-squared error between the diffractive network
output fields and their ground truth is reported. e Diffraction efficiency of the presented diffractive networks
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polarization information) onto separately positioned,
individual diffractive networks, and would naturally suffer
from additional optical losses and aberrations, misalign-
ment issues, a much larger device footprint and higher
manufacturing/alignment-related costs. In contrast, inte-
grating multiple tasks to be all-optically performed within
the same diffractive network and a common input FOV
provides a much simpler and better design, offering
unique advantages such as e.g., speed, compactness,
resilience to misalignments and aberrations, power effi-
ciency and cost-effectiveness.
Also note that, it is not practical to spatially superimpose

multiple diffractive subsystems, each one separately
designed for a unique transformation, using e.g., phase-
composite metasurfaces or other metamaterials to create a
polarization-multiplexed diffractive processor. First, in the
design of each diffractive meta-unit, the cross-talk between
the meta-atoms for the two orthogonal polarization states
cannot be neglected. Therefore, the direct superposition of
two or more different metasurface designs separately
trained/designed for each one of the complex transfor-
mations would not work due to the cross-talk between the
polarization channels of different metasurface designs.
Stated differently, different metasurface designs, when put
together in order to achieve multiplexed linear transfor-
mations in the same optical unit, will fail each other’s
transformation accuracy. In addition to this, there will be
field cross-talk between the adjacent meta-units that are
merged together on the same layer due to the in-plane
propagating waves. Although increasing the lateral dis-
tance between two adjacent meta-units (from different
designs, each targeting one transformation) can weaken
the impact of this field cross-talk problem, it will then lead
to lower diffraction efficiencies at the output and sacrifice
the lateral density of the meta-units at each diffractive
layer, thus degrading the computational performance and
accuracy of the system. Furthermore, the desired phase
response of such polarization-encoded meta-units in
general covers a small angular range, leading to a low
numerical aperture (NA) that fundamentally limits the
connectivity between the diffractive layers. In our dif-
fractive solutions, each isotropic feature of our diffractive
network communicates with the following diffractive layer
(s) with an NA of n (n = 1 in air). However, metasurface-
based designs would fall short to offer such high numerical
apertures, because the high spatial frequency components
for the orthogonal input polarizations would deviate from
the ideal phase response of the meta-unit, introducing
errors to the multiplexed linear transformations that are
targeted. Due to some of these challenges outlined above,
metasurface or metamaterial-based diffractive surfaces
have not yet been demonstrated as a solution to universal,
all-optical implementation of an arbitrary linear transfor-
mation or a group of transformations.

In addition to polarization multiplexing, we should note
that other degrees of freedom can be used to implement
multiple computational tasks through a single diffractive
network. For example, one can divide the input/output
FOVs of the diffractive network into multiple regions,
where each region is assigned to a unique computing task
through spatial-division multiplexing. It is also possible to
achieve wavelength-division multiplexing by assigning
different wavelengths or spectral bands to independent
computing tasks and employing dispersive elements in the
diffractive computing system. In contrast to these other
possible methods of information multiplexing, the
polarization-based multiplexing that we reported here
requires solely the addition of linear polarizers to a dif-
fractive network without changing its architecture. Such
polarizers are readily available (e.g., polarizing films), even
integrated with the individual pixels of polarization-based
imaging systems60, and can be adapted to a wide range of
wavelengths. Furthermore, polarization multiplexing can
be flexibly coupled with other multiplexing methods (such
as spectral and/or spatial multiplexing) to further increase
the computing capacity of the diffractive network.
Unlike the diffractive layers, where the transmission

coefficients are trained and optimized to all-optically
perform the target transformations, the design and
arrangement of the seed polarizer arrays between the
diffractive layers are treated as hyperparameters that are
pre-determined and non-trainable. Therefore, the para-
meters of the embedded polarizers including their num-
ber, size, and orientation are fixed during the training
process. The polarization modulation induced by these
polarizer arrays remains unchanged and was not used as
learnable degrees of freedom for our diffractive comput-
ing system to approximate the target transformations.
Furthermore, their total number is small, i.e., we only
used 6 × 6= 36 linear polarizers per array, which is neg-
ligible when compared to N. An increase in the number of
linear polarizers per plane would not improve the
approximation power of our diffractive network to per-
form arbitrary linear transformations. However, the
topology of such polarizer seeds could potentially impact
the performance of our polarization-multiplexed dif-
fractive computing system. To explore this, we adjusted
several key parameters of the linear polarizer array used in
our diffractive processor designs including e.g., 1) the
period of each polarizer unit, 2) the overall size of each
polarizer array, and 3) the number and position of the
polarizer arrays within the diffractive network. For this
comparative analysis we used as our test-bed the
4-channel polarization-multiplexed diffractive system
with N ¼ NpNiNo ¼ 16:3 k and the same complex-valued
target linear transforms (i.e., A1, A2, A3 and A4), the
results of which are summarized in Supplementary Note
2. Based on these analyses, we observe that: (1) a better
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approximation accuracy can be achieved when the period
of each linear polarization unit on the polarizer array is
≤4λ, and a period of ~4λ empirically appears as an optimal
choice, also providing an improved output diffraction
efficiency (see Supplementary Fig. SN2); (2) the linear
transformation accuracy and the diffraction efficiency of
the system can be optimized by using polarizer arrays with
a sufficiently large size, i.e., at least matching the size of
the neighboring diffractive layers; (3) using two polarizer
arrays and placing them apart with an axial distance of
~8λ within the diffractive volume can provide improved
results for the all-optical transformation accuracy and
diffraction efficiency of Np = 4 designs; and (4) using too
many (e.g., >6) polarizer arrays within a diffractive net-
work can lead to severe degradation in the computational
accuracy of the system (unless more diffractive layers are
added to the design).
We would like to also emphasize that the reported

polarization-multiplexed diffractive networks can be
directly applied to 2D arrays of phase and amplitude input
data. Compared to other optical computing systems
operating based on e.g., integrated photonics, which
requires 1D inputs and phase recovery if the information
is represented in the phase channel, the capability to
directly process and analyze raw 2D complex fields makes
our framework highly advantageous for visual computing
tasks. On the other hand, unless spatial light modulators
(SLMs) are employed as part of the diffractive system (see
e.g., the Supplementary Information of ref. 23. for a dis-
cussion on reconfigurable networks), each physically
fabricated diffractive network is fixed and would need to
be retrained and fabricated again as the target transfor-
mations change, which is a limitation of passive diffractive
systems.
There are additional limitations of the presented dif-

fractive computing framework. First, polarization-
multiplexed diffractive computing systems present lower
diffraction efficiencies at their output FOV compared to
regular diffractive networks without polarization multi-
plexing (see Figs. 2e and 5d). Several remedies can be used
to improve the output diffraction efficiency such as e.g.,
adding a diffraction-efficiency-related penalty term to the
training loss function, and/or restricting the diffractive
layers to perform phase-only modulation. The efficacy of
using these approaches in a regular diffractive network
design (without polarization multiplexing) to improve the
output diffraction efficiency has already been demon-
strated in our earlier work69. To exemplify the perfor-
mance of a phase-only diffractive design and how it can be
used to improve the output diffraction efficiency, we
trained phase-only diffractive networks from scratch for
the 4-channel polarization multiplexing case (Np = 4), the
results of which are summarized in Fig. S6. This analysis
revealed that phase-only diffractive designs can achieve

significantly better output diffraction efficiencies
(improved on average by ~12 dB), while still successfully
approximating the target linear transformations (A1, A2,
A3 and A4). As a trade-off, however, these phase-only
diffractive designs also exhibit reduced degrees of free-
dom compared to their complex-valued counterparts. As
a result of this, we observed that all the target linear
transformations were successfully approximated by a
single phase-only diffractive processor when N approa-
ched 2NpNiNo ¼ 8NiNo. This 2-fold “threshold increase”
in the number of diffractive features (i.e., 2NpNiNo vs.
NpNiNo) is a direct reflection of the reduced number of
trainable transmission parameters per diffractive layer due
to the phase-only operation, which is a limitation of
phase-only diffractive networks, despite their enhanced
output diffraction efficiency. To further validate this
conclusion, we also selected another set of 4 target linear
transformations by changing the matrix elements to be
real-valued, and used them as ground truth to train phase-
only polarization-multiplexed diffractive networks with
Np = 4. As shown in Fig. S7, our results reveal that these
phase-only diffractive networks can successfully approx-
imate the real-valued target linear transforms when N �
NpNiNo ¼ 4NiNo, demonstrating a similar approximation
performance, with significantly higher output diffraction
efficiency compared to their complex-valued diffractive
counterparts. These findings emphasize the value of
phase-only diffractive network designs as a photon-
efficient solution in polarization-multiplexed diffractive
computing, also providing an important rationale for
planning the diffractive neuron budget (N) for a given
computational task.
Other practical concerns that need to be discussed

include the potential fabrication and alignment errors,
surface reflections, material absorption and non-ideal
polarization modulation within the diffractive network,
which may altogether limit the performance and accuracy
of diffractive computing. Some of these errors can be
mitigated by selecting appropriate fabrication methods,
e.g., high-precision lithography, and using less absorptive
materials. Moreover, our previous results23,38,44,49,50

showed that some of these uncontrolled physical errors
and imperfections did not lead to a significant discrepancy
between the experimental and numerical, expected
results, indicating the correctness of the assumptions
involved in our optical forward model and training pro-
cedures. Even if these errors and imperfections become
considerable, the performance degradation of a diffractive
network caused by some of these experimental factors can
be compensated by incorporating them as random vari-
ables into the physical forward model of the diffractive
network during the training process. One example of this
has been demonstrated in previous work36 where the
destructive impact of the lateral and axial misalignments
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of diffractive layers was mitigated by randomly misalign-
ing the diffractive network during its training process.
Following a similar strategy, the imperfect polarization
extinction ratio (PER) of the polarizer arrays/seeds can
also be included as part of our physical forward model
using a modified form of the Jones matrices for linear
polarizers. This modeling of imperfect PER of linear
polarizers during the training phase can mitigate a
potential performance degradation in the computational
power of a polarization-multiplexed diffractive processor.
Supporting this conclusion, Supplementary Note 3 and
Supplementary Fig. SN3 report our mathematical analysis
and simulation results for using imperfect linear polarizer
arrays/seeds in our diffractive network designs. In the
same Supplementary Note 3, we also quantified the
overall PER of SimPA-based polarization-multiplexed
diffractive designs, considering each diffractive network as
a monolithic polarization optical element. Our analysis
reveals that the SimPA-based 2-channel polarization-
multiplexed diffractive design exhibits a very high PER of
>51,000. In fact, such a high PER is expected since the
SimPA mode is designed to simultaneously perform two
different linear transformations using two orthogonal
polarization states, and therefore undesired polarization
cross-talk at the output field-of-view was penalized during
the training phase, successfully leading to a high PER per
diffractive network. For the SeqPA mode of operation,
however, PER is not a meaningful figure-of-merit since
only one orthogonal polarization state is read/measured at
a given time due to the sequential access of each target
transformation through the diffractive network; stated
differently, the SeqPA mode of operation does not pena-
lize the leakage of power into an orthogonal polarization
state at the output as it does not impact at all the accuracy
of each all-optical transformation that is sequentially
performed.
In addition to performing multiple arbitrarily-selected

linear transformations through polarization encoding, the
presented framework can also be used for polarization-
aware optical imaging and sensing tasks. Polarization-
based optical imaging has been used in many biomedical
applications, such as performing diagnoses of diseases,
including gout59,60,70, malaria infection71, squamous cell
carcinoma72, and cerebral amyloid73. We believe that the
presented polarization-multiplexed diffractive computing
framework exhibits translational potential for some of
these biomedical applications including e.g., the all-optical
detection and classification of birefringent crystals in
bodily fluids for diagnosing various forms of crystal
arthropathy74.
In conclusion, we introduced a diffractive network-

based all-optical computing framework that can perform
multiple complex-valued, arbitrary linear transformations
using polarization multiplexing. This framework is very

compact; for instance, the system depicted in Fig. 1 has a
total length of only 20λ in depth, where λ is the illumi-
nation wavelength. Our results show that when the
number of diffraction elements/neurons, N, in a given
diffractive network design approaches NpNiNo, a group of
Np arbitrarily-selected linear transforms can be all-
optically computed at the output FOV of the network
with negligible error. We believe that this polarization-
multiplexed diffractive computing framework can be used
to build all-optical, passive processors that can execute
multiple inference tasks in parallel. We further envision
that artificially engineered materials with polarization
manipulation capabilities75–79 can also be combined with
advanced diffractive surface fabrication techniques (e.g.,
high-precision 3D additive manufacturing and photo-
lithography) to allow the use of our diffractive computing
framework in different parts of the electromagnetic
spectrum.

Materials and methods
Forward model of the polarization-multiplexed diffractive
optical network
Using Jones calculus80, the complex-valued,

polarization-multiplexed electrical field E at a spatial
location (xm; ym; zm) can be represented as:

E xm; ym; zmð Þ ¼ Ex xm; ym; zmð Þ
Ey xm; ym; zmð Þ

� �
ð1Þ

In our implementation, Ex and Ey are computed in parallel
throughout the entire diffractive system. Since the
trainable diffractive layers are not polarization-sensitive,
the complex-valued modulation generated by these thin
diffractive layers is the same for the two orthogonal
polarization states. The diffractive layers are assumed to
be thin optical modulation elements, where the mth

feature on the kth diffractive layer at location (xm; ym; zm)
represents a complex-valued transmission coefficient, tk,
given by:

tk xm; ym; zmð Þ ¼ ak xm; ym; zmð Þ exp jϕk xm; ym; zmð Þ� �
ð2Þ

In Eq. 2, a and ϕ denote the amplitude and phase
coefficients, respectively. The amplitude and phase coef-
ficients of the diffractive neurons, ak and ϕk (k 2
1; 2; � � � ;Kf g), are both trainable, with a permitted range
of 0 to 1 and 0 to 2π, respectively. Before the training
starts, ak and ϕk are randomly initialized with a uniform
(U) distribution of U ½0; 1�and U½0; 2πÞ, respectively. For a
phase-only diffractive design ak ¼ 1. The size of each
diffractive neuron on the transmissive layers and the
width of the pixels of the input/output fields are both
chosen as λ/2.
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The diffractive layers are connected to each other by
free-space wave propagation, which is modeled through
the Rayleigh-Sommerfeld diffraction equation:23,32

wk
m x; y; zð Þ ¼ z � zi

r2
1

2πr
þ 1
jλ

� �
exp

j2πr
λ

� �
ð3Þ

where wk
m x; y; z; λð Þ is the complex-valued field on the mth

neuron of the kth layer at (x, y, z) with a wavelength of λ,
which can be viewed as a secondary wave generated from

the source at xm; ym; zmð Þ; and r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xmÞ2 þ ðy� ymÞ2 þ ðz � zmÞ2

q
and j ¼ ffiffiffiffiffiffiffi�1

p
. For

the kth layer (k ≥1, treating the input plane as the 0th

layer), the modulated optical field Ek
p at location (xm, ym,

zm) with a polarization state of p (p 2 x; yf g) is given by:

Ek
p xm; ym; zmð Þ ¼ tk xm; ym; zmð Þ � P

n2S
Ek�1
p xn; yn; znð Þ

�wk�1
m xm; ym; zmð Þ

ð4Þ
where S denotes all the pixels on the previous diffractive
layer. For all the diffractive networks trained in this paper,
the axial distances d0; d1; :::; dK are all chosen as 4λ.
When modeling the polarizer elements in our diffractive

system, we used Jones matrices to represent the mod-
ulation of the complex field brought by the input polar-
izer, output analyzer, or the polarizer array at location (x,
y, z), the process of which can be written as:

Eoutðx; y; zÞ ¼ J linearðx; y; zÞEinðx; y; zÞ ð5Þ

where Ein and Eout are the vectors denoting the input and
output complex field before and after the polarization
modulation, each containing two orthogonal components

along the x and y directions, i.e., Eoutðx; y; zÞ ¼
Eout;xðx; y; zÞ
Eout;yðx; y; zÞ

� �
and Einðx; y; zÞ ¼ Ein;xðx; y; zÞ

Ein;yðx; y; zÞ
� �

.

J linearðx; y; zÞ represents the Jones matrix of a linear
polarizer element, which is given by:

J linearðx; y; zÞ

¼ cos2 θðx; y; zÞ cos θðx; y; zÞ sin θðx; y; zÞ
sin θðx; y; zÞ cos θðx; y; zÞ sin2 θðx; y; zÞ

� �
ð6Þ

where θðx; y; zÞ is the angle between the x-axis and the
polarizing axis of the linear polarizer located at (x, y, z).
For the non-trainable, pre-determined polarizer array that
is composed of multiple square-shaped linear polarizers,
we used in total 4 types of linear polarizer units with 4

different polarizing axis directions, θ ={0, 0.25π, 0.5π, and
0.75π}. As illustrated in Fig. 1a, these 4 different types of
linear polarizers are spatially binned to have a 2 × 2 period
and repeated with 3 periods in each direction, extending
into a square region. The side length of each linear
polarizer array is 24λ. The residual space surrounding the
polarizer array is filled with air, without any polarization
modulation. For all the diffractive network designs
presented in this paper, the axial distances (i.e., dp, dp1
and dp2) between the pre-determined polarizer arrays and
the adjacent diffractive layers in front of them are all
empirically chosen as 0; stated differently, each linear
polarizer array is attached to the isotropic diffractive layer
in front of it.

Preparation of the linear transformation datasets
In our diffractive network designs, the input and output

FOVs have the same size of 8 × 8 pixels, i.e., ic; oc 2 C8 ´ 8

(c 2 1; 2; 3; 4f g). The size of the transformation matrices
is equal to 64 × 64, i.e., Ac 2 C64´ 64 (c 2 1; 2; 3; 4f g). The
amplitude and phase components of the complex-valued
transformation matrices Ac used in this paper were gen-
erated with a uniform (U) distribution of U ½0; 1�and
U½0; 2πÞ, respectively, using the pseudo-random number
generation function random.uniform() built-in NumPy.
Different random seeds were used to generate these
transformation matrices to ensure they were uniquely
different (see Fig. S1). Next, the amplitude and phase
components of the input fields ic (c 2 1; 2; 3; 4f g) were
also randomly generated with a uniform (U) distribution
of U½0; 1� and U½0; 2πÞ, respectively. The ground truth
(target) fields oc (c 2 1; 2; 3; 4f g) were generated by cal-
culating oc ¼ Acic. For each Ac (c 2 1; 2; 3; 4f g) we gen-
erated a total of 70,000 input/output complex fields to
form a dataset, divided into three parts: training, valida-
tion, and testing, each containing 55,000, 5,000, and
10,000 complex-valued field pairs, respectively.

Training loss function
For training of our diffractive networks, we used the

mean-squared-error (MSE) loss function, which is defined
as:

LMSE;c ¼ E 1
No

PNo

n¼1
bo1 n½ � � bo01 n½ �
��� ���2� �

¼ E 1
No

PNo

n¼1
σcoc n½ � � σ 0

co
0
c n½ ��� ��2� � ð7Þ

where E[·] denotes the average across the current batch, c
stands for the cth polarization channel that is being
accessed, and [n] indexes the nth element of the vector. σc
and σ 0

c are the coefficients used to normalize the energy of
the ground truth (target) field oc and the diffractive
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network output field o0c, respectively, which are given by:

σc ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNo

n¼1
oc n½ �j j2

q ð8Þ

σ 0
c ¼

PNo

n¼1
σcoc n½ �o0�c n½ �PNo

n¼1
o0c n½ �j j2 ð9Þ

During the training of the diffractive networks using the
SeqPA mode, each polarization channel of the diffractive
network is accessed and evaluated cyclically based on the
order of the channel number. For instance, for the
2-channel polarization-multiplexed design illustrated in
Fig. 1b, left, the access sequence during the training is set
to be {①, ②, ①, ②, …}; for the 4-channel polarization-
multiplexed design illustrated in Fig. 6, the access
sequence is {①, ②, ③, ④, ①, ②, ③, ④, …}. During the access
of a certain polarization channel, the diffractive network is
fed with one batch of the training input/output complex
fields corresponding to the transformation matrix
assigned to this channel, and then trained based on the
average loss across this batch. Thus, the loss function for
training the diffractive designs through the cth polariza-
tion channel using the SeqPA mode, LSeq;c, can be simply
written as:

LSeq;c ¼ LMSE;c ð10Þ

During the training of the diffractive networks using the
SimPA mode, as illustrated in Fig. 1b, right, all the
polarization channels of the diffractive network are
accessed simultaneously, and the training data are fed
into the channels at the same time. For this SimPA mode,
the diffractive network is trained based on the loss
averaged across the different polarization channels and
complex-valued fields in the current batch, where the loss
function LSim can be written as:

LSim ¼ 1
Np

PNp

c¼1
LMSE;c ð11Þ

Performance metrics used for the quantification of all-
optical transformation errors
To quantitatively evaluate the transformation results of

the polarization-multiplexed diffractive networks, four
performance metrics were calculated per polarization
channel of the diffractive designs using the testing dataset:
(1) the normalized transformation mean-squared error
(MSETransformation), (2) the cosine similarity (CosSim)
between the all-optical transforms and the target trans-
forms, (3) the normalized mean-squared error between
the diffractive network output fields and their ground
truth (MSEOutput), and (4) the output diffraction efficiency

(η). The transformation error for the cth polarization
channel of the diffractive network, MSETransformation;c, is
defined as:

MSETransformation;c ¼ 1
NiNo

PNiNo

n¼1
ac n½ � �mca0c n½ ��� ��2

¼ 1
NiNo

PNiNo

n¼1
ac n½ � � ba0

c n½ �
��� ���2

ð12Þ

where ac is the vectorized version of the ground truth
transformation matrix assigned to the cth polarization
channel Ac, i.e., ac ¼ vecðAcÞ. a0

c are the vectorized
version of A0

c, which is the all-optical transformation
matrix computed using the optimized diffractive trans-
mission coefficients. mc is a scalar normalization coeffi-
cient used to eliminate the effect of diffraction-efficiency
related scaling mismatch between Ac and A0

c, i.e.,

mc ¼
PNiNo

n¼1
ac n½ �a0�c n½ �PNiNo

n¼1
a0c n½ �j j2 ð13Þ

The cosine similarity between the all-optical transform
and their target transform for the cth polarization channel,
CosSimc, is defined as:

CosSimc ¼ aHc â
0
cj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNiNo

n¼1
ac n½ �j j2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNiNo

n¼1
ba0c n½ �
�� ��2q ð14Þ

The normalized mean-squared error between the dif-
fractive network outputs and their ground truth for the cth

polarization channel, MSEOutput;c, is defined using the
same formula as in Eq. 7 (the loss function used during
the training process), except for that E[·] is calculated
across the entire testing set.
The mean diffraction efficiency ηc for the cth polariza-

tion channel of the diffractive system is defined as:

ηc ¼ E
PNo

n¼1
o0c n½ �j j2PNi

n¼1
ic n½ �j j2

� �
ð15Þ

Training-related details
All the diffractive optical networks used in this work

were simulated and trained using Python (v3.8.11) and
TensorFlow (v2.6.0, Google Inc.). We selected Adam
optimizer81 for training all the models, and its parameters
were taken as the default values in TensorFlow and kept
identical in each model. The batch size and learning rate
were set as 8 and 0.001, respectively. The training of the
diffractive network models using the SimPA mode was
performed with 50 epochs. For training the diffractive
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models using the SeqPA mode, the 2-channel and
4-channel polarization-multiplexed designs were trained
for 100 and 200 epochs, respectively, so that equivalently
50 epochs are dedicated for training each polarization
channel of these designs. The best models were selected
based on the MSE loss calculated on the validation
dataset. For the training of our diffractive models, we used
a desktop computer with a GeForce GTX 1080Ti gra-
phical processing unit (GPU, NVidia Inc.) and Intel®
CoreTM i7-8700 central processing unit (CPU, Intel Inc.)
and 64 GB of RAM, running Windows 10 operating sys-
tem (Microsoft Inc.). The typical time to train a diffractive
network model using the SeqPA mode with 2 and 4
polarization channels is ~7 and ~14 h, respectively. The
training time for a diffractive model using the SimPA
mode with 2 polarization channels is ~4 h.
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