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Abstract
Replacing electrons with photons is a compelling route toward high-speed, massively parallel, and low-power artificial
intelligence computing. Recently, diffractive networks composed of phase surfaces were trained to perform machine
learning tasks through linear optical transformations. However, the existing architectures often comprise bulky
components and, most critically, they cannot mimic the human brain for multitasking. Here, we demonstrate a multi-
skilled diffractive neural network based on a metasurface device, which can perform on-chip multi-channel sensing
and multitasking in the visible. The polarization multiplexing scheme of the subwavelength nanostructures is applied
to construct a multi-channel classifier framework for simultaneous recognition of digital and fashionable items. The
areal density of the artificial neurons can reach up to 6.25 × 106 mm−2 multiplied by the number of channels. The
metasurface is integrated with the mature complementary metal-oxide semiconductor imaging sensor, providing a
chip-scale architecture to process information directly at physical layers for energy-efficient and ultra-fast image
processing in machine vision, autonomous driving, and precision medicine.

Introduction
Artificial intelligence (AI) is a technology for simulating

and extending human intelligence1,2, of which the artifi-
cial neural network (ANN) is one of the most widely used
frameworks implemented in electronic equipment to
digitally learn the representation and abstraction of data
for performing advanced tasks3,4. ANN enables rapid
performance improvement of single specific tasks, such as
image recognition5, speech recognition6, and natural
language processing7, among others8–12. However, the
human brain works as a multi-channel system13 including
sight, hearing, smell, taste, and touch as shown in Fig. 1a,
and even each channel contains multiple sub-channels.
Therefore, to achieve human-like artificial general

intelligence, different capabilities should be multiplexed
in a single AI system for multi-skilled AI that has wide
application potential in smart homes, autonomous driv-
ing, and somatosensory interaction. Meanwhile, multi-
plexed AI systems can greatly increase the computing
scale and degree of parallelism.
Recently, optical neural networks (ONNs)14–20 have

attracted much attention due to their high speed, high
parallelism, and low energy consumption compared with
neural networks running by electrons. As a kind of ONNs,
the all-optical diffractive neural networks have been
proposed and experimentally demonstrated by con-
structing 3D printing diffractive surfaces to form a phy-
sical network21 at terahertz wavelengths and achieve
specific functions22–26. Although no nonlinear activation
function is applied, such multi-layer diffractive networks
still exhibit a “depth” feature, i.e., the dimensionality of
the transformation solution space is linearly proportional
to the number of diffractive surfaces27. Nevertheless, the
existing diffractive neural network devices, like conven-
tional neural networks, cannot perform multiplexed
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information processing28–31. In addition, they are usually
implemented in large wavelength bands with bulky
sources and detectors, the advantages of all-optical com-
puting cannot be leveraged in combination with mature
image sensor chips for image processing in the
optical band.
Here, we demonstrate a multiplexed metasurface-based

diffractive neural network (MDNN) integrated with a
complementary metal-oxide semiconductor (CMOS)
imaging sensor for on-chip multi-channel sensing in the
visible range. Metasurfaces are novel planar optical ele-
ments consisting of subwavelength resonators for
manipulating the wavefront of light32,33. Optical analog
computing based on ultra-thin metasurfaces attracted
much attention in recent years, which enables the min-
iaturization of free-space and bulky systems to perform
continuous mathematical operations34, including differ-
entiator35, integrator36, convolutional operator37, and
equation solver38, etc. Researchers also explored different
degrees of freedom, such as space39, frequency35,40, and
polarization41 to achieve parallel signal processing.
However, diffractive ONNs, which are driven by matrix

multiplications19 of discrete spatial channels, are cur-
rently not fully explored in terms of utilizing physical
parametric degrees of freedom. The unprecedented
ability of metasurfaces for multiparametric modulation
makes them a powerful platform for multifunctional
multiplexing in a single element42–44. We demonstrate
multitasking by polarization-multiplexed metasurfaces,
using a plane wave of the amplitude or phase of the object
to be recognized as the input signal to achieve simulta-
neous recognition of digital and fashionable items. The
multi-channel classifier framework is constructed by
computer machine learning based on an error back-
propagation approach. Due to ultra-flat and ultra-thin
characteristics of metasurfaces, integration of the MDNN
with CMOS chip is achieved, which provides the possi-
bility of high-volume manufacturing in semiconductor
plants with the CMOS-compatible processes. This is the
first on-chip all-optical diffractive neural network rea-
lized in the visible range using metasurfaces. The areal
density of neurons is greatly enhanced due to the sub-
wavelength structure and is proportional to the number
of channels.
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Fig. 1 Multiplexed human brain perception system and schematic of multiplexed metasurface-based diffractive neural networks (MDNN)
integrated on an imaging sensor chip. a Multi-channel senses of the human brain mainly comprise sight, hearing, smell, taste, and touch, among
which vision can be subdivided into object recognition, gesture recognition, character recognition and face recognition, etc. b Architecture of the
MDNN. The meta-neurons of the multiple networks are trained individually to obtain multiplexed phase distributions, which are optimized by an
error backpropagation algorithm running in computer. c Optical layout of polarization-dependent object classification for the MDNN concept. The
input is the light carrying information about the object to be recognized, e.g., a handwritten digit or a fashion product in x- and y-polarization,
respectively. The hidden layers consist of polarization-multiplexed metasurfaces acting as neurons, and subsequently converge the diffraction energy
to the corresponding photoelectric detection region on the CMOS chip (i.e., the output layer of network)
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Results
The framework of MDNN for multiplexed classification

shown in Fig. 1b comprises different types of targets to be
recognized in multiple channels as inputs (e.g., hand-
written digits, fashion items, letters, and so on), hidden
layers with meta-neurons encoding multiplexed phases,
and detectors with sub-areas for multi-channel detection.
A training principle similar to that of conventional elec-
tronic neural networks is employed for each channel,
which generally consists of three components: a single
input layer, hidden layers with at least one layer of neu-
rons, and a single output layer. By deep learning with
error backpropagation, the multidimensional phase dis-
tributions are iteratively updated and eventually, the
information from different channels converges to their
specific detection regions, each corresponding to an
identification class. The object can be input as an ampli-
tude or phase component, propagated and modulated in
meta-neurons. To achieve phase encoding of multiple
channels for meta-neurons, we demonstrate here a kind of
architecture based on polarization-multiplexed meta-
surfaces45,46 (see Fig. 1c). Note that the number of hidden
layers in Fig. 1c is just for illustration, which can be any
integer greater than or equal to 1. Each hidden layer
consists of asymmetric meta-units, enabling the birefrin-
gence properties. By tuning the structural parameters of
each meta-unit, polarization-dependent phase responses
can be encoded. This allows parallel multitasking through
different polarization incidence of targets. Moreover, due
to the planar nature of the metasurface, it is easy to
integrate it into a CMOS imaging sensor to realize an on-
chip integrated AI chip.
The basic physics of the hidden layer design consisting

of polarization-multiplexed meta-units is discussed.
According to the Huygens–Fresnel principle47, each point
on the wavefront can be regarded as the source of the
secondary spherical wave, and the shape of the new
wavefront at the next moment is determined by the
envelope of the secondary spherical wave. As such, each
meta-unit in a particular polarization state can be con-
sidered as a neuron (i.e., a monopole source) fully con-
nected to the preceding and following neurons. Based on
the Rayleigh–Sommerfeld diffraction integral48 and Jones
matrix Fourier optics49, the optical field of (l+1)th layer in
the all-optical meta-neurons network can be expressed as

U ~rlþ1
� � ¼

Z Z þ1

�1
U ~rl
� � � ~Jmeta ~r

l
� � � h ~rlþ1 �~rl

� �
dxdy

ð1Þ
where U ~rl

� �
is the optical field irradiated to the lth layer,

and for l= 1, U ~rl
� �

is the projected light
of the object to be identified. And ~Jmeta ~rl

� �
is the Jones

matrix of the birefringent metasurface of the

lth layer, which can be expressed by ~Jmeta ~rl
� � ¼

Γ θ x; yð Þð Þ ax x; yð Þejφx x;yð Þ 0
0 ay x; yð Þejφy x;yð Þ

� �
Γ �θ x; yð Þð Þ,

which contains the complex-amplitude responses on two
orthogonal axes and the orientation angle of the asym-

metric structure. And h ~rlþ1 �~rl
� � ¼ 1

2π
zlþ1�zl

R
1
R � jk
� �

ejkR
R is

the first Rayleigh–Sommerfeld impulse response function,

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xlþ1
p � xli

� �2
þ ylþ1

p � yli
� �2

þ zlþ1 � zlð Þ2
r

and

j ¼ ffiffiffiffiffiffiffi�1
p

. Thus, the forward propagation model of MDNN
is constructed, by a cross-entropy loss function and a
stochastic gradient descent approach to achieve desired
output via training the network. Detailed model training
and derivation are demonstrated in the “Methods” section
and Supplementary Note 1.

To demonstrate polarization-multiplexed MDNN for
multi-channel identification, multiple sets of two-
channel diffraction neural networks were trained. Two
classical datasets commonly used for machine learning,
Modified National Institute of Standards and Tech-
nology (MNIST)50 and Fashion-MNIST51 datasets,
were exploited to demonstrate the multiplexing net-
works. The physical plane of the network output was
divided into discrete detection regions, each repre-
senting a class of the dataset, with the region presenting
the highest intensity implying the class of the object
being identified. Considering the effect of the number
of hidden layers as well as the number of classes clas-
sified, the networks were tested numerically using the
corresponding data from 10,000 test images, which
were not involved in the training, using MNIST data as
an example. The variation of MNIST classification
accuracy is shown in Fig. 2a, where the network has
28 × 28 neurons per layer with a period of 400 nm and a
fixed layer-to-layer axial distance of 8.42 μm. It is clear
that recognition accuracy generally improves as the
number of hidden layers increases for larger numbers of
classification inference tasks, which means the MDNN
also exhibits a “depth” advantage although there is no
nonlinear nature. There are also small numbers of
classification cases where a single layer is competent
(e.g., two-class and four-class classifications). A com-
parison with the 10-class example revealed that the
accuracy of MNIST was slightly higher than that of
Fashion-MNIST (Fig. 2b), probably because the data
complexity of the former was lower than that of the
latter. Figure 2c summarizes the effect of the spatial
occupation of a single detection region on the classifi-
cation accuracy for image inputs of 28 × 28 (for simu-
lation) and 280 × 280 (size of meta-neurons in the
experiments) pixels, taking MNIST data as an example.
The neurons have a fixed period of 400 nm and the
layer-to-layer axial distance of the five hidden layers
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with 280 × 280 × 5 neurons is 84.2 μm. It is observed
that a small detection region helps to slightly improve
the recognition accuracy. This will help to achieve the
detection of more sub-channels within a fixed sensor
area. Note that when preprocessing the input data, we
scaled the input isometrically, which does not affect the
amount of input information (see Supplementary Fig.
S4 for more details).

As a proof-of-concept, the polarized-dependent dual-
channel metasurfaces for the MDNN are designed with
fixed orientations of structures as shown in Fig. 2d. The
metasurface is composed of subwavelength rectangular
TiO2 nanopillars with two independently tunable struc-
tural parameters (Dx, Dy) a fixed height H, and a period
p. Its rectangular cross-section leads to different effective
refractive indices along the two crossed axes, which is the
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fundamental mechanism for achieving polarization mul-
tiplexing (the experimental verification is shown in Sup-
plementary Fig. S1). When linearly polarized light is
incident along the corresponding axes, the nanopillar
produces polarization-dependent phase shifts which can
be expressed as a function of Dx and Dy. The phase and
amplitude under x- and y-polarization are simulated by
the finite-difference time-domain (FDTD) method, where
the wavelength is chosen to be 532 nm and p is set to
400 nm (Fig. 2e, f). The nanopillars have a height H of
600 nm without cladding to achieve a combination of
multiplexed phases covering approximately two 0–2π
ranges as well as a high transmittance (more details about
the nanopillars with polymer cladding for multi-layer
construction are in Supplementary Note 3). The detailed
design methodology can be found in our previous work46.
Since MDNN differs from conventional diffraction net-
works in that the meta-units introduce additional ampli-
tude modulation, the phase-only and amplitude-crosstalk
networks are compared to analyze the effect of the
amplitude (Fig. 2g). Taking the handwritten digit “3” as an
example (see more examples in Supplementary Fig. S5),
both networks with three hidden layers can accurately
redistribute the input energy to the detection region as
expected. When we take the amplitude-crosstalk of the
metasurface into account in the computation of the
phase-only network with 10,000 handwritten digits testing
dataset (the comparison of these two networks based on
Fashion-MNIST is presented in Supplementary Fig. S6),
the obtained recognition results have negligible error
effects (Fig. 2h–j). As demonstrated in Fig. 2k, the nor-
malized distribution of the energy in the respective target
detection regions is obtained by collating all test data for
handwritten digits from “0” to “9” with amplitude-cross-
talk, where the error bars show the difference compared
to the phase-only network. It can be seen that the average
energy distribution of each target reaches more than 25%.
The effect of the amplitude-crosstalk on the energy dis-
tribution is negligible, and the underlying reason is that
the phase plays a major role in the modulation of light by
the metasurface.
Since the metasurfaces are subwavelength arrayed

devices, scalar diffraction theory is no longer applicable in
principle, due to its disregard for polarization properties
and inter-structural interactions. To further verify the
functions of MDNN (i.e., multiple hidden layers and
polarization multiplexing), we also performed a 3D full
vector simulation by FDTD methods. The processes of
scalar and vector simulation are compared in Fig. 3a. The
scalar simulation is to calculate the light wave as a scalar
quantity, which is an approximation of the actual propa-
gation process, while the vector simulation can perfectly
reproduce the interaction process between the light wave
and the metasurface to obtain the information of the

propagation, intensity and power. First, the input object to
be detected is the amplitude or phase distribution of the
polarization source; then the multi-channel diffraction
phase is calculated by deep learning. For scalar simulation,
the phase is directly substituted into the diffraction inte-
gral for a layer-by-layer calculation to obtain the output.
For vector simulation, the phase distribution is trans-
formed into the structural parameters of the corre-
sponding i-layer metasurface array, followed by FDTD
simulation to obtain the near field, and then the far field is
extrapolated. If the last layer of meta-neurons calculation
is completed, the output light intensity distribution is
obtained. The dual-channel all-ONNs were trained based
on two hidden layers, and Supplementary Fig. S7 shows
the training convergence of the two-category classification
from MNIST and Fashion-MNIST, indicating that both
networks achieve a high accuracy rate of >99%. Note that
the accuracy was obtained by blind testing the corre-
sponding image data in the test set. Figure 3b shows the
scalar diffraction calculation and vector simulation for a
set of polarized-dependent dual-channel object recogni-
tion (more examples are presented in Supplementary
Note 9). The light propagation in the z-direction from the
last meta-layer to the output plane for the handwritten
digit “3” is illustrated in Fig. 3c. It can be observed that the
MDNN can accurately focus the input energy on the
target detection region for each channel in vector simu-
lation. Figure 3d shows the focused light field curves of
the four identified objects obtained in the x-axis of the
intercepted detection region. The peak intensities of all
field intensities appear in the regions corresponding to
the classified targets, in agreement with expectations.
Figure 3e gives the recognition normalized energy dis-
tribution of the 10 sets of vector simulations obtained
from the same simulation step, and it is obvious that the
average percentage of energy for the classified targets are
all higher than 80%, indicating that this FDTD vector
simulation verifies the MDNN.
As a proof-of-concept, we first fabricated MDNN with a

single hidden layer for dual-class object recognition
within the double channels to verify the dual-channel
neural network and study the diffraction propagation
properties. The polarization-multiplexed dual-channel
neural networks were trained with 280 × 280 meta-
neurons (78,400 in total), and the training convergence
of MNIST and Fashion-MNIST with respect to epoch
number is shown in Supplementary Fig. S9a, where both
networks achieved a high accuracy of greater than or
equal to 99%. The accuracy is obtained from all corre-
sponding image data in the blind test set. The phase
distribution obtained after training under dual polariza-
tion is presented in Supplementary Fig. S9b. The binary
Al mask was utilized as the input amplitude of the MDNN
in the experiment, i.e., where the position without (with)
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Al structure can (cannot) transmit light with an amplitude
of 1 (0). Figure 4a shows the two sets of inputs of the Al
mask after adding the spacer (e.g., handwritten digits “0”
and “1”, and the fashion products “t-shirts” and “snea-
kers”), and optical microscope images of the final fabri-
cated MDNN device. Using SiOx as the spacer, the surface
has excellent flatness, which facilitates better subsequent
exposure, deposition and etching processes to obtain high
precision TiO2 nanopillars. The top-view, oblique-view
and cross-sectional view of the scanning electron micro-
scopy images of the MDNN device are shown in Fig. 4b,
where the third one can distinguish the different layers.

The Al masks, spacer, and polarization-multiplexed
metasurfaces were integrated on the substrate by an
electron beam lithography (EBL) overlay process (more
details of the fabrication process are provided in the
“Methods” section and Supplementary Note 4). To char-
acterize the experimental performance of MDNN, we
built a spatial optical path (Supplementary Fig. S10a)
where different diffraction distance images can be
observed to study the diffraction properties. The simula-
tion and experimental results in Fig. 4c, d show a good
agreement demonstrating the feasibility of the design and
the multitasking ability of the MDNN, where the

a

b

S
ca

la
r

ca
lc

u
la

ti
o

n
F

D
T

D
si

m
u

la
ti

o
n

Input Output

c d

Input Output Input Output Input Output

0
0.2
0.4
0.6
0.8

0

1
2

3
4

1

Trousers
3

Ankle boots

R1 R2 R3 R4

3

0

0 2 4 6 8
Z (um)

Propagation
space

M
et

as
u

rf
ac

e

Polarization

e

Diffraction
calculation

Output 1 
(input 2)

Output n-1 
(input n)

Output n

FDTD
Far

Field

Near field

0

1

0

1
0

3
0

3

0
3

0
3

Trouser
Ankle boots

Trouser
Ankle boots

Trouser
Ankle boots

Trouser
Ankle boots

0

Energy distribution

3 Trouser Ankle
boots

0.81
0.85

0.92
0.89

0.6

0.8

1.0

Axnei�xn,
Ax2e

i�x2,

�

Ay1e
i�y1

Ax1e
i�x1, Ay2e

i�y2

Aynei�yn

Dyn

Dxn

Dy2

Dx2
Dy1

Dx1Ey - Input 1

x

(x1,y1, 0)

(x2,y2, d )

d

y y

x

y y

zx xr

0

X

Y

Ux

Uy

Fig. 3 Vector simulations of multi-layer MDNN. a Flowcharts of scalar diffraction calculation and vector FDTD simulation. b Comparison of
simulation results between scalar diffraction calculation and vector FDTD calculation for multi-channel classification. c The electric field distribution in
the z-plane simulated by the handwritten input of “3” in b demonstrates that the light propagation is focused on the target region. d The output
intensity in b is normalized along the x-direction distribution, and the maximum peaks are all confined to the detection region. R region. e The
average energy distribution of simulated 10 groups for each of the four types of objects, all of which are randomly selected in the MNIST and
Fashion-MNIST datasets, reached more than 80%

Luo et al. Light: Science & Applications          (2022) 11:158 Page 6 of 11



maximum energy was accurately clustered in the target
detection region. The intensity of the detection region in
the experiment was slightly different from that in simu-
lation, on the one hand, because of the error of the
polarizer, which cannot completely eliminate the ortho-
gonally polarized light, and on the other hand from the
fabrication error. By varying the diffraction distance
(0–100 μm), the diffractive propagation properties of
input light carrying different images were detected (see
Supplementary Movies S1–S4). It can be found that the
different input light will be gradually diffracted to a spe-
cific target region after the computing of the metasurface.
Next, we integrated a multiplexed MDNN capable of

performing more complex recognition tasks with a com-
mercial CMOS sensor chip to form an ultra-compact

sensing and computing all-in-one chip architecture,
and statistically study its recognition performance.
Figure 5a–c show the schematic and physical diagrams of
the on-chip MDNN. The fabricated MDNN was mono-
lithically bonding to the CMOS imaging sensor by an
optically clear adhesive (OCA) of 100-µm thickness for
on-chip integration. The MDNN side of the device faces
toward the CMOS chip, while the substrate faces outward,
so that the distance from the MDNN to the CMOS
imaging sensor, i.e., the diffraction distance, can be pre-
cisely controlled. The MDNN was designed to achieve
four-category classification under each of the two-liner
polarizations, containing the digits “0”, “1”, “3”, “9” and
fashion products “t-shirts”, “sneaker” “trouser”, “ankle
boots”, numbered from 1 to 8. The parameters of the
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MDNN design were the same as the previous ones except
for the number of categories. In the experiments, many
different sets of inputs were fabricated to systematically
study the recognition performance of the device. Figure 5d
reports selected examples from the experimental results of
the on-chip MDNNs. We obtained the images of the
CMOS output and counted the intensity distribution of
each assigned detection region. It can be clearly observed
that the corresponding regions get the maximum signal,
proving the success of our on-chip MDNN inference cap-
ability. We selected 160 groups from the set of images that
were numerically proven to be correctly classified, i.e., 20
different inputs for each category, and the statistical results
of the experiments are shown in Fig. 5e. Our on-chip

MDNN matches well with 93.75% and 95% between
experiments and numerical simulations for digital and
fashionable items, respectively. The reasons for the few
target identification errors could be experimental fabrica-
tion errors, such as deviations in the overlay, and statistical
errors (part of the background light affects the comparison
of the intensity of the two largest detection regions).

Discussion
We demonstrated the theoretical design and experi-

mental implementation of a polarization-multiplexed
metasurface-based all-optical linear neural network to
perform various recognition tasks, such as recognizing
handwritten digits and fashion items. The physical
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network is integrated with CMOS imaging sensors for
miniaturized and portable sensing and computing all-in-
one chip. Although there were also explorations of on-
chip integration26,52, our architecture can be easily mass-
produced because both CMOS chips and metasurfaces
can be manufactured based on semiconductor processes.
Another huge advantage of MDNN is the ability to fully
exploit parallel operations of light by using the multi-
plexing of the metasurface. Many multiplexing schemes of
the metasurface, including more polarization channel
multiplexing46, wavelength multiplexing53, spatial multi-
plexing54, and vortex multiplexing55, can be endowed to
the all-ONN to expand neural network channels. More-
over, the proposed MDNN has a subwavelength pixel size
of 400 nm in the visible range, empowering the effective
areal density of neurons of 6.25 × 106 mm−2 for a single
channel which will be further boosted by the combination
with multiplexing. Though our fabricated on-chip MDNN
has only one hidden layer, the simplest neural network, it
is sufficient to demonstrate the classification of a total of
eight targets within two channels (Fig. 5). To obtain
higher recognition accuracy and more complex recogni-
tion characteristics, multi-layer meta-neurons can be
precisely fabricated by overlay lithography56,57. To verify
the feasibility, we have designed and simulated the multi-
layer cladding metasurfaces (see Supplementary Note 3
for more details) as well as an MDNN framework with five
hidden layers and 280 × 280 × 5 meta-neurons (Supple-
mentary Fig. S4). The limitation of our linear MDNN
system is that the “depth” it has is quantified by the
number of linear diffraction layers, which is different from
the nonlinear “depth” in the field of deep learning and
signal processing. However, in the future, if the optical
nonlinear activation function is incorporated into this
system, it will break this limitation and bring a similar
“depth” effect.
Although the current architecture has been trained to be

passive and computation will be performed without
additional energy input except for the power consumption
of the sensor, reconfigurability is still helpful in some
scenarios to achieve trainability. Mechanisms for tunable
metasurfaces can be introduced into our device, such as
liquid crystals58, phase-change59 materials to achieve an
on-chip trainable MDNN. MDNN can currently be seen as
a linear wave processor, which still has limitations for
handling more complex tasks. But various optically non-
linear materials (such as nonlinear metamaterials, semi-
conductor materials, crystals, and doped glasses), which
bring nonlinear optical effects (such as saturable absorp-
tion60, optical bistability61, and Kerr effect62), can be
introduced into our MDNN to bring nonlinear activation
functions to further enhance its convergence speed and
inference ability. As an example, we employed the pho-
torefractive crystal (SBN:60) material capable of generating

nonlinear phase modulation with respect to intensity
variation, to construct and simulate a nonlinear
polarization-multiplexed MDNN (see Supplementary
Note 12 for details). Note that the response time of non-
linear materials is much longer than the phase fluctuation
time of the optical beam63, reducing the processing speed
of nonlinear MDNNs. It is also important to note that
when choosing optical nonlinear materials in MDNNs
with various multiplexing mechanisms, we should be
cautious to consider that the nonlinearities are decoupled
from each other within individual channels. Furthermore,
although isometric scaling was successful for simple
datasets in our experiments, for in complex environments,
we can take advantage of the structural diversity and
programmability of the metasurface to construct sensing
matrices that highlight task-relevant information through
purposeful non-isometric scaling64–66. As a new class of
deep learning chips for parallel processing, the pre-trained
metasurface devices combined with optical imaging sen-
sors enable to perform complex functions as simply as the
human eye, and may open up a new generation of optical
multi-skilled AI chips.

Materials and methods
Training of the MDNN
Our MDNN architectures were implemented using

Python (v3.6.12) and TensorFlow (v2.1.0, Google Inc.) on
a server (GeForce RTX 2080 Ti graphical processing unit
(GPU, Nvidia Inc.) and Intel(R) Core (TM) i9-10980XE
CPU @3.00 GHz central processing unit (CPU, Intel Inc.)
with 128 GB of RAM, running the Windows 10 operating
system (Microsoft)). We trained each network in the
multi-channel MDNN individually, using the cross-
entropy loss as a loss function, which is often used in
machine learning for object classification, to maximize the
signal in the target region. The neurons in each layer of
the network, i.e., phases of the meta-units, are updated by
a stochastic gradient descent algorithm. We used the
MNIST and Fashion-MNIST datasets for training with a
training batch size of 10 or 100 and a learning rate of 0.1
or 0.5. The number of neurons per layer in scalar simu-
lations and vector simulations for training was set to be
28 × 28, while the number of neurons in a single layer in
the experiments for training was set to be 280 × 280. Since
we chose a relatively small learning rate and treat each
training batch as an epoch, the ideal mapping function
between the input and output planes was achieved after
4000, 2000, 600, and 500 epochs, respectively, and each
network took about a few minutes to tens of minutes to
train. Furthermore, we trained five hidden layers with
280 × 280 neurons per layer (see Supplementary Note 5).
After training, the correctness of the network is verified by
the Rayleigh–Sommerfeld diffraction calculation program
using MATLAB.
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Sample fabrication
The MDNN sample was fabricated mainly by two pro-

cesses, namely the fabrication of the metasurface and the
integration with a CMOS imaging sensor, the first of
which in turn consists of deposition, overlay EBL, lift-off,
and atomic layer deposition (ALD), among others. First,
after EBL (Raith-150two) patterning of a layer of poly-
methyl methacrylate (PMMA) resist (950 k-8%), aurum
(Au) deposition and lift-off, overlay markers were defined
on a quartz substrate. Subsequently, a PMMA resist layer
was again coated, and after precise overlay exposure using
Au markers, development, deposition, and lift-off, binary
Al structure of the input signal to be identified was
obtained. A 100-nm spacer protecting the Al layer was
obtained by exposing hydrogen silsesquioxane. Next, the
sample was coated with a 600-nm PMMA again, and the
overlay marks were used to define the multiplexed meta-
units pattern. After development (1 min in 1:3 MIBK:IPA
solution and 1min in IPA at −18 °C), an ALD system with
TiCl4 precursor was used to deposit amorphous TiO2

onto the resist. Then, the TiO2 film on the top of the
sample was etched by ion beam etching and the PMMA
resist was stripped by reactive ion etching. Finally, we
manufacture MDNNs sample on a Sony IMX686 CMOS
chip with an imaging screen of 8.64 × 6.46 mm2 and a
pixel of 0.8 μm. The most critical step in this process is to
ensure that the distance between the metasurface sample
and the imaging surface is sufficiently precise. Note that
the diffraction distance between the hidden layers is
100 μm. Therefore, we cut an OCA with a thickness of
100 μm into the desired shape so that the metasurface is
tightly bonded to the image sensor.

Experiment setup
The experimental setup for the MDNN characterization

is presented in Supplementary Fig. S10. A laser diode
emitting at 532 nm (Thorlabs CPS532) was utilized as the
input light. A linear polarizer was used to create the
desired polarizations. The light is then directed onto the
metasurface and imaged on a CMOS camera DCC3260C
through a 100× objective lens. Videos of the MDNN
focusing effect with diffraction distance are obtained by
the movement of a stepper motor. Since the metasurface
is integrated onto the CMOS imaging sensor, the output
images of the experiment in Fig. 5 are collected directly by
the image sensor on the CMOS chip (Sony IMX686).
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