
Wang et al. Light: Science & Applications          (2022) 11:159 Official journal of the CIOMP 2047-7538
https://doi.org/10.1038/s41377-022-00838-0 www.nature.com/lsa

ART ICLE Open Ac ce s s

Intrinsic superflat bands in general twisted bilayer
systems
Hongfei Wang1, Shaojie Ma2, Shuang Zhang2,3✉ and Dangyuan Lei 1✉

Abstract
Twisted bilayer systems with discrete magic angles, such as twisted bilayer graphene featuring moiré superlattices,
provide a versatile platform for exploring novel physical properties. Here, we discover a class of superflat bands in
general twisted bilayer systems beyond the low-energy physics of magic-angle twisted counterparts. By considering
continuous lattice dislocation, we obtain intrinsic localized states, which are spectrally isolated at lowest and highest
energies and spatially centered around the AA stacked region, governed by the macroscopic effective energy
potential well. Such localized states exhibit negligible inter-cell coupling and support the formation of superflat bands
in a wide and continuous parameter space, which can be mimicked using a twisted bilayer nanophotonic system. Our
finding suggests that general twisted bilayer systems can realize continuously tunable superflat bands and the
corresponding localized states for various photonic, phononic, and mechanical waves.

Introduction
Twisted bilayer systems of two-dimensional (2D)

materials, especially for graphene1,2 and transition metal
dichalcogenides (TMDCs)3,4, have recently been
employed to explore various physics and applications
such as spin-polarized phases5–8 and unconventional
superconductivity9–11. For general twist angles, the scale
of moiré superlattices ranges in size from unit cells of 2D
materials to infinity12–14. The structural flexibility further
makes twisted van der Waals heterostructures a versatile
and tunable platform15–18. However, these characteristic
behaviors, such as Mott insulating states19–22 and super-
conducting states6,23–25, always occur at particular dis-
crete twist angles between two sheets, denoted as magic
angles10,26–28, which are sensitive to tiny perturbations in
structural manipulation. At present, moiré flat bands and
topological bands near the Fermi level underlying the
above extraordinary progress have been fully studied both

in theory and experiment29–33. However, these novel
physics and phenomena require precise control of twist
angles which are difficult to generalize to distinct artificial
materials for various wave systems. General effects and
exotic physical phenomena of twisted bilayer systems
insensitive to twist angles remain out of reach.
In this work, we discover the robust presence of a class

of superflat bands in general twisted bilayer systems
proved by the tight-binding model (TBM) with negligible
next-nearest-neighbor intralayer hoppings. Using the
effective macroscopic potential well model (PWM) with
spatially modulated couplings, we show that for small
twists, localized states definitely appear centered on the
AA stacked region (with deepest potential well) at isolated
lowest and highest energies, manifesting C6 and C3 sym-
metries, respectively. Such localized states present negli-
gible inter-cell coupling, forming superflat bands for
general twisted bilayer systems, which is corroborated by
exact TBM calculations. We further implement superflat
bands and the corresponding localized states via twisted
bilayer nanophotonic platforms. Importantly, these
superflat bands arise for a continuous set of small angles
and do not require fine tuning to the specific magic
angles, being readily implementable for various wave
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systems and introducing an extremely large density of
states (DOS) for lasing34, sensing35, and light-matter
interactions36.

Results
Superflat bands and localized states
General twisted bilayer systems display alternating

patterns between AA and AB/BA stacked lattices (i.e., the
A (B) site from the upper layer is perfectly aligned with
the A/B (A) site from the lower layer), as illustrated in
Fig. 1a. In momentum space, rotated unit cells in two
layers cause a relative rotation (θ) of first Brillouin zones
(BZs), generating an effective moiré BZ (see Fig. 1b).
Periodic moiré superlattice has the lattice constant aM ¼

a
2sinðθ=2Þ, where a is the lattice constant of primitive unit
cells (with a hexagonal p6m symmetry of wallpaper
groups). We assume that the hopping rate between every
two sites (i ≠ j) decays exponentially as a function of dis-
tance ∣rij∣, i.e., tij � A0e�γjrijj, because the classical elec-
tronic and photonic systems always allow the overlap of
exponential-type wave functions37–40. Here γ represents
the decay rate and A0 is the normalized coefficient con-
straining the energy scale. In addition, negligible next-
nearest-neighbor hoppings of intralayer sites restrict the
range of tij in the following form

A0e
�γa=

ffiffi
3

p
¼ t0;A0e

�γa ! 0 ð1Þ

Without losing generality, we set the unit hopping t0= 1
in the following analysis. To ensure the dominance of
nearest-neighbor hoppings accurately, we further choose
γa ~ 30 corresponding to tij(a) ~ 10−5≪ t0. An exact
hopping strength curve is displayed in Fig. 2a, where the

spatial distance jrijj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ρh2

q
, l and h represent the

intralayer and interlayer distances, respectively. ρ= 0
(ρ= 1) stands for i and j located at the same (distinct)
layers. We model general spinless twisted bilayer systems

with the TB Hamiltonian

HTB ¼ �
X
hi;ji

tρ¼0
ij cyi cj �

X
i;j

tρ¼1
ij cyi cj þ

X
i

ϵcyi ci ð2Þ

where cðyÞi corresponds to the creation (annihilation)
operator at the site i, and ϵ is the inherent potential which
is considered as zero in general systems. This allows us to
perform the exact analysis for moiré superlattices and
provide numerical support for the following detailed
models.
Furthermore, we calculate the AA and AB/BA stacked

band structures under the above hopping relation using
the analytical TBM41,42. The lowest/highest energies of
first BZs (located at Γ point, i.e., the center of blue and red
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Fig. 1 Lattices and Brillouin zones (BZs) of generic twisted bilayer
systems. a Schematic of general twisted bilayer systems with the
twist angle θ, where the largest black hexagon denotes moiré
superlattices including AA and AB/BA stacked lattices. Blue (red) dots
represent the sites in L1 (L2). b Schematic of BZs. Sky blue and red
hexagons represent first BZs for L1 and L2 while black hexagons
represent moiré BZs
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Fig. 2 Generic hopping function and band structures of AA and
AB/BA stacked lattices. a Hopping strength function that decays
exponentially with the independent variable of site-to-site distance r,
where only the nearest-neighbor hoppings for intralayer sites are
considered. b Rigorous band structures of AA and AB/BA stacked

lattices calculated by the TBM with h ¼ a=
ffiffiffi
3

p
. The insets show the

field distributions of S1 (highest energy) and S2 (lowest energy)
located at Γ point, implying C3 and C6 symmetries, respectively
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hexagons in Fig. 1b) can be reduced to

EAA
Γ ¼ ±ðtijðhÞ þ 3t0Þ;

EAB=BA
Γ ¼ ±

1
2
ðtijðhÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tijðhÞ2 þ 36t20

q
Þ ð3Þ

Algebraic derivation reveals that for highest (or lowest)
bands AA stacked lattices always have higher (or lower)
energies than AB/BA stacked lattices, forming a natural
potential difference, i.e., jEAA

Γ j> jEAB=BA
Γ j, unless h→+∞,

that is, jEAA
Γ j ¼ jEAB=BA

Γ j. Such a relevant energy difference
provides a spatial potential well where the deeper
potential is located at the AA stacked region with effective
masses m* ~ ±2ℏ2/t0. These effective masses remain
almost constant at arbitrary locations within the moiré
superlattices, with the details given in Supplementary
Note 1. Here we show a specific case with h ¼ a=

ffiffiffi
3

p
(see

Fig. 2b), where band structures of AA and AB/BA stacked
lattices match well with our analysis. Two states (S1 and
S2) with highest/lowest energies at Γ point of AA stacked
lattices present C3 and C6 symmetries, respectively,
preserved by irreducible representations in the orthogonal
eigenspace, which are the crucial prerequisite for forming
superflat bands as following discussions.
In the vicinity of lowest/highest energies of AA stacked

lattices, the previous low-energy theory describing moiré
bands is invalid29. A concise physical picture can be
constructed to depict this system as illustrated in Fig. 3.
The distorted lattices along the azimuth θc= nπ/3, n= 1,
2, . . . , 6, centered around AA stacked lattices, reflect
essential characteristics of the potential well. Specifically,
for the distorted lattice with a distance from the center of
AA stacked region ro, the coordinates of lattice center are
(cx, cy)= ro(cos(θc), sin(θc)). The geometric center of A
and B sites is shifted and projected on a specific circle
with radius rc= 2rosin(θ/4). The distance in x–y plane
from one center to another center for two layers is dc=
2rosin(θ/2). Here, rc and dc are independent of θc. In the
vicinity of AA stacked region, dislocated lattices for any ro

and θc allow for modeling on a scale of unit cells. A typical
case for n= 0 is displayed in Fig. 3 (right panel). The
Hamiltonian around Γ point characterizing lattice distor-
tions of the system,Φ ¼ fϕ1

A;ϕ
1
B;ϕ

2
A;ϕ

2
Bg, takes the form43

HðkÞ ¼ h1 F

FT h2

� �
ð4Þ

where h1;2 ¼ �σx
P2

i¼0 ti þ σyð± a t1�t2
2 kx þ

ffiffiffi
3

p
a t1þt2

2 kyÞ
and the wavevector k= {kx, ky}. σx,y are the Pauli matrices
acting in sublattice space of single layers. t1 and t2 correspond
to inter-cell hoppings between A and B sites for single layers
along two distinct basis vectors, respectively, which are equal
for zero θ or unequal (and exchanged in another layer) for
nonzero θ. Besides, the exact derivation manifests that t1 (t2)
only grows as θ decreases (increases) (Supplementary Note
2). The off-diagonal function F= {f11, f12; f21, f22} represents
the spatially modulated interlayer hoppings, which can be
obtained analytically according to Fig. 3 and single depends
on ro under a given θ, as described in Supplementary Note 2.
By diagonalizing Eq. (4), that is, E(Γ)= PH(Γ)P−1 (P is an
invertible matrix), the spatial potential V(ro) is given by the
function fmin Eð ðΓÞ;maxðEðΓÞg, which is related to the
energies of S1 and S2 in distorted lattices. In Figs. 4a, b, we
show a specific cross section P1P2 (with length

ffiffiffi
3

p
aM) for

θc= 0 or π, where θ= 6.01∘ and h ¼ a=
ffiffiffi
3

p
. The negativem*

matches with S1 and has positive potential energies, while the
positive m* matches with S2 and has negative potential
energies. One sees that potential exhibits local valley (peak)
characteristic for positive (negative) m*. The potential
difference between AA and AB/BA stacked lattices always
holds making the central AA stacked lattice become the
global extrema of potential, which supports a 2D potential
well of finite depth.
Consider the isotropy distortion approximation in the

vicinity of central AA stacked region. The system can be
regarded as the evolution of a spinless particle with
effective mass m* in a given V(ro) potential well. We
describe this process using the time-independent Schrö-
dinger-like equation with eigenstates Ψ, given by

½�ℏ2=2m�ð∂2x þ ∂2yÞ þ V ðroÞ�Ψ ¼ EΨ ð5Þ

The solutions of Eq. (5) are shown in Fig. 4c. Discrete
energy levels correspond to different orders of Ψ
manifesting the arrangement of s, px,y, ..., px,y, s states
from lowest to highest energies. The first half of these
states (E < 0) is composed of S2 with C6 symmetry,
while the second half (E > 0) is composed of S1 with C3

symmetry. At lowest and highest energies, s states
isolated from the continuous bulk energy spectrum
exhibit ideal confinement, which can be understood
from the confining V(ro) induced by intrinsic spatial
hopping modulations.

Entire system A unit cell
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rcdc xB
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A

Fig. 3 Lattice dislocation mapping. Schematic of the lattice
dislocation under specific ro, θ, and θc (left panel), which can be
characterized in terms of θc, rc, and dc (right panel)
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To further demonstrate the properties of general periodic
twisted bilayer systems, we calculate band structures of
moiré superlattices using the TBM with the hopping func-
tion of Fig. 2a. A representative result for θ= 6.01∘ and h ¼
a=

ffiffiffi
3

p
is plotted in Fig. 5a. Four subbands (red curves) near

the zero energy for spinless particles are fully consistent with
typical moiré bands, corresponding to the divergent DOS,
see the right panel of Fig. 5a. Whereas for the lowest and
highest energies, superflat bands (blue curves) emerge in
isolation accompanied by extremely large DOS, labeled as
Ξ− and Ξ+. Figure 5b shows typical eigenstates at ΓS point of
Ξ−, Ξ+ and their adjacent bands. Ξ− (A) and Ξ+ (F) corre-
spond to s states formed by S2 and S1, respectively. The
eigenstates for E < 0 (A–C) and E > 0 (D–F) cases are

consistent with the solution of the above continuous PWM
in Fig. 4c. We further study the energies of Ξ− and Ξ+ with
different h and θ both in TBM and PWM, as displayed in
Fig. 5c. Since such superflat bands are constrained by the
potential of AA stacked lattices, i.e., EAA

Γ , the energies of Ξ−
and Ξ+ vary exponentially with h in a wide range of θ. As
h→+∞, the energies of Ξ− and Ξ+ tend to −3t0 and 3t0,
respectively, merging into the bulk energy spectrum pro-
gressively (Supplementary Note 3).

Nanophotonic implementation
To realize superflat bands and the corresponding loca-

lized states in nanophotonic systems, we propose a twis-
ted bilayer photonic crystal (PC) composed of an air layer
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and two twisted PC slabs, as shown in Fig. 6a. Single PC
slab has a C6v lattice with lattice constant aSi= 1.5 μm
filled with air, where the sublattices are composed of
silicon triangular prisms (refractive index nSi= 3.46) with
sidelength lSi= 0.35aSi and height hSi= 0.5aSi (see the left
inset of Fig. 6a). The air layer with a thickness of dSi=
0.2aSi is sandwiched between two twisted PC slabs (see
the right inset of Fig. 6a). The entire structure is
embedded in perfect metal in the stacking direction
forming a conservative system (here the transverse mag-
netic (TM) polarization is considered). We also provide
the design under open systems as support (Supplementary
Note 4).
Owing to the long-wavelength limit of dielectric PCs, the

lowest band with linear dispersion near Γ point exhibits a
fixed lowest frequency 0 leading to the absence of superflat
bands with C6 symmetric states (Supplementary Note 5)44.
So we only present the case possessing C3 symmetric states.
Figure 6b shows band structures near Γ point for AA and
AB/BA stacked PCs with given parameters in Fig. 6a.
Because the electromagnetic fields are concentrated in
carefully designed triangular prisms, this system can match
well with TBMs44. The C3 symmetric eigenstates of these
two bands preserve particular frequency difference ensuring
that the states located in AA stacked lattices is isolated from

bulk spectra of twisted bilayer PCs (see the insets of Fig. 6b).
Then, we calculate the band structure of twisted bilayer PCs
with twist angle 6.01∘, as plotted in Fig. 6c. The superflat
band (blue) is observed at the frequency 116.3 THz,
describing well-confined s states with C3 symmetry, as
shown in the top panel of Fig. 6d. Adjacent bands exhibit
multipole states of moiŕe superlattices accompanied by
worse localization capabilities. For example, px,y states form
crossed and nonflat bands, see Fig. 6c and the middle and
bottom panels of Fig. 6d.
Note that such a design process exactly focuses on a

single mode of the triangular prism (e.g., the fundamental
mode above, which is therefore located in several lower
bands). Despite the robustness of localized states, the
interaction of different order modes of the triangular
prism may merge the superflat bands into upper adjacent
bands, which should be avoided when setting essential
parameters of the system (Supplementary Note 6).

Discussion
The intrinsic superflat bands in our work have the

property of isolated energy spectra without mode hybri-
dization between different bands, so that the corre-
sponding eigenstates have a clear and highly symmetrical
phase distribution, as shown in Figs. 4c and 5c. The
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localized eigenstates are almost insensitive to periodic
moiré superlattice boundaries, which is understood as the
origin of superflat bands and can be described by the
PWM. The carried C3 and C6 symmetries distinguished
from moiré flat bands formed by the four-band recon-
struction (moiré bands) near the zero energy have not
been fully discussed before9–11,26. Recently, we notice that
a displacement electric field is applied in specific twisted
bilayer systems (e.g., graphene and boron nitride hetero-
structure) to study the valley topology of moiré bands45,46.
In our system, this is equivalent to yielding a nonzero ∣ϵ∣
with distinct signs for two layers. The energies of superflat
bands will be corrected corresponding to a shift g(∣ϵ∣),
where g(∣ϵ∣) ≥ 0 and grows as ∣ϵ∣ increases, see the details
given in Supplementary Note 7. Apart from that, nonzero
∣ϵ∣ cannot affect the presence of superflat bands and
localized states.
In conclusion, combining theoretical PWM analysis and

TBM calculation, we have demonstrated a class of
superflat bands with C6 and C3 symmetric states for small
twists in general twisted bilayer systems. The dislocated
lattices formed by the systematic hopping modulation
create macroscopic effective potential wells centered
around the AA stacked region, leading to the well-
confined states described by the PWM. We also mimic
these two effects in nanophotonic systems displaying the
unique electromagnetic wave confinement. Notably,
superflat bands and the corresponding localized states can
be realized for continuous twist angles (distinct from the
discrete set of twist angles in magic-angle physics),
showing a class of generalized effects of twisted bilayer
systems distinguished from the fragile topology. The
concept of generalized localized states may inspire a
shortcut technology for generating zero-dimensional
localization, avoiding complex boundary splicing of
(higher-order) topological insulators, which will greatly
benefit the wave trapping and manipulation. The fre-
quencies of superflat bands and the configurations of
localized states can be adjusted by twist angles, and this
offers an advanced platform for reconfigurable devices.
Our results can be extended to photonics47–49, phononics,
and mechanical waves, where ideal transport can be rea-
lized for integrated chips in information technologies.

Methods
Nanophotonic simulation
Numerical simulations for nanophotonic systems in this

work are all performed using the 3D electromagnetic
module of commercial finite-element simulation software
(COMSOL MULTIPHYSICS). In solving the eigenvalues
and eigenstates of AA, AB/BA, and moiré lattices in our
silicon-air platform, the calculation regions are selected as
hexagonal unit cells with side lengths affiffi

3
p , affiffi

3
p , and a

2
ffiffi
3

p
sinðθ=2Þ,

respectively, with a being 1.5um and θ being 6.01∘. Bottom
and top boundaries along the stacking direction are set as
perfect electric conductors. So only the transverse mag-
netic (TM) polarization is considered for the data in
Fig. 6b and c, i.e., Ez. Whereas 2D periodic directions
satisfy Bloch’s theorem Ez(r+ R)= eik⋅REz(r), where R is a
real space lattice vector.
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