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Abstract
The trivalent lanthanides have been broadly utilized as emitting centers in persistent luminescence (PersL) materials
due to their wide emitting spectral range, which thus attract considerable attention over decades. However, the origin
of the trivalent lanthanides’ PersL is still an open question, hindering the development of excellent PersL phosphors
and their broad applications. Here, the PersL of 12 kinds of the trivalent lanthanides with the exception of La3+, Lu3+,
and Pm3+ is reported, and a mechanism of the PersL of the trivalent lanthanides in wide bandgap hosts is proposed.
According to the mechanism, the excitons in wide bandgap materials transfer their recombination energy to the
trivalent lanthanides that bind the excitons, followed by the generation of PersL. During the PersL process, the trivalent
lanthanides as isoelectronic traps bind excitons, and the binding ability is not only related to the inherent arrangement
of the 4f electrons of the trivalent lanthanides, but also to the extrinsic ligand field including anion coordination and
cation substitution. Our work is believed to be a guidance for designing high-performance PersL phosphors.

Introduction
Persistent luminescence (PersL) phosphors can con-

tinue to emit light for seconds and even longer after the
stoppage of excitation. Due to this attractive feature,
PersL phosphors have a wide range of applications in the
fields of display, anti-counterfeiting, information storage,
biological labeling, etc.1–8. In general, luminescent center
plays a key role in PersL phosphors. The commonly used
luminescent centers that can generate PersL include
lanthanide series, transition metal elements, and other
ions such as Bi3+9–15. The latter two kinds of luminescent
centers are generally limited to their relatively narrow
emitting spectral bands, mainly in the visible spectral
range. In contrast, the trivalent lanthanides are especially

attractive as their 4f electrons are shielded by the outer 5s
and 5p electrons and are thus less affected by the sur-
rounding crystalline field, making the 4f↔ 4f transitions
feature narrow-band, high color purity and wide spectral
range from the UV to NIR16. In spite of these attractive
points, the previous literatures focus mainly on visible
PersL of the trivalent lanthanides. To achieve PersL in the
UV or even deep UV and NIR range is still a challenge,
although there has been some related work17–20. More-
over, there are other problems such as how to tailor the
intensity of PersL, how to obtain desirable excitation and
emission bands, and so forth. Fundamentally, all these
questions can be ascribed to the absence of a deep
understanding on PersL or a more reasonable PersL
model. Since the green phosphor of SrAl2O4:Eu

2+,Dy3+

has been shown to own excellent PersL21, several under-
lying mechanisms have been put forward to explain PersL,
including the hole trapping-detrapping model, the elec-
tron trapping-detrapping model, and the quantum tun-
neling model1,2,22–25. Although these models could
explain some observed phenomena, there are flaws for
these models and some key points still remain unclear. It
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is difficult to put forward a universal mechanism to rea-
sonably explain all experimental results, and here we
mainly focus on the PersL of the trivalent lanthanides in
wide bandgap hosts due to its extensive application
value20.
Here we show the trivalent lanthanides with the

exception of La3+, Lu3+, and Pm3+ could generate PersL
ranging from 200 to 1700 nm in the selected wide band-
gap hosts NaYF4, Cs2NaYF6, XPO4 (X= Y, Sc, Lu, and
La), and YBO3. Depending on the abundant experiments
and analysis, a mechanism of the trivalent lanthanides’
PersL in wide bandgap hosts is proposed. It is found that
the energy transfer from the excitons formed in wide
bandgap materials to the trivalent lanthanides plays a key
role for PersL. In addition, the trivalent lanthanides as
isoelectronic traps bind excitons, and the binding ability
not only depends on the inherent arrangement of 4f
electrons of the trivalent lanthanides, but also on the
extrinsic ligand field including anion coordination and
cation substitution.

Results
Except for La3+ without the 4f electrons and Lu3+ with

full filled 4f shell and radioactive Pm3+, the rest trivalent
lanthanides’ PersL was observed with success in the

selected hosts NaYF4, Cs2NaYF6, YPO4, and ScPO4

(Fig. 1a, Supplementary Fig. S1). The wavelength of these
PersL bands ranges broadly from 200 to 1700 nm
(Fig. 1b). The whole wavelength range of the PersL could
be divided into the UV, visible, and NIR three parts. Most
of the trivalent lanthanides, excluding Gd3+ and Yb3+,
emitted PersL in the visible spectral range. It can be seen
that the decay time of the visible PersL is relatively long
(Fig. 1c). The shortest decay time originating from the
542 nm emission line of Ho3+ and the 542 nm counter-
part of Er3+ has exceeded 40 h. Notably, the green PersL
attributed to the 5D4→

7F5 transition of Tb3+ could be
collected with a recognizable signal-to-noise ratio even
after 200 h. In the wavelength range of 760–1700 nm,
Nd3+, Ho3+, and Er3+ emitted the NIR PersL, and their
decay time could last for at least 3 h, making these three
ions possible luminescent markers for medical imaging
(Fig. 1d). The above-mentioned eight PersL bands were
clearly measured by spectrometer even after several days
(Supplementary Fig. S2). The PersL belonging to the
6P7/2→

8S7/2 transition of Gd3+ in ScPO4 was also
detected directly for the first time, to the best of our
knowledge (Fig. 1a, e). It should be mentioned here that
Pan’s group has recently also reported the PersL behavior
of this transition, which is, however, on the basis of energy
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3+, NaYF4:Ho
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3+ in the visible spectral range. d PersL images of NaYF4:Nd
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3+ in
the NIR spectral range. e PersL decay curve of ScPO4:Gd

3+ at 310 nm. f Histograms of PersL intensity of the samples doped with 1% x3+ (x= Ce, Pr,
Tb, Dy, Ho, Er, Nd, Sm, Eu, Tm) in NaYF4, Cs2NaYF6, YPO4, ScPO4, LaPO4, and YBO3 hosts. Except for YBO3 phosphors whose PersL intensity was
recorded at 360 s due to the short decay time, the PersL intensity of the rest samples was recorded at an hour after ceasing the radiation of X-ray
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transfer from other luminescent centers to Gd3+26. The
decay time of the PersL of Gd3+ surpasses 170 h, one of
the longest decay times known so far. In addition to Gd3+,
Pr3+ also presented PersL in the UV range peaking at
~251 nm, the shortest wavelength of all the samples
reported here (Supplementary Fig. S3).
After ceasing the X-ray source, the PersL of the trivalent

lanthanides in the hosts NaYF4, Cs2NaYF6, YPO4, ScPO4,
LaPO4, and YBO3 displays different decay behaviors
(Fig. 1f, Supplementary Fig. S4–S15). The PersL of Er3+,
Ho3+, and Nd3+ is nearly undetectable in the hosts
Cs2NaYF6, YPO4, ScPO4, LaPO4, and YBO3, as well as in
other hosts such as silicate, aluminate, and zincate (not
shown herein). In contrast, Er3+, Ho3+, and Nd3+ emitted
considerable PersL that could last for at least 10 h in
NaYF4. Moreover, the PersL spectra of Er3+, Nd3+, and
Ho3+ in Cs2NaYF6, YPO4, ScPO4, LaPO4, and YBO3 are
different from that in NaYF4 (Supplementary Fig. S16).
For instance, Er3+ generally emits green and red lumi-
nescence which is attributed to the 2H11/2/

4S3/2→
4I15/2

and 4F9/2→
4I15/2 transitions in the 200–800 nm wave-

length range, as shown in the top PersL spectrum of
Supplementary Fig. S16a for NaYF4:Er

3+27–29. None-
theless, the green and red emissions of Er3+ in Cs2NaYF6,
YPO4, ScPO4, LaPO4, and YBO3 are seriously weakened.
And the transitions with a higher energy than 2H11/2/

4S3/2
states dominate the emissions. The different emitting
characteristics of Er3+, Nd3+, and Ho3+ in different hosts

are expected to be responsible for their different PersL
behaviors, which will be further discussed in the follow-
ing. Thermoluminescence (TL) of the prepared samples
was also measured (Fig. 2). As can be observed, the
positions of the TL peaks of Pr3+, Dy3+, Er3+, and Tm3+

correspond roughly to that of Tb3+, Nd3+, Ho3+, and
Sm3+ (Fig. 2a, c, d, f), which is in good agreement with the
variation trend of the valence state of the trivalent lan-
thanides (Fig. 2b, e)2.

Discussion
Exciton and attractive potential
The band-to-band excitation is an important and

necessary charging way for wide bandgap materials
embedded with the trivalent lanthanides2. Our samples,
due to their wide bandgap, cannot be charged by the
excitation source whose energy is below the host’s
bandgap such as mercury lamp. As demonstrated before,
excitons exist in wide bandgap materials at room tem-
perature as the binding energy of exciton is proportional
to the bandgap of host (Supplementary Fig. S17)30–32. In
order to generate PersL, the trivalent lanthanides, as iso-
electronic trap when substituting the trivalent cations in
wide bandgap host, are expected to have the ability to
bind excitons to get their recombination energy.
According to the literature33, the ability of binding car-
riers for the trivalent lanthanides which is defined as the
attractive potential V, is mainly determined by the
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intrinsic arrangement of the 4f electrons. Here we show
this ability is also associated with the extrinsic ligand field
including anion coordination and cation substitution:

V ¼ VO þ VA þ VC ð1Þ

where VO, VA, and VC are the attractive potentials aroused
by the arrangement of the 4f electrons of the trivalent
lanthanides, anion coordination and cation substitution,
respectively.

Intrinsic: arrangement of the 4f electrons
This topic is extended herein from three perspectives.

First, the double-double effect summarized by Fidelis
et al.34 indicates that the electron configuration with even
total orbital angular momenta is relatively stable (Sup-
plementary Table S1), including La3+, Gd3+, Lu3+, Er3+,
Nd3+, Ho3+, Pm3+. By comparison, the trivalent lantha-
nides with odd total orbital angular momenta, that are,
Ce3+, Tb3+, Pr3+, Dy3+, Eu3+, Sm3+, Tm3+, and Yb3+, are
not such stable. It reveals that the stability of Er3+, Nd3+,
Ho3+, and Pm3+ is close to that of La3+, Gd3+, and Lu3+.
As clearly presented in Fig. 3a, the whole trivalent lan-
thanides can be grouped into [Ce3+, Pr3+, Tb3+, Dy3+,

Sm3+, Eu3+, Tm3+, and Yb3+] and [Er3+, Nd3+, Ho3+,
Pm3+, La3+, Gd3+, and Lu3+], which agrees well with the
order of stability. Second, the variation trend of valence
state suggests obviously that La3+, Gd3+, and Lu3+ are the
most stable trivalent lanthanides, followed by Er3+, Nd3+,
Ho3+ and Pm3+ (Fig. 3b)2. Ce3+, Pr3+, Tb3+, and Dy3+ are
inclined to lose electron to be quadrivalent while Sm3+,
Eu3+, Tm3+, and Yb3+ tend to gain electron to be biva-
lent. It can be concluded that the result in Fig. 3b is
almost identical to the law presented in Fig. 3a. The major
difference is that the double-double effect is unidirec-
tional while the variation trend of valence state is bidir-
ectional. So the undetectable PersL of Er3+, Nd3+, and
Ho3+ in oxysalts is explained by the fact that it is difficult
for them to bind carries (Fig. 1f). The similar TL curves
(Fig. 2a, c, d, f) of four groups of the trivalent lanthanides
could also be reasonably ascribed to the similar carrier-
binding ability. Third, the energy difference between the
lowest energy level of the 4f electron configuration of the
trivalent lanthanides and that of Ce3+ shows the similar
results with the above-mentioned two evidences
(Fig. 3c)35. On the whole, the trivalent lanthanides can be
roughly divided into four groups, [Ce3+, Pr3+, Tb3+,
Dy3+], [Sm3+, Eu3+, Tm3+, Yb3+], [Er3+, Nd3+, Ho3+,
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Pm3+], and [La3+, Gd3+, Lu3+], although there might be
some little discrepancy.
All these evidences indicate undoubtedly that the

attractive potential of the trivalent lanthanides at their
free state is mainly determined by the intrinsic arrange-
ment of the 4f electrons, which gives us a clear figure of
the ability of binding carriers for the trivalent lanthanides
in wide bandgap materials. It’s worth noting that the zig-
zag model cannot be used to explain our findings here,
especially the ultralong PersL of phosphors doped with
Gd3+. Gd is always in +3 valence outside of several exotic
compounds. Therefore, we cannot use the core point of
the zig-zag model, i.e., valence alternation, to account for
the ultralong PersL of phosphors doped with Gd3+. More
importantly, the ground state of Gd2+ is always above the
conduction band edge and that of Gd3+ will be firmly
below the valence band edge, and the so-called “bandgap
engineering” does not change the fact. In light of the zig-
zag model, the PersL of phosphors doped with Gd3+

should never occur, which is obviously against our find-
ings. So the zig-zag model is not the substance of the
PersL of the trivalent lanthanides in wide bandgap
materials, although it sometimes reflects similar trends.
At this point, it should be emphasized that the above
discussions are only suitable for free trivalent lanthanides,
meaning that they only reflect the property of the intrinsic
arrangement of the 4f electrons. In addition to this
“internal” factor, the “external” aspects, mainly including
anion coordination and cation substitution, have also an
effect on the ability of binding carriers of the trivalent
lanthanides in crystals, as discussed below.

Extrinsic I: anion coordination
In ionic crystals such as NaYF4, the valence electrons of

the trivalent lanthanides are completely occupied by the
coordination anions. The attractive potential of the tri-
valent lanthanides’ 4f electrons is thus less affected by the
shielding effect of the valence electrons. The effect of
electron cloud polarization becomes appreciable, making
there an additional ability on the original attractive
potential of the trivalent lanthanides’ 4f electrons.
Therefore, Er3+, Ho3+, and Nd3+ that are not easy to bind
charges also own the ability to bind carriers to generate
emission upon band-to-band excitation. In phosphates
and borates hosts, the interaction between the trivalent
lanthanides and coordination anions changes from ionic
to covalent. The increase in the electrostatic shielding
effect of valence electrons on the trivalent lanthanides’ 4f
electrons results in a decrease of their attractive potential.
As mentioned above, Er3+, Ho3+, and Nd3+ in their free
state have weak ability to bind charge carriers, and this
ability has been further weakened in covalent crystals.
This probably explains the missing PersL of Er3+, Ho3+,
and Nd3+ in phosphates and borates (Fig. 1f).

Extrinsic II: cation substitution
In addition to the strategy of anion coordination, cation

substitution is also commonly utilized to adjust crystalline
field. When substituting the trivalent lanthanides for the
trivalent host cations, the isoelectronic traps are formed,
followed by the generation of bound state by a short-range
central-cell potential. According to the reported work36–39,
the primary factor affecting the binding potential of the
isoelectronic traps is electronegativity and size difference
between the impurity and host ions. Therefore, the dif-
ference of electronegativity and the size difference between
the substitution ion and the trivalent lanthanides make
there a bound state for the trivalent lanthanides in the
forbidden band. The attractive potential and position of the
trivalent lanthanides in the forbidden band are thus
adjustable by changing the cation substitution (Fig. 3d). It
reminds us that the PersL of the trivalent lanthanides can
be expected, adjusted, and even improved via a rational
design of the external factor of cation substitution. It has
been verified by the samples of Gd3+ doped XPO4 (X= Sc,
Y, La, Lu) (Fig. 3e). The longest PersL of Gd3+ is achieved
in ScPO4 because Sc3+, compared with Lu3+, Y3+, and
La3+, has a larger difference in electronegativity and size
with Gd3+. The similar conclusion was also observed in the
samples of Gd3+ doped XBO3 (X= Sc, Y, La, Lu) (Sup-
plementary Fig. S18). The larger the difference between
Gd3+ and substitution ion, the longer the PersL decay time
of Gd3+, in good accordance with the above-mentioned
hypothesis.

PersL mechanism of the trivalent lanthanides
Depending on the above-mentioned discussions, the

possible mechanism of the trivalent lanthanides’ PersL in
wide bandgap hosts is proposed (top panel in Fig. 4).
Upon excitation of X-ray, the electrons jump from the
valence band to the conduction band, leaving there a large
amount of holes in the valence band (①). Subsequently,
these electrons and holes are captured by the traps (②).
After ceasing the X-ray source, the captured electrons and
holes are released from the traps to the conduction band
and valence band, respectively, due to the stimulation of
heat (③). The trivalent lanthanides attract an electron (or
hole) first and then draw a hole (or electron) due to the
Coulomb force (④, ⑤, case 1 and case 2). It should be
emphasized there is the possibility that the released
electrons and holes attract each other to form excitons.
Due to the electrically neutral characteristic, the excitons
migrate among the crystal lattice and are finally captured
by the trivalent lanthanides (⑤). In all cases, the trivalent
lanthanides are expected to finally bound the excitons and
then obtain the recombination energy of the bounded
excitons to jump to the excited states (⑥)11. After non-
radiative relaxation processes, the PersL occurs due to the
4f↔ 4f transition of the trivalent lanthanides (⑥).
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To further understand the specific generation process of
PersL, the possible mechanism is then discussed at the
atomic level (bottom panel in Fig. 4), by taking the host
NaYF4 embedded with the trivalent lanthanides as an
example. For NaYF4, the top of the valence band and the
bottom of the conduction band separately belong to
the 2p electron orbit of F and the 5d electron orbit of Y.
The isoelectronic cation substitution, namely replacing
the Y3+ in NaYF4 with other trivalent lanthanides, forms
bound states by a short-range central-cell potential. Upon
excitation of X-ray, the outer electrons of F are excited to
the 5d electron orbit of Y, while the generated holes stay
in F. Upon X-ray irradiation, the F ions are likely to be
ejected from their original sites, making there many
fluorine vacancies and interstitial F that act as traps29. The
electrons in the conduction band and the holes in the
valence band are thus trapped with success. After ceasing
the X-ray source, the electrons are released from the
defects to the 5d electron orbit of Y due to the stimulation
of heat. The trivalent lanthanides are expected to attract
an electron (or hole) first and then will draw a hole (or
electron) due to the Coulomb force. It should be men-
tioned that the released electrons and holes are likely to
attract each other to form excitons that migrate easily
among the crystal lattice because of the electrically neutral
feature. In all cases, the trivalent lanthanides eventually

bind the excitons as this is the origin of energy. The
excitons recombine and transfer the energy to the triva-
lent lanthanides that bind the excitons. The trivalent
lanthanides are excited from the ground state to the
excited state, which is followed by the non-radiative
relaxation processes and final emitting of PersL.

Conclusion
In summary, the PersL of the trivalent lanthanides with

the exception of Lu3+, La3+, and Pm3+ covering a broad
wavelength range from 200 to 1700 nm are observed in
several wide bandgap materials, upon the band-to-band
charging way via X-ray irradiation. A mechanism of the
trivalent lanthanides’ PersL in wide bandgap hosts is
proposed. According to the mechanism, the trivalent
lanthanides as isoelectronic traps are expected to even-
tually bind excitons, and this binding ability is not only
related to the inherent arrangement of the 4f electrons of
the trivalent lanthanides, but also to the extrinsic anion
coordination and cation substitution. The excitons in
wide bandgap materials transfer their recombination
energy to the trivalent lanthanides, followed by the gen-
eration of PersL from the trivalent lanthanides. Guided by
this mechanism, the direct ultralong PersL of Gd3+ is
achieved for the first time in phosphates, proving the
validity of our proposed mechanism. Our work not only
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widens the range of the trivalent lanthanides activated
PersL phosphors but also proposes a mechanism with
considerable rationality, which is believed to be a gui-
dance for designing high-performance and more ideal
PersL phosphors in the future.

Materials and methods
Fabrication of samples
All PersL phosphors were prepared by high-

temperature solid-state method and the doping con-
centration of the trivalent lanthanides was set to be 1%
mol. NaF (Aladdin, 99.99%), NH4F (Aladdin, 99.99%),
X2O3 (X= Y, La, Ce, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and
Yb, Aladdin, 99.99%), Pr6O11 (Aladdin, 99.99%), Tb4O7

(Aladdin, 99.99%), Cs2CO3 (Aladdin, 99.99%), NaHCO3

(Aladdin, 99.99%), NH4H2PO4 (Aladdin, 99.95%), Sc2O3

(Aladdin, 99.99%), and H3BO3 (Aladdin, 99.99%) were
used as raw materials. The general preparation processes
for the samples are described as follows. The stoichio-
metric raw materials were weighed and mixed well in
mortar to form homogeneous powders. These powders
were then transferred into aluminum oxide crucible to be
calcined in muffle furnace at the given temperature for
several hours. Finally, the obtained powders were cooled
down to room temperature to form the final phosphors.
To form NaYF4 phosphors, the homogeneous powders
were calcined at 500 °C for 2 h. For the preparation of
Cs2NaYF6, the homogeneous powders were pre-fired at
150 °C in air for 7 h, and were then sintered at 450 °C for
30min, followed by the final calcination at 700 °C for 10 h
under nitrogen atmosphere. To obtain YPO4, ScPO4, and
LaPO4 samples, the homogeneous raw materials should
be calcined at 500 °C for 2 h under nitrogen atmosphere
first and then at 1300 °C for 5 h. To get YBO3 phosphors,
the raw powders were annealed under nitrogen atmo-
sphere at 500 °C for 1 h first and then at 1300 °C for 2 h. It
was demonstrated that the samples were micro-sized with
irregular shape (Supplementary Figs. S19–S24). In addi-
tion, these phosphors were of pure phase (Supplementary
Fig. S25).

Charging of samples
The PersL phosphors were charged by the X-ray source

of XRad-320X-ray irradiator (Precision X-ray, Inc., North
Branford, CT) equipped with a tungsten target (40 kV,
30mA). Before measurement on the property of PersL, all
samples were irradiated by X-ray for 10min to be
charged.

Photoluminescence (PL) and PersL characterization of
samples
The PL spectra of samples upon X-ray excitation, PersL

spectra, and decay curves of PersL in the visible light band
were recorded using an Andor SR-500i spectrometer

(Andor Technology Co. Belfast, UK) equipped with a
Hamamatsu R928 photomultiplier. The visible PersL
images were recorded using a digital SLR camera (EOS 5D
Mark III) in darkroom. The NIR PersL images were
recorded using a CCD camera (DU-888U3-CS0-BV).

TL characterization of samples
TL measurements were carried out using a self-

assembling TL system including high precision thermal
stage (THMS600) (British Linkam Scientific Instruments)
and a Andor SR-500i spectrometer (Andor Technology
Co., Belfast, UK), with a fixed heating rate of 5 K/s within
the range of 83–600 K. The samples were irradiated by
X-ray for 10 min before TL measurement.

Vacuum ultraviolet (VUV) excitation characterization of
samples
The VUV excitation spectra were measured at the VUV

spectroscopy experimental station on beam line 4B8 of
Beijing Synchrotron Radiation Facility (BSRF). The exci-
tation and emission spectra were measured by using a 1 m
Seya monochromator (1200 g·mm−1, 120–350 nm, 1 nm
bandwidth) and an Acton SP-308 monochromator
(600 g·mm−1, 330–900 nm). The signal was detected by a
Hamamatsu H8259-01 photon-counting unit and cor-
rected by the excitation intensity of sodium salicylate
(o-C6H4OHCOONa) measured simultaneously under the
same condition.
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