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Abstract
Laser scanning microscopy has inherent tradeoffs between imaging speed, field of view (FOV), and spatial resolution
due to the limitations of sophisticated mechanical and optical setups, and deep learning networks have emerged to
overcome these limitations without changing the system. Here, we demonstrate deep learning autofluorescence-
harmonic microscopy (DLAM) based on self-alignment attention-guided residual-in-residual dense generative
adversarial networks to close the gap between speed, FOV, and quality. Using the framework, we demonstrate label-
free large-field multimodal imaging of clinicopathological tissues with enhanced spatial resolution and running time
advantages. Statistical quality assessments show that the attention-guided residual dense connections minimize the
persistent noise, distortions, and scanning fringes that degrade the autofluorescence-harmonic images and avoid
reconstruction artifacts in the output images. With the advantages of high contrast, high fidelity, and high speed in
image reconstruction, DLAM can act as a powerful tool for the noninvasive evaluation of diseases, neural activity, and
embryogenesis.

Introduction
Label-free nonlinear optical microscopy (NLOM)1–4,

featuring high resolution, deep penetration, low photo-
bleaching, and nonperturbance, can provide abundant
structural and functional information and enable a com-
prehensive and informative analysis of various biochem-
ical phenomena4–6. Nonetheless, a confined field of view
(FOV) of <600 μm7 for a conventional NLOM can hardly
realize visualization of large-scale cellular distribution and
interactions and possibly lead to incorrect judgment.
Large-area investigation of tumor, brain, or other tissues
and organs with cellular resolution is a current challenge
for NLOM. Typical instrument approaches for expanding
the FOV of an NLOM enlarge the diameter of the
objective lens8–10 or increase the number of objectives7,
with specifically designed scanning paths. Some reported

computational methods, such as structured-illumination
microscopy11, produce a resolution-enhanced stitched
image in the Fourier domain12. All these methods require
additional costly devices and intricate optical path design.
State-of-the-art microscopes equipped with a high-speed
sophisticated mechanical scanner (e.g., 720 fps at 2048 ×
16 pixels by Nikon AX R) can expediently perform large-
area imaging by scanning a series of adjacent FOVs in a
short time. However, the resulting images are susceptible
to adverse effects, such as background noise, inadequate
resolution, and scanning artifacts, which are nonnegligible
for label-free nonlinear imaging.
Due to the increasing computing power and quantity

of available data, a variety of deep learning methods,
ranging from early convolutional neural networks
(CNNs) to recent promising generative adversarial net-
works (GANs), have been proposed and have shown
great accomplishments in biomedical imaging13–20. This
significant progress includes super-resolution13,15,16,
medical diagnosis21, cellular component classification17,
and virtual H&E staining14,22. Among them, super-
resolution reconstruction is one of the most important
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classes of image processing techniques owing to its ability
to overcome the limitations of traditional microscopes
without changing the system. Deep learning-enhanced
super-resolution models can extract morphological details
from inferior raw images and attain remarkable resolution
improvements for bright-field13, fluorescence15,16,23, and
light-field18 microscopy. However, low-resolution images
are usually captured using a low-magnification objective
lens12,13, of which the focusing capability and resulting
photon density are insufficient for label-free nonlinear
imaging, whereas a direct increase in laser intensity will
probably cause photobleaching and photodamage. Addi-
tionally, in most cases, the degraded images are generated
from the measured high-contrast images with synthesized

Gaussian, Poisson, or other noises12,16,24. Such computa-
tional degradation does not guarantee authenticity
because the real situation always has full statistical com-
plexity25. Hence, there are increasing demands to develop
imaging methods to collect authentic data of both con-
trary qualities, especially the low-grade domain, to con-
struct a reliable paired training dataset. One feasible
approach is to implement fast resonant scanning, which
has been extensively applied in two-photon excitation
microscopes where wide-field excitation is unavailable.
However, demonstrations of efficient, realistic super-
resolution models to enhance the performance of fast-
scanning NLOM to compete with long-pixel exposure
NLOM have not yet been realized.
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Fig. 1 DLAM schematic. a The basic network architecture including registration, RRDAB modules, conv layers, the skip connection, upsampling
operation, and discriminator. The full frameworks can be found in the section “Materials and methods”, Notes S1–4, and Figs. S1–4. b A commercial
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To obtain large-scale multidimensional information with-
out perturbance while guaranteeing high speed and resolu-
tion, we demonstrate deep learning autofluorescence-
harmonic microscopy (DLAM) based on the attention-
guided residual-in-residual dense generative adversarial net-
work architecture. The network was trained using the pre-
registered collected dataset, where the trichromatic channels
of the images were formed by three typical nonlinear optical
processes, including two-photon autofluorescence (2PA) of
endogenous flavin adenine dinucleotide (FAD), second-
harmonic generation (SHG), and three-photon auto-
fluorescence (3PA) of endogenous nicotinamide adenine
dinucleotide (NADH). A label-free multimodal image of
human pathological tissues over a 5.4 × 5.4mm2 area at
2176 × 2176 pixels, which was obtained in 54 s using reso-
nant scanning, was transformed into a high-resolution image
at 8704 × 8704 pixels within 23 s. For comparison, the time
to acquire the same quality image using galvanometer
scanning exceeded 10m. The undesirable noise and scanning
artifacts, which were more serious in the 3PA NADH
channel, were significantly suppressed, while the semantic
information for pathological analyses was fully retained after
the deep learning inference. The statistically quantified
optical resolution and quality metrics for DLAM exhibited a
remarkable increase benefiting from the residual dense
connections for the generator with high-level perceptual
loss26 and a discriminator with spectral normalizations27,28.
Moreover, DLAM prevented the reconstruction artifacts and
avoided the image anamorphoses raised by the conventional
GAN models to realize high-authenticity superior-resolution
nonlinear imaging.

Results
Principle of DLAM
DLAM combined the proposed deep learning model

(Fig. 1a) and the commercial nonlinear optical imaging
system (A1R MP+, Nikon), which houses an 8-kHz galvo-
resonant (GR) scanning system and a dual-axis galvo (DG)
scanning system (Fig. 1b). Two beam splitters (BSs) with
motorized shutters switched the excitation light between
the two scanning systems. The input images were obtained
by the fast resonant scanning mode operating at 30 fps with
a frame time of 33.3ms for 256 × 256 pixels. The target
high-quality images approximating the ground truth (GT),
were taken by the slow DG scanning system at 0.474 fps
with a frame time of 2.1 s for 1024 × 1024 pixels. All-galvo
scan imaging is superior to cumulative GR scan imaging to
obtain GT data because multiframe averaging most likely
leads to blurring, slight degradation of the resolution, and
lack of fine texture details. The pixel number of the input
images was a quarter of that of the GT images to accelerate
the acquisition. To simultaneously collect structural
information (noncentrosymmetry) from the SHG signals
and functional information from the 3PA NADH and 2PA

FAD signals, we tuned the excitation wavelength of the
femtosecond laser (~100 fs) to 1140 nm4. The laser beam
was directed through the scan mirrors, scan lens, tube lens,
and subsequently to the back focal plane of a 0.75-NA
microscope objective. A precompensation for group delay
dispersion (GDD) of 8,000 fs2 was applied to ensure a low
power of <50mW excitation. The autofluorescence and
SHG signals were then collected and spectrally separated
by the combination of dichroic mirrors (DM) and bandpass
(BP) filters (see the section “Materials and methods”).
To resolve the incompatibility between high speed,

large area and high resolution, high contrast, we pro-
posed the deep neural network architecture (see the
“Materials and methods” section; Fig. S1) to fast trans-
form large-field inferior images to denoised superior
images (Fig. 1a). Previous to this, due to the non-
collinearity of the two scanning systems, we implemented
an efficient image preregistration method29 to achieve
fore alignment between the input images and the GT
images (Fig. S2a and Note S1). The preregistered paired
images thereby formed the training dataset. Then, we
proposed a self-alignment pyramid, cascading, and
deformable convolutions (SAPCD) framework (Figs. S2b,
S3, and Note S2) based on feature extraction and align-
ment30. This framework was embedded in super-
resolution networks to automatically learn and realize
pixelwise alignment between the preregistered input and
GT images. Without the SAPCD for adaptive convolu-
tion, the fine textures cannot be well resolved due to the
misalignment of pixel locations, resulting in out-of-focus
images compared to the input bicubic results with
resolved details (see the ablation study in the section
“Materials and methods”). Referring to the perceptual-
driven residual-in-residual dense block in the enhanced
super-resolution generative adversarial networks (ESR-
GAN)31, we proposed the residual-in-residual dense
attention block (RRDAB) as the basic generator block
(Fig. S4a, b and Note S4). Benefiting from the dense
connections and feature attention, RRDAB has a higher
capacity for improving image quality and resolution while
retaining real features than the original residual block in
the ESRGAN. In particular, the integrated channel
attention mechanism can explicitly model the feature
map interdependencies, and the spatial attention
mechanism can unscramble the interspatial relationship
of the feature regions (Fig. S4b) within the residual blocks
for feature recalibration. For the discriminator (see the
“Materials and methods” section and Fig. S1), we com-
bined spectral normalizations27,28 to stabilize the GAN
training. We also introduced the perceptual loss function
(Fig. S4c and Note S4) based on high-level features
extracted from the pretrained VGG19 networks32 to
increase convergence speed and better reconstruct fine
details and edges.

Shen et al. Light: Science & Applications           (2022) 11:76 Page 3 of 14



Deep learning-enhanced label-free large-field imaging
Nonlinear optical imaging can provide abundant cancer

invasion-associated information (by SHG) and redox-ratio
information (by NADH and FAD) for comprehensive
pathological analyses of cancers4. To demonstrate DLAM
on transformation from high-noise, low-resolution auto-
fluorescence-harmonic images to high-quality, high-
resolution images, we extracted unstained samples from
human ovarian cancer tissues. Thirty-two frozen sections
with 5-μm thickness were obtained using a freezing
microtome. We performed multifield nonlinear imaging
on these slices with the GR and DG scanning systems,
corresponding to the low- and high-resolution domains,
to construct the training dataset. Each stitched image
from either domain was split into small image tiles to
reduce the memory requirements and accelerate the
training and testing processes (see the “Materials and
methods” section).
A comparison between the registered input image with

2176 × 2176 pixels and the network output image with
8704 × 8704 pixels is shown in Fig. 2a (see the whole
input, output, and GT image with three nonlinear optical
channels in Figs. S5–S7). Overall, the semantic informa-
tion, especially the pathological features of ovarian bor-
derline carcinoma, was well preserved at the network
output. We identified the representative structures of
mucinous ovarian cancer (MOC) at the top half of Fig. 2
and the micro-glandular or papillary architectures of
high-grade serous ovarian cancer (HGSOC) at the bottom
half of Fig. 2a. The atretic follicles and vessels in the MOC
and HGSOC were surrounded by cancer-associated col-
lagen (CAC) networks (indicated by SHG), which, how-
ever, were blurry in the input image. Regions of interest
(ROIs) in Fig. 2a are shown in Fig. 2b–d, revealing that the
“melted” fiber structures, vague filaments and ery-
throcytes, and noisy micropapillary reticulate archi-
tectures were clearly distinguished by deep learning
inference. These denoised small-scale features by DLAM
can be used for further pathological analyses and research
purposes. For instance, it is difficult to determine the
orientation of collagen fiber proliferation33 in the cor-
rupted and low-resolution input images, calculated by the
collagen fiber angles relative to the epithelium, due to the
blurry textures. However, these orientations were explicit
in the network output and GT images. The blurry textures
also led to an incorrect aspect ratio34 (which indicates
anisotropy of the extracellular matrix) of the fitting ellipse
of the fast Fourier transform form of the input images,
while the aspect ratio of the network output images was
consistent with that of the GT images. These results
demonstrate the difficulty in characterizing and diagnos-
ing diseases using corrupted and low-resolution images,
which was overcome using the reconstructed images
enhanced by the networks. Another interesting finding is

that the captured input images exhibited strong scanning
fringe artifacts (SFA, i.e., the wide fringes in the left panel
of Fig. 2b–d, also see Fig. S9) resulting from the fast GR
scanning and stitching lattice artifacts (SLA, see Fig. S9)
caused by the multifield stitching. These interferences,
appearing more likely in the weak signal areas, were highly
suppressed by the proposed deep network.
Additionally, the intensity profiles along the papillary

tissue, CAC arrangement, and background area in Fig. 2a
are given in Fig. 2e. The bottom profile for the input
image shows a low distinguishability of noise and infor-
mative signals, which results in difficulty in semantic
information extraction for the whole image. Nevertheless,
these undesirable distortions were significantly reduced
with good preservation of tissue structure features after
reconstruction. For verification, we calculated the signal-
to-noise ratio23,35,36 (SNR, see Fig. 2f) for the whole image.
The network enabled a great improvement of SNR from
−2.1 ± 5.9 to 1.9 ± 2.5 dB on average across 12 large-field
images. Especially, the maximum SNR increase reaches
10.6 dB for a large 3PA image due to the high noise
reduction and contrast improvement after deep learning.
The SNR improvement demonstrates the ability of the
network in minimizing the mix of noises, including the
resonant SFA, Gaussian thermal noise, and shot (Poisson)
noise, and background, such as SLA.
It should be mentioned that the acquisition time using

the GR scanning system, tinput, was 54 s, and the compu-
tational time using tribatch processing for the three non-
linear modalities, tinfer, including the processing time spent
reading a large image into memory, took less than half that
time. In contrast, the time to capture a sufficiently high-
quality image, tGT, reached 10m 14 s (Table S1), which
suggests that the inference allows a 24.3-fold reduction in
acquisition time (tinfer compared to tGT−tinput). Con-
sidering the GR acquisition time, DLAM allows an 8-fold
imaging speed up (tinput+ tinfer compared to tGT, Fig. 2g).
This acceleration is significant since nonlinear optical
microscopes are notoriously slow and can be further
boosted using better GPUs and the direct transfer of large
datasets from DAQ to GPU.

Statistical analysis of image quality improvement
We also applied the proposed deep network to human

ovarian carcinomas with different International Federa-
tion of Gynecology and Obstetrics (FIGO) stages to
demonstrate the additional benefits of using DLAM sta-
tistically. Figure 3a–d shows the fast label-free multimodal
images of the clinically acquired tissue samples and the
corresponding transformation results. The major features
of HGSOC and MOC, including CAC fibers and net-
works, glandular or papillary architectures, and cancer-
affected atretic follicles and vessels, were well dis-
tinguished in the reconstructed images (see the whole
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input, output, and GT images in Fig. S10). Fluctuations in
the intensity profile of the input images were greatly
reduced, while morphological information was retained
and denoised, as demonstrated by the cross-sections in
Fig. 3e–h. SLA in the 3PA channel in Fig. 3g was removed
by deep learning inference (see more example illustrations
in Fig. S9).
To quantify this quality improvement, we calculated the

full-reference quality metrics comparing the input and
output images at the pixel level concerning the pristine
GT images and the no-reference quality metrics com-
paring their perception of quality. The perceptual features
were trained on a database of the GT image modalities
(see the section “Materials and methods”). The metrics
shown in Fig. 3i–m, to some extent, indicate the recon-
struction quality and prediction accuracy of the DLAM
images. The average peak signal-to-noise ratio (PSNR),

structural similarity index (SSIM), and natural image
quality evaluator (NIQE) for the large-field (5.4 × 5.4mm2)
images with 8704 × 8704 pixels exhibited an increase of
2.6 dB, 52%, and 59% after the network restoration. These
overall increases are moderate due to the variation in the
signal (noise) strength over the millimeter-level scanning
range, i.e., the large image contains both strong and weak
signal areas. To better demonstrate the noise and distor-
tion suppression capability of the network, we split the
images into small tiles with 1088 × 1088 pixels and cal-
culated the image metrics for those high noise level
regions, as given in Fig. S11. The PSNR, SSIM, and NIQE
on average across more than 173 image tiles exhibit an
increase of ~4.5 dB, 79%, and 74%, respectively. This great
enhancement verifies the strong capability of the RRDAB
modules to suppress severe distortions, including noise,
blurring, and artifacts. The perception-based image quality
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evaluator (PIQE), which is opinion-unaware and unsu-
pervised, exhibits a low ability to quantify the improve-
ment (38%) because it did not use pretrained features
extracted from the GT images.
Further segmentation of the large images into smaller tiles

(512 × 512 pixels) to obtain the noisiest areas demonstrates
a maximum quality improvement of 13.3 dB for PSNR in
the SHG channel, 316% for SSIM in the 3PA NADH
channel, and 97% for NIQE in the 2PA FAD channel.
Interestingly, these maximum quality enhancements were

achieved in different optical modalities, which suggests the
necessity of evaluating multimodal image reconstruction
with diverse standards. We also evaluated the output results
using the mean-square error (MSE) and blind/referenceless
image spatial quality evaluator (BRISQUE), as detailed in
Note S5. Their values again confirm the superior
enhancements by the proposed deep network. Therefore,
DLAM enables image reconstruction with prominent
similarity to the GT in contrast, luminance, perception
quality, structure, and variance.
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Transfer learning to skin tissues and resolution
enhancement
We further demonstrated the transfer learning cap-

ability of DLAM by transforming the captured raw images
of human skin pathological tissues to match the corre-
sponding GT images (Fig. 4). Despite the weak and
indistinct 3PA NADH signals on the skin tissues, after
transfer learning, the deep network dramatically reduced
the distortions and noise and improved the quality of the
input GR scanning images. The epidermis, mainly con-
taining suprabasal keratinocytes indicated by 2PA FAD,
and the dermis, mainly containing collagen fibrils,
microfibrils, and elastic fibers indicated by SHG, were
reconstructed more clearly, providing very good agree-
ment with the GT images. Detailed features of keratin
intermediate filaments in Fig. 4c, small tubular structures
of sweat glands in Fig. 4d, and dense irregular connective
tissue in the reticular region in Fig. 4e, f were clearly
resolved at the network output. Noise fluctuations shown
in the intensity profiles in the input images were highly
suppressed by the deep learning inference, producing

in-focus informative features approaching those of the GT
images. These more elaborate details are attributed
to the resolution enhancement by the embedded
super-resolution framework. To quantify the resolution
enhancement, we captured pristine GT images using an
oil-immersion 1.4-NA objective and downsampled these
images as the input of the network to learn high-
resolution images. The results are summarized in Note
S6 and Fig. S12, where the mean FWHM of the input
point-spread function (PSF) is centered at ~481 nm, far
above the FWHM of the SHG microscope PSF. The mean
FWHM of the PSF of the network output approaches the
PSF results of the GT, with a mean FWHM of ~289 nm
versus ~282 nm, respectively (Fig. S12b, c). We also cal-
culated the Fourier ring correlation (FRC) from the large
SHG images (Fig. S12d), which is less prone to subjective
bias and measurement errors37, as shown in Fig. S12e.
The result further verified the resolution improvement
after learning. Therefore, the proposed network provides
a high improvement in spatial resolution, allowing the
system to discern more precise textures and details.
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d c
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f

e

f

Fig. 4 Label-free multimodal nonlinear images of human skin. Large-field images of normal skin tissue (a) and pigmented nevus tissue (b) with
ROIs (white squares) magnified in (c)–(f). From left to right: registered input, network output, and GT images. White solid lines in c–f refer to the line
of the shown cross-section. Scale bars, 500 μm in (a), (b), 50 μm in (c), (f), and 100 μm in (d), (e).
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With such resolution enhancement, DLAM can reveal
collagen fiber orientation and arrangement for clin-
icopathologic analyses3,4.

Prevention of reconstruction artifacts
GAN reconstruction is essentially an ill-posed (inverse)

problem38 and is prone to reconstruction artifacts when
provided with inadequate training data25. Under sub-
microsecond pixel exposures, autofluorescence images of
biological tissues are susceptible to obstinate noise
derived from high-speed sampling and image-detection
devices, including the resonant SFA, readout noise, dark
current, and shot noise. When the standard deviation
(STD) of noise (e.g., ~20 at 8-bit RGB) exhibited a similar
amplitude to that of the average signal (e.g., ~62) in the
input images, typical GAN frameworks, e.g., ResNet- and
RRDB-GAN, began to show random, noncontinuous
artifacts (Fig. 5a). Although these networks with adver-
sarial loss can infer high perceptual quality images (see
the no-reference quality metrics in Table S2), the decep-
tive artifacts reconstructed, i.e., the incorrect tissue fea-
tures in Fig. 5a, were obvious. These highly plausible
artifacts hallucinated by the networks can be challenging
to detect in the absence of contradictory information (e.g.,
in unsupervised learning)25. For some GAN-free networks
(such as SRResNet with simple MSE loss27) that can easily
attain a high score in full-reference quality metrics (Table
S2), the output images remain considerably out of focus
(see the ROI magnified in the insets of Fig. 5b). This
network fails to achieve a good tradeoff between noise and
blurring due to overdenoising and a lack of high-
frequency information. DLAM with channel and spatial
attention, which can focus the important feature maps
and their useful regions, avoids blurring and greatly
improves the fidelity and quantitative nature of the super-
resolution reconstructions compared to the conventional
GAN frameworks (Fig. 5a, b).
We also quantified the reconstruction distortions of

DLAM outputs by computing the resolution scaled error
(RSE), resolution scaled Pearson coefficient (RSP), and
error maps15 (see the “Materials and methods” section).
The analysis in Fig. S14 reveals that DLAM did not gen-
erate noticeable reconstruction artifacts or blurring. The
DLAM output results had a lower level of spatial mis-
match error than the other network outputs concerning
the input image (see the error maps in Fig. S14) and agree
well with the GT image (Fig. 5a). To further confirm the
conclusion, we overlapped the output image of different
networks and the GT image in two complementary colors
(Fig. S14). The merged images reveal that DLAM has no
visualized transformation deviations compared to the
other networks with respect to the GT image, which
brings high credibility to the RRDAB reconstruction.
The same conclusion applies to other test images.

Additionally, since large images are usually split into
contiguous tiles to reduce storage requirements (4 ×
4 segments in this work, see the “Materials and methods”
section), the independent inference for each split tile
might cause discontinuities in the stitching (indicated by
the white arrow in Fig. 5b). However, this artifact, as well
as blurring, also were not observed in the resulting images
using RRDAB.
Notably, the above mistakes made by other deep net-

works do not result in a significant reduction in full- and
no-reference quality metrics (Fig. 5c and Table S2) in
contrast to DLAM (e.g., the difference <2% for PSNR and
<7% for SSIM). These networks have decent noise sup-
pression in weak or no signal areas, yet their recon-
struction distortion or oversmoothing is discernible in the
SHG signatures in the intensity profiles given in Fig. 5d. In
contrast, DLAM produces more distinct, realistic images,
resolving the CAC filaments, which are covered by sub-
stantial speckles in the input images, compared to the
pristine references (Figs. 2b–d and 5c). Therefore, DLAM
can restore high-quality approximations of multimodal
nonlinear images from high-speed sampling compared to
typical GAN reconstructions and predict authentically
where plausible details appear likely.

Discussion
GR and DG scanning are the two major laser scanning

methods for optical microscopes. We pursue the high
speed of the former while requesting the high resolution
of the latter, which are often contradictory and alternative.
By removing the limitations of sophisticated mechanical
devices and optical setups, DLAM possesses the advan-
tages of the two scanners and, hence, enables label-free,
large-area, speed- and resolution-enhanced multimodal
imaging. A common concern for deep learning recon-
struction is the requirement of thousands of training
images. However, we reduced it to a mere 24 large pairs
using multifield scanning and automatic stitching to avoid
cumbersome procedures and long waits. With a con-
veniently obtained database, a two-photon excitation laser
scanning microscope equipped with a GR scanner can
turn into a galvo-quality imaging platform optionally to
have more powerful functions and a wider application
scope. Nevertheless, the network inference speed is still
limited by the residual network depth. Recently, original
and modified ResNet39 were proposed to solve high-level
computer vision problems, including recognition, classi-
fication, and detection. Although it is obviously not
optimal to directly apply the ResNet architecture
to low-level computer vision problems such as super-
resolution39, combining an appropriate mechanism (such
as attention modules) to generate super-resolution images
with high perceptual quality can be feasible. This may
significantly increase the computational speed of the deep
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learning inference because ResNet exhibits more than six
times faster than RRDB with heavy dense layers.
Different algorithms have been reported to improve the

spatial resolution of optical microscopes, e.g., deconvolution
(based on a PSF) reconstruction algorithms in structured-
illumination microscopy (SIM)36,40 and quantum image
scanning microscopy41. Additionally, some deep CNN or
GAN frameworks have been reported to transform confocal
or wide-field images to match the resolution acquired with
a stimulated emission depletion (STED) microscope15,
stochastic optical reconstruction microscope (STORM)42,
and photoactivation localization microscope (PALM)16.
These approaches demonstrated an approximately twofold
increase in spatial resolution despite a micron FOV. Our
method achieved a resolution improvement of the same
magnitude at ×4 pixel magnification despite a GR scanning
rate limit (usually 8–12 kHz) and a need for a hybrid
scanner, which, in fact, is commonly equipped on recent
commercial microscopes.
Increasing the excitation laser power to attain a higher

SNR can help solve ill-posed inverse problems; however,

this may lead to photobleaching and phototoxicity40.
Many algorithms have been developed for artifact
reduction and SNR improvement in medical imaging. For
instance, a deep CNN to map low-dose CT images toward
corresponding normal-dose CT images showed an ~0.5-
dB improvement in PSNR43; another CNN combining
multiresolution decomposition and residual learning to
remove artifacts showed a 1–4 dB improvement in
PSNR44; a recently reported task-aware compressed sen-
sing with GAN for optimizing MRI imaging demonstrated
a 2–3 dB improvement in PSNR45. Nevertheless, over-
smoothing, out-of-focus, and deceptive artifacts arising in
CNN or GAN framework reconstruction have not yet
been comprehensively studied for deep learning-
enhanced laser scanning microscopy. Through the inte-
gration of RRDAB and high-level perceptual loss, DLAM
did not generate noticeable reconstruction artifacts and
distortions and hence achieved authentic and realistic
outputs, with a maximum PSNR increase of 13.3 dB
(average 4.5 dB). The reconstructed high-quality images
and the GT images are similar in terms of low-level pixel
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values, high-level abstract features, and the overall con-
cept and style.
In summary, with the proposed efficient deep network

architecture and conveniently obtained training dataset,
DLAM highly suppresses SFA, SLA and other noises and
overcomes the distortion problems for high-speed label-
free imaging. Additionally, it offers a solution to the time
consumption problem for high-quality and large-field
image acquisition. Outputs of the microscope can be
greatly improved in a small computational time without a
design of redundant optical paths or upgrading of the
device and hardware of the imaging platform. We
demonstrated the applicability of the network by accel-
erating image acquisition and post-processing steps that
can leverage higher image quality and visualize finer
microstructure of clinicopathologic ovarian and skin tis-
sues. Shortening the turnaround time with enhancement
in spatial resolution enables rapid, large-field, stain-free
histopathology of tissue specimens that can possibly
supersede surgical frozen section analysis. The restored
results can be used for better quantification of tumor-
associated collagen signature in the extracellular matrix33,
metabolic analysis involving FAD and NADH for cancer
diagnosis46, and cell and extracellular component seg-
mentation for revealing the complexity and heterogeneity
of the tumor microenvironment47. Furthermore, in addi-
tion to the high-speed, high-quality, and high-fidelity
reconstruction of autofluorescent-harmonic images of
unstained pathological tissues, DLAM can also be applied
to brain structure and function investigations without
genetically encoded calcium indicators (GECIs), such as
GCaMP. Future exploration will push the spatiotemporal
limits of DLAM for high-speed super-resolution cell
structure analysis, brain 3D in toto observation, and
in vivo diagnostic examination, which can help facilitate
applications of optical microscopes in biomedical research
and clinical diagnosis.

Materials and methods
Optical setups and image acquisition
The multiphoton inverted microscope was equipped

with a GR scanner for high-speed imaging and a DG
scanner for high-resolution imaging. An autoalignment
system can collimate the laser beam rapidly when the BS
with motorized shutters switched the beam between the
two scanners. An excitation femtosecond laser with a
pulse width of ~100 fs and a repetition rate of 80MHz
(Chameleon Discovery, Coherent) was applied with a
GDD precompensation of 8000 fs2 and directed to the
apochromatic objective (MRD70200, ×20, 0.75 NA,
Nikon). This precompensation ensured a low power of
<50 mW at 1140 nm excitation to minimize photo-
chemical and thermal stress and image distortion, while
the photodamage at a typical long wavelength excitation

(1080–1180 nm, 80MHz, 100–250 fs, 3.3 μs px−1) was
reported to be 120 mW46,48,49. Moreover, the fast-
scanning mode with a small pixel dwell time can miti-
gate the total energy deposited in the samples. This can be
an advantage of our method because it transformed the
inferior images captured by the fast resonant scanning
mode to the high-quality images approaching the GT
images with a large pixel dwell time. Thus, our deep
networks help to alleviate photochemical and thermal
stress on the samples. The backscattered laser and emis-
sion signals were separated by a VIS/IR DM. The emission
autofluorescence and harmonic generation signals were
spectrally separated by the filter combination: (1) LP
488 nm and BP 450/50 nm for 3PA NADH, (2) LP 593 nm
and BP 570/10 nm for SHG (with concomitant 3PA FAD),
and (3) LP 685 nm and BP 641/75 nm for 2PA FAD. The
FOV of a single image was 634.88 µm × 634.88 µm.
The trichromatic channels of the images were con-

structed by three nonlinear modalities. A single image
consists of 256 × 256 pixels for the input and 1024 × 1024
pixels for the GT, while a large image consists of 2176 ×
2176 pixels for the input and 8704 × 8704 pixels for the
GT. These captured large images were formed with 16 ×
16 scan fields and stitched by blending with 50% overlap
to minimize the stitching traces. The acquisition time for
the input and GT images, as well as the reconstruction
time for the deep learning, are shown in Table S1. A large
input image with the three channels was obtained in 54 s
using the GR scanning mode operating at 30 fps with a
pixel dwell time of 0.5 μs. A large GT image with the three
channels was obtained in 10m 14 s using the DG scan-
ning mode at 0.474 fps with a pixel dwell time of 2 μs (i.e.,
the parameters usually applied to obtain a high-quality
image). These acquisition times for the large images
included the movement of the mechanical stage and
stitching of multiple fields. The pixel resolutions for the
input images and the GT images were 2.49 and 0.62 μm
px−1 (document calibration), respectively.

Sample preparation
Ovarian and skin tissues were collected from patients at

China–Japan Union Hospital of Jilin University and The
Sixth People’s Hospital of Shenzhen, respectively, with
approval of biomedical research ethics involving humans
by the Scientific Research Ethics Committees. All patients
with diagnosed ovarian or skin tumors were approached
for recruitment. Physicians recruited patients and
obtained study consent. Prospective enrollment began on
June 1, 2019, and closed on March 1, 2021. Experienced
gynecological oncologists conducted histological identifi-
cation and classification according to the FIGO classifi-
cation standards. Tissue samples were surgically removed
and snap-frozen in liquid nitrogen and stored at –80 °C
until being cut into 5-μm sections for unstained
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applications using a freezing microtome (CM1850, Leica,
Germany). The frozen tissue sections were simply covered
with a coverslip, imaged by multiphoton microscopy, and
preserved by formalin (Anatech) fixation and paraffin
embedding.

Deep neural network architecture
The basic framework of the generator network and

discriminator network used in this work are shown in
Fig. S1. Compared to DG imaging, GR imaging usually has
a mass of noise and fringes; thus, the luminance adjust-
ment algorithm50 is not suitable for this work. Due to the
noncollinearity of the two scanning systems, an efficient
image registration method should be developed because
the training pairs (raw input and GT images) were rather
mismatched. We implemented a well-known feature
extraction and warping method, termed ORB29, short for
oriented FAST (features from accelerated and segments
test) and rotated BRIEF (binary robust independent ele-
mentary feature). The ORB algorithm (see Fig. S2a and
Note S1) can greatly reduce the spatial mismatch of the
coupled pixels to form the training dataset. However, the
resulting warped (preregistered) images are still not
completely aligned with the GT images. Therefore, we
proposed the SAPCD module (Figs. S2b, 3 and Note S2)
to calibrate feature maps of different scales and attained
further alignment between the warped input images and
the GT images. This module embedded in the networks
can automatically learn to optimize the pixelwise align-
ment. Then, we kept the residual-in-residual connections
of ESRGAN31 and developed the RRDAB modules
(Fig. S4a and Note S3) for super-resolution reconstruc-
tion. The RRDAB modules employ a more complex
structure than the original RRDB block in ESRGAN to
reconstruct the registered images with the previously
calibrated features. A channel attention module, squeeze-
and-excitation networks (SENet)51 that can direct the
networks to select proper feature maps, and a spatial
attention module (SAM)52 that can indicate the feature
barycenter were introduced to further guide the recon-
struction processes. They help to identify the crucial
features and feature regions to improve super-resolution
details and avoid oversmoothness. The attention-guided
dense connections (Fig. S4b) prevent the super-resolution
reconstruction from generating deceptive artifacts with
the assistance of the proper loss functions. Note that
embedding the attention modules in the existing network
can lead to a small increase in additional parameters and
calculations (Table S1). The resolution for the input
images is improved using two ×2 nearest interpolation
with convolution for ×4 upsampling. After RRDAB
reconstruction, the quality of the images can be sig-
nificantly boosted to high quality compared to the original
inputs. Finally, referring to EdgeConnect53, we added

spectral normalizations to the discriminator to stabilize
the GAN training by, in effect, bounding the Lipschitz
constant of the discriminator function (Fig. S1b). We used
high-level perceptual loss in the pretrained VGG1932 as
the feature extraction network to clarify the edges and
textures of the generated images (Fig. S4c and Note S4).
The introduced perceptual loss ensures pixelwise identity
while avoiding oversmoothing occurring in other super-
resolution methods (e.g., SRResNet and SRGAN-MSE27).

Training and testing details
We removed part of the border (16 pixels on each side)

of the 2176 × 2176-pixel input images that had been
roughly registered after ORB and then cropped the ima-
ges into small tiles at a pixel size of 128 × 128 and a step
size of 64. These pixel ranges and steps ensure enough
pixel overlap between the adjacent tiles. The GT image
was cropped into small tiles at 512 × 512 pixels. Con-
sidering the memory capacity, we set the batch size to
eight during training. In each epoch, we randomly
selected a GT image tile at 256 × 256 pixels and an input
image tile at 64 × 64 pixels. We randomly selected one of
up, down, left, right flip, and [0, 90°, 180°, 270°] rotations
for data augmentation.
The weight of high perceptual loss in loss is λ1= 0.1,

and the weight of GAN loss is λ2= 0.05. In the recon-
struction module, we chose adaptive moment estimation
(Adam)54 as the optimizer of the generator and dis-
criminator, β1= 0.9, β1= 0.99. The generator and dis-
criminator were alternately updated until the result
converged to a plateau.
In the model training, we used preregistered input

images and nondownsampling GT images from 24 large-
scale paired images, corresponding to 39,204 segmented
pairs for each nonlinear modality. We trained the network
with 400,000 iterations on the PyTorch framework using a
GTX 1080TI GPU (11 GB memory). In the prediction,
the large input images were divided into 4 × 4= 16 tiles
due to video memory limitations. To utilize full resources,
we used three GTX1080TI graphics cards, where each
GPU had a batch size of one, corresponding to one of
the nonlinear modalities (RGB channels), to accelerate the
inference processes. Training and testing had no data
overlap, i.e., the test images shown in this article were
blindly generated by the deep network.

Ablation study
To understand the contribution of the components to

the performance of DLAM, we performed an ablation
study. First, we used the pretrained ESRGAN architecture31

with the GT images and synthetically downsampled GT ↓ 4
images as the paired training dataset. However, this net-
work failed to remove real obstinate noise with full
statistical complexity (Fig. S15). These noises, substantially
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existing in the low-resolution images, precluded the gen-
eration of high-resolution textures because the synthetic
images degraded from the GT images were essentially
different from the captured data. Therefore, we next
trained the network with the real source and GT data
acquired by the microscope.
Without preregistration by ORB, the position deviation

of pixels between the input images and the GT images
varied from 0 to 200. Since these images were cropped
into small tiles for training, as a consequence, there may
exist insufficient overlaps of the cropped ROIs of the
input images and the GT images. The training process
was thereby difficult to converge, and the resulting images
were exceedingly nebulous, as shown in Fig. S15.
Without the SAPCD for adaptive convolution, the RRDB

still has a sufficiently large receptive field to capture the
pixel deviations. Thus, the overall outline of the resulting
image is clearer than the above (see the magnified ROI in
Fig. S15). However, the fine textures and details were barely
reconstructed due to the limitation of the network fitting
ability. The pixel positions were inaccurately calibrated,
resulting in out-of-focus images compared to the input
bicubic results with clear details.
The GAN result was obtained by combining ORB,

SAPCD, and RRDB with L1 loss instead of perceptual loss,
as the discriminator was boosted in recovering buried
high-frequency details. However, minimizing L1 encoura-
ges the search for pixelwise averages of plausible solutions
(although better than MSE), resulting in a strong blur and
poor perceptual quality with fuzzy and false textures (see
the corresponding magnified ROI in Fig. S15).
Adding high-level perceptual loss gives clearer fine

textures. The resulting image generated from RRDB-GAN
was more natural and close to the GT image in pixel
values and abstract features (Fig. S15). The ability of the
preregistration and registration methods can be demon-
strated by comparing the third-row images with more
distinct textures to the second-row images in Fig. S15.
Finally, the introduction of the attention modules into
DLAM prevented the deep networks from making
obvious mistakes and, hence, promoted the generation of
authentic results.

Benchmarks
We compared our network architecture with optimized

SRResNet, ResNet-GAN27, and RRDB-GAN31 to demon-
strate its competitive performance. The training data for
these networks were all registered by ORB feature
extraction and the SAPCD module to realize pixelwise
self-calibration. SRResNet was built based on the reported
model with MSE loss optimized for our data. ResNet-GAN
employed a 34-layer ResNet as the backbone network of
its GAN generator. Following the enhanced deep residual
networks for single image super-resolution39, we removed

the batch normalization structure to obtain higher per-
formance. The RRDB-GAN employed the state-of-the-art
RRDB as the GAN generator backbone network. The
network was optimized for perceptual loss, which is
more stable to changes in pixel space27. The other parts of
the RRDB-GAN networks can be found in the ESRGAN31.
We used the same VGG layer, discriminator, and training
dataset as our networks for these networks to reconstruct
the input images with high perceptual quality.

Data processing
The RGB color channels of the images were constructed

by three nonlinear modalities. The input and GT images
were produced in 8-bit TIFF files using commercial
software (NIS-elements AR, Nikon) to reduce storage
requirements and speed up data read, write, and trans-
fer22. Autofluorescence and harmonic images with a
relatively low contrast were regulated by adjusting the
dynamic ranges (brightness/contrast) in ImageJ to better
display the indiscernible morphological features4. Addi-
tionally, the presented images were downsampled (with-
out average, bilinear, and bicubic interpolation) to better
show the consistency and difference between input, out-
put, and GT. These adjusted dynamic ranges and down-
sampling were applied consistently for the input, output,
and GT images when they were compared in the same
panels throughout the paper.

Image quality and resolution evaluations
The major full-reference quality metrics, MSE, PSNR,

and SSIM, the major no-reference quality metrics, BRIS-
QUE, NIQE, and PIQE, and the reconstruction artifact
metrics, RSE and RSP, were calculated for each channel
(nonlinear modality) of the images to quantify the trans-
formation deviations. In particular, we trained a custom
NIQE feature model extracting features from 46 large-
field GT images containing different modalities and cal-
culated the NIQE scores for the registered input images
and network output images using the trained model. The
globally averaged scores, RSE and RSP15, as well as the
corresponding error maps, were calculated using NanoJ-
Squirrel Plugin in Fiji to visualize the discrepancy between
input, output, and GT images.
For evaluating spatial resolutions, we used a high NA

objective (MRD71600, ×60, 1.40 NA, Nikon) to capture 150
high-resolution images at a 570-nm emission and Nyquist
sampling, and downsampled (scale: 0.25) these image as the
input of the network for deep learning. We fit the cross-
sectional profile of the extracted PSFs with a Gaussian
function. These fittings attained 95% fitting confidence
bounds for the input and output images: degree-of-freedom
adjusted coefficient of determination (adjusted R-square) >
0.98, sum of squares due to error (SSE) < 0.02, and root
mean squared error (RMSE) < 0.06. To reduce the
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measurement errors and subjective bias, we calculated the
spatial resolution from the FRC histogram, which was
formed by cross-correlating each bin divided from the
spatial frequency spectra of two images37. The FRC reso-
lution was defined as a cutoff frequency at which the cross-
correlation value reaches a preset threshold (Fig. S12e).
The STD of noise was calculated over a large back-

ground, and the STD of the signal was calculated by
averaging over a strong-signal area.
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