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Photonic matrix multiplication lights up photonic
accelerator and beyond
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Qiming Zhang4,5, Min Gu 4,5, Chao Qian6, Hongsheng Chen 6, Zhichao Ruan 7 and Xinliang Zhang1

Abstract
Matrix computation, as a fundamental building block of information processing in science and technology, contributes
most of the computational overheads in modern signal processing and artificial intelligence algorithms. Photonic
accelerators are designed to accelerate specific categories of computing in the optical domain, especially matrix
multiplication, to address the growing demand for computing resources and capacity. Photonic matrix multiplication
has much potential to expand the domain of telecommunication, and artificial intelligence benefiting from its superior
performance. Recent research in photonic matrix multiplication has flourished and may provide opportunities to
develop applications that are unachievable at present by conventional electronic processors. In this review, we first
introduce the methods of photonic matrix multiplication, mainly including the plane light conversion method,
Mach–Zehnder interferometer method and wavelength division multiplexing method. We also summarize the
developmental milestones of photonic matrix multiplication and the related applications. Then, we review their
detailed advances in applications to optical signal processing and artificial neural networks in recent years. Finally, we
comment on the challenges and perspectives of photonic matrix multiplication and photonic acceleration.

Introduction
Over the past few years, there has been an ever-growing

demand for artificial intelligence and fifth-generation
communications globally, resulting in very large comput-
ing power and memory requirements. The slowing down
or even failure of Moore’s law makes it increasingly diffi-
cult to improve their performance and energy efficiency by
relying on advanced semiconductor technology1,2. More-
over, the clock frequency of traditional electrical proces-
sing methods is generally limited to several GHz3, which
can no longer meet the demands of super-high-speed and
low-latency mass data processing. Matrix computation is
one of the most widely used and indispensable tools of
information processing in science and engineering4,5.

Most signal processing, such as the discrete Fourier
transform and convolution operation, can be attributed to
matrix computations. On the other hand, since the con-
cept of artificial intelligence (AI) was put forward in 1956
for the first time6, artificial neural networks (ANNs) have
been rapidly developed and widely used in various fields7.
Due to the continuous substantial increase in information
capacity, general electronic processors seem to be incap-
able of executing high-complexity AI tasks in the fore-
seeable future1. To solve this challenge, chips oriented
to AI applications have emerged, such as neural network
processing units (NPUs)8. At present, AI chips have been
widely used in almost every type of big data processing in
areas such as search, news, e-commerce, cloud computing,
and inverse design of functional devices9–13. Typically,
neural network algorithms represented by deep learning,
such as forward neural networks (FNNs), convolutional
neural networks (CNNs) and spiking neural networks
(SNNs), are characterized by many training parameters,
especially in heavy matrix computations14.
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Traditionally, matrix computation is completed by an
electrical digital signal processor, and its speed and power
consumption are greatly limited by the nature of the elec-
tronic devices themselves. Therefore, traditional electrical
methods are hard to simultaneously achieve high-capacity
and low-latency matrix information processing limited by
the Moore’s law1,2. However, for some applications, such as
ultrafast neural networks15, large bandwidth and low
latency are simultaneously required; thus, a new medium
for matrix computations and interconnects is urgently
needed for the implementation of high-performance and
energy-efficient matrix computations. Optical devices can
have a superlarge bandwidth and low power consump-
tion16. And light has an ultrahigh frequency up to 100 THz
and multiple degrees of freedom in their quantum
state17,18, making optical computing one of the most
competitive candidates for high-capacity and low-latency
matrix information processing in the “More than Moore”
era1. For example, a Fourier transform was performed at
the speed of light with a lens19. Motivated by its very high
prospect, photonic matrix multiplication has been devel-
oped rapidly in recent years and has been widely applied in
photonic acceleration for optical signal processing20–22, AI
and optical neural networks (ONNs)15,23,24. A lot of review
works on photonic acceleration have been made, these
works mainly focused on integrated photonic neuro-
morphic systems1,15,23–28, nanophotonics and machine
learning blend29,30, reservoir computing31, programmable
nanophotonics21,22,32. As a fundamental and important part
of photonic acceleration, photonic matrix multiplication
computation for photonic acceleration has not been sys-
tematically reviewed. Here, we review the advances of
photonic acceleration from the perspective of photonic
matrix multiplication. We first discuss the methods and
developmental milestones of photonic matrix multi-
plications and then review the progress in cutting-edge
fields of optical signal processing and optical neural net-
works. Finally, a perspective for photonic matrix multi-
plications is discussed.

Matrix-vector multiplication
The methods for photonic matrix-vector multiplications

(MVMs) mainly fall into three categories: the plane light

conversion (PLC) method, Mach–Zehnder interferometer
(MZI) method and wavelength division multiplexing
(WDM) method. The detailed mechanism of these MVMs
can be found in ref. 33, which offers an easy-to-read over-
view of principle and development of photonic matrix
computation. The first kind of optical MVM (PLC-MVM)
is implemented by the diffraction of light in free space.
Figure 1a shows a typical MVM configuration34,35. First,
the incident vector of X distributed along the x direction
can be expanded and replicated along the y direction
through a cylindrical lens or other optical elements. Then,
the spatial diffraction plane is used to adjust each element
independently, and its transmission matrix is W. Finally,
the x-direction beams are combined and summed in a
similar way, and the final output vector of Y along the y
direction is the product of the matrix of W and the vector
X, that is, Y =WX. The second MVM mainly consists of an
MZI network (i.e., MZI-MVM). Figure 1b shows the con-
figuration diagram, which is based mainly on rotation
submatrix decomposition and singular value decomposi-
tion36. The calibration of the transmission matrix is more
difficult since every matrix element is affected by multiple
dependent parameters. The third MVM (i.e., WDM-
MVM) is an incoherent matrix computation method based
on the WDM technology. Figure 1c shows a typical dia-
gram based on microring resonators (MRRs). The input
vector of X is loaded on beams with different wavelengths,
which pass through the microrings with one-one adjust-
ment of the transmission coefficients of W. Then, the total
output power vector is given by Y=WX.
Photonic matrix multiplication has come a long way

and developed rapidly in recent years. Figure 2 sum-
marizes the development history and milestones of pho-
tonic matrix computation. In the preliminary stage, only
some fixed matrix computations were implemented
using optical methods such as the Fourier transform19.
Thereafter, the initially programmable MVM was
demonstrated with spatial optical elements based on
single PLC (SPLC)34. For example, a fully parallel, high-
speed incoherent optical method was employed to utilize
the discrete vector multiplier at a high speed37, while the
update of the matrix at high frame rates was restrained
with current spatial light modulators (SLMs). Matrix
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multiplications involving optical array modulators, such
as electrooptic modulations, direct driven LED arrays, and
acousto-optic Bragg cells, were accomplished with faster
frame rates34,38,39. A photorefractive crystal40–42 and
nonlinear material43 could be optionally applied to
implement MVMs. In the SPLC-MVM method, only one
dimension is used for the input/output vectors, and the
scale (/ N) of vectors is still limited. A more powerful
PLC-MVM for unitary spatial mode manipulation was
proved with multiplane light conversion (MPLC)44,45, in
which the input/output vectors are distributed in the
whole two-dimensional plane, and the scale is propor-
tional toN2. Afterwards, the MPLC technique was widely
used in various fields, such as for all-optical machine
learning46–48, the Laguerre-Gaussian or orbital angular
momentum (OAM) mode sorter49,50, the photonic Ising
machine51,52, time-reversed optical waves53, optical logic
operations54, optical encryption and perceptrons55,56,
optical hybrid57 and neuromorphic optoelectronic com-
puting58. Although MPLC can achieve ultralarge-scale

MVMs, the devices are bulky, and the reprogramming
speed for weight encoding is still limited. A mini-sized
and universal MVM is more practical, especially in inte-
grated photonic applications. In 2017, Tang et al. first
proposed a novel integrated reconfigurable unitary optical
mode converter using multimode interference couplers,
which shared a similar principle with MPLC59. Then, it
was used for all-optical on-chip multi-input-multi-output
(MIMO) mode demultiplexing60. In 2020, the integrated
MPLC technique was further analyzed by Saygin et al. as a
novel matrix decomposition method based on multi-
channel blocks61 and then was experimentally proven on
a silicon photonic chip62.
In 1994, Reck et al. proposed a recursive algorithm that

could factorize any N ´N unitary matrix into a sequence
of two-dimensional matrix transformations, which paved
the way for future photonic integrated computation
based MZIs36. Then, Miller et al. suggested that the MZI
network could be self-configured to define functions
assisted by transparent detectors63–66. The MZI mesh
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was then applied in an add-drop multiplexer for spatial
modes66, universal linear optical components65, auto-
matic MIMO64 and universal beam couplers63. In 2016,
Clements et al. proposed a brand-new universal matrix
framework based on an alternative assemblage of MZIs
and phase shifters, which is superior to that proposed by
Reck et al. Only half the optical depth of the Reck design
is required, and the optical loss is significantly
reduced67. Ribeiro et al. experimentally demonstrated a
4 × 4-port universal optical linear circuit chip with the
MZI mesh on integration platforms68. Thereafter, the
applications of MZI-MVMs were further extended to
ONNs3, light descramblers69, modular linear optical
circuits70, optical CNNs71, equalizers72, digital-to-
analog conversion (DAC)73, Ising machines74,75, mode
analysis76 and complex ONNs77.
Generally, the footprint of the MZI reaches over

10,000 μm2 per interferometer unit, which remains a bot-
tleneck to further improve the computing density of the
MZI mesh. The WDM-MVM based on microring arrays
was proposed by Xu et al., who used compact microrings
with a diameter of only a few microns78,79. This approach
encodes information on different optical wavelengths rather
than spatial modes. Compared to other physical dimen-
sions, the wavelength dimension has the most abundant
orthogonal channels in optics, up to hundreds of chan-
nels80,81. Silicon MRR arrays for matrix operations were first
conceptualized by Xu and Soref in 201178. They were then
demonstrated by Yang et al. using a 4 × 4 silicon microring
modulator array but with binary values of 0 and 1 only79. In
2014, Tait and his colleagues proposed using MRR arrays as
a matrix computation method primitive for photonic neural
networks82 and achieved continuous matrix values from -1
to 1 by continuously tuning the MRRs. The WDM-MVM
was further used for photonic weight banks83–86, principal
component analysis (PCA)87, independent component
analysis (ICA)86, blind source separation (BSS)88, TeraMAC
neuromorphic photonic processor18, the optical SNN89,
TeraMAC photonic tensor core90, optical CNN91–93, and
photonic convolutional accelerator for the ONN16,94.
Table 1 summarizes the performance comparison of

different photonic matrix multiplication methods. In
general, the PLC-MVM method is coherent and can
operate in the whole complex field. Its scale is very large,

input vector sizes of 357 for SPLC-MVM48 and 490000
(N = 700) for MPLC-MVM58 were reported, easily up to
103 for SPLC-MVM and 106 for MPLC-MVM with
SLMs58. However, the device size is quite large, and
hence, the integrated counterpart was pursued59–61. The
MZI-MVM method is also coherent, but its scale is far
smaller than that of the PLC-MVM method (N = 64 was
reported by Lightmatter95). The main advantage is that it
can be integrated into a chip. The WDM-MVMmethod is
more compact. The scale is restricted by the number of
wavelengths and can be ~102 with soliton crystal micro-
combs16, provided all the wavelengths are used for a single
MVM. A balanced photodetector summing weighted
signals allows for positive and negative weights82. WDM-
MVM is incoherent and can be used for real-valued
matrices. For these methods, the assigned transmission
matrices for SPLC-MVM and WDM-MVM can be
directly written in, while some algorithms are needed to
load the transmission matrices for the MPLC-MVM and
MZI-MVM methods. All these MVM methods have been
widely applied in various fields. In the following, we
review the detailed applications of MVMs in optical signal
processing and photonic AI.

MVMs for optical signal processing
The photonic matrix multiplication network itself can

be used as a general linear photonic loop for photonic
signal processing32. In recent years, MVM has been
developed as a powerful tool for a variety of photonic
signal processing methods.

MPLC-MVMs
Benefiting from the large-scale computing capability of

spatial planes, MPLC can achieve very powerful matrix
functions44. For example, Joel Carpenter et al. realized
the classification of 210 Hermite–Gaussian modes or
Laguerre-Gaussian modes using only 7 phase planes with
a pixel size of 274 ´ 27449. A schematic diagram of the
Laguerre-Gaussian mode sorter is shown in Fig. 3a. First,
Gaussian beams from different positions were injected
into the device and converted to different orthogonal
Hermite–Gaussian modes by MPLC based on the wave-
front matching method96. Then, a cylindrical lens pair was
used to convert the Hermite–Gaussian mode into the

Table 1 Comparison of different photonic matrix multiplication methods

Method Coherent computing Integration Input vector size Matrix loading

SPLC-MVM Yes No 357 (ref. 48) One-one

MPLC-MVM Yes Yes 40,000 (ref. 46) 490,000 (ref. 58) Algorithm-aided

MZI-MVM Yes Yes 64 (ref. 95) Algorithm-aided

WDM-MVM No Yes ~100 (ref. 48) One-one
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Laguerre-Gaussian mode. The realized super-multimode
multiplexer and demultiplexer are of great significance in
multimode optical communications. As shown in Fig. 3b,
this powerful mode sorter was further used to create time-
reversed waves, where all classical linear physical dimen-
sions of light were simultaneously controlled indepen-
dently53. This device can independently address the

amplitude, phase, spatial mode, polarization and spectral/
temporal degrees of freedom simultaneously through the
programming of the SLM. Ninety spatial/polarization
modes controlled over 4.4 THz at a resolution of ~15
GHz were demonstrated, covering a total of ~26,000 spa-
tiospectral modes. A reprogrammable metahologram
was further designed for optical encryption, as shown
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in Fig. 3c55. The encrypted information was divided into
two matrices using two phase planes, and the enciphered
message emerged only when the two planes matched.
Some other applications have also been demonstrated.

The MPLC technique was a helpful tool for optimal
transverse distance estimation, as shown in Fig. 4a97. The
measurements were performed in two dimensions far
beyond the Rayleigh limit over a large dynamic range.
Some theoretical studies were performed. For example, a
scalable nonmode selective Hermite–Gaussian mode
multiplexer was proposed, as shown in Fig. 4b, where 256
Hermite–Gaussian modes were designed using only seven
phase masks98. In Fig. 4c, Li et al. implemented the linear
polarization mode and Hermite–Gaussian mode demul-
tiplexing hybrids with similar methods99,100. Each input
mode was converted to four fundamental modes with a
90-degree phase difference located at nonoverlapping
positions. Local light was uniformly mapped to the fun-
damental modes with the same phase, which exactly
overlapped with output spots from the input modes. The
complex amplitudes of the input modes could be retrieved
from the interference light intensities. Furthermore, an
ultrabroadband polarization-insensitive optical hybrid
using MPLC was experimentally verified57. As shown in

Fig. 4d, 14 phase masks and a gold mirror were employed
to carry out the optical hybrid, and a measurement
bandwidth of 390 nm was obtained.
Integrated MPLC-MVM was also successfully verified. In

2017, Tang et al. first theoretically proved a novel integrated
reconfigurable unitary MPLC-MVM using multimode
interference couplers59. The schematic diagram is presented
in Fig. 5a. The transmission matrix was decomposed into a
series of programmable unitary diagonal matrices and fixed
unitary diffractive matrices. In theory, an arbitrary unitary
transmission matrix can be configured by tuning the unitary
diagonal matrices, provided that enough phase planes
are assigned. In 2018, the integrated MPLC-MVM was
experimentally verified for reconfigurable all-optical on-
chip MIMO three-mode demultiplexing60. Figure 5b shows
the details of the three-channel MIMO demultiplexing chip.
Furthermore, Saygin et al. built a more universal archi-
tecture for integrated MPLC-MVM in 202061. In addition, a
ten-port unitary optical processor has been experimentally
demonstrated62. Figure 5c presents the device operating
principle, where the fixed unitary diffractive matrices are
implemented using multiport directional couplers. This
processer offers a new flexible and robust architecture for
large-scale MVMs.
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MZI-MVMs
The MZI-MVM, as an integrated photonic matrix

computation method, is quite suitable in on-chip optical
signal processing32,70. Based on the orthogonal matrix
transformation, it is competent to manipulate the spatial
orthogonal modes. Figure 6a shows a reconfigurable
add-drop multiplexer for spatial modes sampled by the
grating array66. It could extract a specified spatial mode
from a light beam, leaving the other modes undisturbed.
It also allows a new signal to be reloaded on that mode.
Similarly, as Fig. 6b shows, an MZI mesh based on the
orthogonal matrix transformation was used as a 4 ×
4-port universal linear circuit, enabling self-adaptation to
implement the desired functions68. The same structure
shown in Fig. 6c could further automatically undo strong
mixing between modes as a mode descrambler69. The
theoretical analysis for the initialization procedure,
training and optical multiple-input multiple-output
equalizers was discussed in detail in refs. 72,101,102. More
generally, the MZI-based orthogonal matrix mesh was
theoretically proved to have the ability to analyze and
generate multiple modes using self-configuring meth-
ods76. The concept and architecture are presented in
Fig. 6d, where an example of a square grating coupler

array is illuminated by the input light. While these self-
configuring methods require many built-in optical power
monitors, they bring additional loss and rapidly increase
the number of monitors with the extension of the net-
work, making both the electronic layout and iterative
algorithm quite complex. In 2020, Zhou et al. proposed
and experimentally demonstrated a common self-
configuring method without any information from the
inner structure103,104. Figure 6e shows an example of the
iteration process, where a switching matrix was self-
configured from a random state. The training was fin-
ished using the numerical gradient algorithm inspired by
deep learning3, which is practicable for a general “black
box” system. A similar idea was applied for an all-in-one
photonic polarization processor chip105,106. Other MZI
meshes were also reported for multipurpose silicon
photonics signal processors, such as a hexagon mesh107

and a square mesh108.

WDM-MVMs
The WDM-MVM can be directly executed without any

algorithms, benefiting from the one-to-one mapping
relation between wavelengths and matrix elements. This
correlation makes the WDM methods practicable for
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wave shaping combined with frequency–time map-
ping109,110. As shown in Fig. 7a, b, a 1 × 8 MRR array was
fabricated for on-chip programmable pulse shaping. The
spectral shape and width could be tuned by changing
the resonant wavelengths of the MRRs. The square-shape
transfer function is demonstrated and presented in Fig. 7b.
Other shapes, such as an isosceles triangle and a sawtooth
triangle, were also verified. Furthermore, the MRR array
can be used for MVM, provided that a sum operation on
multiple wavelengths is performed, called “microring

weight banks”, as shown in Fig. 7c83. A balanced photo-
detector (PD) yielded the sum and difference of weighted
signals. The reconfigurability and scalability of the chan-
nel count of the MRR weight banks were experimentally
demonstrated in ref. 111 with a comprehensive theoretical
analysis112. Different methods of controlling large-scale
MRRs for matrix computation were proposed and
demonstrated in refs. 85,113,114. Afterwards, the microring
weight bank was applied for various signal processing
methods, such as fiber nonlinearity compensation115 and
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photonic PCA87. PCA aims to extract the principal
components (PCs) solely based on the statistical infor-
mation of the weighted addition output. Figure 7d pre-
sents an experimental example of the obtained two-
channel waveforms of both the 1st and 2nd PCs, eviden-
cing the effectiveness of photonic PCA. The weight
bank was further used for photonic ICA to identify the
underlying sources that form the basis of the observed
data86. As shown in Fig. 7e, photonic ICA retrieved the
corresponding independent components (ICs) from the
received mixture waveforms. By combining the photonic
PCA and ICA together, a two-step procedure for a com-
plete photonic BSS pipeline was achieved88. The BSS is a
powerful technique for achieving signal decomposition
with minimal knowledge on either the source character-
istics or the mixing process. Figure 7f gives an example of

ICs retrieved from mixed radio-frequency waveforms with
the BSS technique88.
In comparison, coherent MVMs are usually applied in

multimode signal processing. The MPLC method can
manage massive modes benefiting from the ability of
large-scale matrix computation. The main limits are that
it is bulky and difficult to refresh with a fast response. The
MZI method is easy to integrate, and the functions of the
MZI mesh can be autoconfigured since the phase shifters
can work faster. However, the scale of matrix computa-
tion is limited, and this method can work only for a few
modes. Compared with the MZI method, the WDM-
MVM method has a more compact footprint, and it is
much easier to configure the transmission matrix and
apply WDM-MVM for programmable pulse shaping,
photonic PCA, ICA and BSS.
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MVMs for optical neural networks
AI technology has been widely used in various elec-

tronics industries, such as for deep-learning-based speech
recognition and image processing. MVM, as the basic
building block of ANNs, occupies most of the computing
tasks, such as over 80% for GoogleNet and OverFeat
models116. Improving the MVM performance is one of
the most effective means for ANN acceleration. Com-
pared with electrical computing, optical computing is
poor at data storage and flow control, and the low effi-
ciency of optical nonlinearities limits the applications in
nonlinear computation117, such as activation functions.
While it has significant advantages on massively parallel
computing through multiplexing strategies of wavelength,
mode and polarization17,90, extremely high data modula-
tion speeds up to 100 GHz118,119. Hence, photonic net-
works are quite good at MVM. The combination of
optical computing and AI is expected to realize intelligent
photonic processors and photonic accelerators120. In
recent years, AI technology has also seen rapid develop-
ments in the field of optics.

MPLC-MVMs
MPLC, as a supersized MVM method, is an inborn

alternative to the ONN. In 2018, Lin et al. presented an
all-optical diffractive deep neural network (D2NN)
architecture to perform machine learning46. The sche-
matic diagram is shown in Fig. 8a. Five phase-only
transmission masks were used to classify images of

handwritten digits and fashion products at the speed of
light. Then, a modified D2NN based on class-specific
differential detection was designed to improve the infer-
ence accuracy47. The information processing capacity of
MPLC was recently discussed in detail by Kulce et al.121,
proving that the dimensionality of the all-optical solution
space is linearly proportional to the number of phase
planes. While it may be difficult to train the D2NN due to
the existence of vanishing gradients, it has been suggested
to address this issue by directly connecting the input and
output using a learnable light shortcut, which offers a
direct path for gradient backpropagation in training122.
The MPLC-D2NN can be applied not only in image
identification but also in optical logic operations54, OAM
multiplexing and demultiplexing50, optical linear percep-
trons56 and Ising machines52. As shown in Fig. 8b, the
optical logic functions were performed by a two-layer
D2NN, and different logic operations were output from
different ports after the training54. The incident wave was
physically encoded at the input layer, and then the com-
pound metasurfaces (hidden layer) scattered the encoded
light into one of two small designated areas at the output
layer, which provided information on the output logic
states. On this foundation, multiple logic gates can be
further cascaded to enable more complex or customer-
defined functionalities. This universal design strategy
holds potential in several applications, such as crypto-
graphically secured wireless communication, real-time
object recognition in surveillance systems, and intelligent
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wave shaping inside biological tissues. Figure 8c presents
the coupling and separation of OAM modes with the
D2NN. Here, four plane masks with pixels of 256×256
were designed to couple and separate four OAM modes.
The optical machine learning decryptor in Fig. 8d was
realized with single-layer holographic perceptrons, which
were trained to complete optical inference missions56.
This decryptor could perform optical inference for single
or whole classes of keys through symmetric and asym-
metric decryption. The decryptors could be nanoprinted
on complementary metal-oxide–semiconductor (CMOS)
chips by galvo-dithered two-photon nanolithography
(GD-TPN) with axial nanostepping of 10 nm. The high
resolution achieved by GD-TPN allowed achieving a small
feature size for the holographic perceptrons at near-
infrared telecommunication wavelengths and a neuron
density of >500 million neurons per square centimeter.
MPLC was also applied in a spatial-photonic Ising
machine. The principle of a photonic Ising machine with
spatial light modulation is depicted in Fig. 8e51,123. The
spins were encoded into binary optical phases of 0 and π
at separated spatial points by an SLM. Intensity modula-
tion was used to set the spin interaction via another SLM.
Recurrent feedback from the far-field camera allowed
evolution of the phase configuration toward the Ising
ground state. It developed a novel hardware with an

optics-enabled parallel architecture for large-scale opti-
mizations. A photonic scheme for combinatorial optimi-
zation analogous to adiabatic quantum algorithms and
classical annealing methods was further studied52. More
recently, Ruan et al. experimentally evaluated the phase
diagram of a high-dimensional spin-glass equilibrium
system with 100 fully connected spins under gauge
transformation124 and synchronously proposed imple-
menting an antiferromagnetic model through optoelec-
tronic correlation computation with 40000 spins for the
number-partitioning problem125. The nonlinear activa-
tion functions for D2NN were also proved using laser-
cooled atoms with electromagnetically induced transpar-
ency126. To seek a more general and reconfigurable
MPLC-based ONN, an optoelectronic fused computing
framework based on optical diffraction was proposed,
which supports several kinds of neural networks and
maintains a high model complexity with millions of
neurons58. The principle diagram of the basic diffractive
processing unit (DPU) is presented in Fig. 9a, b. A digital
micromirror device (DMD) and an SLM were assembled
to implement the input nodes, and a CMOS sensor was
used to implement the optoelectronic neurons. It consists
of large-scale diffractive neurons and weighted optical
interconnections, enabling the processing of large-scale
visual signals, such as images and videos. Three types of
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ONNs were configured, including the D2NN in Fig. 9c,
the diffractive network in network (D-NIN-1) in Fig. 9d,
and the diffractive recurrent neural network (D-RNN)
in Fig. 9e.

MZI-MVMs
Different from MPLC-MVM, the main advantage of

MZI-MVM is the potential small size, allowing miniatur-
ized ONN chips. In 2017, Shen et al. proposed a new
architecture for a fully optical feedforward neural network,
as shown in Fig. 10a3. The device, containing 56 pro-
grammable MZIs, demonstrated its utility for vowel
recognition. It improved the computational speed and
power efficiency over advanced electronics for conventional
deep learning tasks. Thereafter, an optical convolutional

neural network was further proposed. As shown in Fig. 10b,
the optical delay lines were implemented with microrings,
and the MVM was implemented efficiently in photonic
circuits by an MZI mesh71. However, the training of these
networks was quite difficult and should be followed.
Hughes et al. introduced a highly efficient method for
in situ training of an ONN. Figure 10c presents a schematic
illustration of the proposed method, which uses adjoint
variable methods to derive the photonic analog of the
backpropagation algorithm127. The genetic algorithm was
also demonstrated as an efficient method to on-chip train
the ONNs128. A similar mesh could be expanded to
implement a complex-valued neural network77. As shown
in Fig. 11a, the complex-valued ONN could encode infor-
mation in both phase and magnitude with MZIs (marked in
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red). The reference light used for coherent detection was
introduced by the MZI in green. The complex-valued
weight matrix was implemented with the MZIs in blue.
Then, on-chip coherent detection was implemented by the
remaining black MZIs. The input preparation, weight
multiplication and coherent detection were all integrated
onto a single chip, which offered significantly enhanced
computational speed and energy efficiency.
In addition to neural networks, efforts have also been

made to unleash the potential of these photonic archi-
tectures by developing algorithms that optimally exploit
photonic fundamental advantages. In 2020, Roques-Carmes
and Shen et al proposed the photonic recurrent Ising
sampler (PRIS)75, a heuristic method tailored for parallel
architectures allowing fast and efficient sampling from
distributions of arbitrary Ising problems. They later
experimentally demonstrated the PRIS by combining elec-
tronics and silicon-on-insulator photonics74. Figure 11b
presents the algorithm iteration of the PRIS. The spin state
vector was encoded in the amplitudes of coherent optical
signals at the input. The transmission matrix of the MZI
mesh was dependent on the problem-specific Ising cou-
pling matrix. The output of the matrix multiplication is
noisy with Gaussian perturbation. After several algorithm

steps, the energy shown in Fig. 11c could approach the
ground state, and then the results of optimization for a
specific Ising problem were obtained.

WDM-MVMs
In 2014, Tait and his colleagues proposed, for the first

time, using MRR arrays as a matrix computation method
primitive for photonic neural networks82. This work, for
the first time, introduced a scalable neural network
architecture called “broadcast-and-weight” based on the
WDM concept. In this architecture, as shown in Fig. 12a,
neural network weights can be continuously tuned to
achieve both positive and negative weights analogous to
neural weights. In the same work82, Tait et al. also first
introduced a network design allowing scalable and cas-
cadable ONNs by employing wavelength reuse, followed
by an experimental demonstration in 201784, concurrently
with other silicon photonic neuromorphic architectures3.
This network architecture can be applied to construct
both feedforward and recurrent neural networks.
Microring weighting banks were also employed for optical
CNNs91–93. In CNNs, as shown in Fig. 12b, the input
images are divided into small patches, and these patches
are converted into small matrices for MVM operations.
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In 2019, an all-optical spiking neural network based on
phase-change materials (PCMs) was experimentally
demonstrated89. As shown in Fig. 12c, the input vectors
were loaded on beams with different wavelengths and
weighted by PCMs. Moreover, the nonlinear activation
function was implemented in optics by changing the
resonant wavelengths of the microring when the summed
power altered the state of PCMs. Figure 12d shows a
photonic tensor core for neural networks using PCMs as
the reconfiguration elements129. The input matrix was
modulated by high-speed modulators, and the kernel
matrix was loaded using photonic memory based on
PCMs. The weighted inputs were then incoherently
summed using a photodetector.
Recently, a convolutional photonic processor with extre-

mely high computing throughputs was demonstrated by
exploring different dimensions of light. Feldmann et al.
demonstrated a highly parallel convolutional processer
using an integrated photonic tensor core, achieving 1012

multiply-accumulate operations per second90. A conceptual
illustration of the photonic architecture is shown in Fig. 13a.
Highly parallel MVMs were performed by using multiple
groups of wavelengths generated from a soliton-based
optical frequency comb. PCMs were applied as nonvolatile
actuators, and thus, convolutional processing can be per-
formed with extremely low power. Another photonic

convolutional accelerator realized highly parallel computing
by utilizing wavelength-and-time interleaving, as shown in
Fig. 13b, which achieved up to 10 trillion operations
per second16. The input data vector was encoded as the
intensity of light with an electro-optical Mach–Zehnder
modulator (EOM), and then the wavelength-dependent
delay achieved by a single-mode fiber (SMF) was used to
reshape the signals at different wavelengths. The convolu-
tional operation was performed at the speed of light by
summing the powers at presupposed wavelengths after
spectral shaping. These works suggest that photonics is
coming of age and in some cases can begin to outperform
electronic computation.
Regarding neural networks, all three MVM methods can

be used in the linear part of neural networks to achieve
photonic acceleration. In contrast, MPLC-based ONNs
have the most powerful computing ability and can solve
classification problems with all-optical methods, but the
refresh rate of spatial planes is limited. MZI-based ONNs
are reconfigurable for different situations, but their scale is
limited, and electronics-aided learning is needed for com-
plex tasks. To date, WDM-based ONNs have a larger scale
than MZI-based ONNs, while they are incoherent com-
putations, where differential detection is often carried out
in tandem. Table 2 summarizes the performance com-
parison of state-of-the-art photonic AI accelerators with
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electronic hardware. In general, photonic computing has
obvious advantages in terms of signal rate, latency, power
consumption and computing density, and its accuracy is
generally lower than that of electrical computing.

Discussion
Scalability and cascadability of ONNs
There exists a huge gap between the number of weights

of ANN in electrical and optical MVMs, for example, the
weight parameters of ResNet-50, a popular and widely
used deep learning network architecture presented by
Microsoft in 2016, have already reached 25 million130. To
alleviate the issue, one direct and effective solution is to
manufacture larger-scale photonic integrated circuit (PIC)

chips, and indeed, Lightmatter Inc. has released the
world-record 64×64 sized MZI mesh integrated chip
‘Mars’ in 2020, which is capable of performing 4096 MAC
operations each time when a new set of input vectors is
fed in, and the computing capacity is estimated to be 8
TOPS95. Similar to integrated circuits, the PIC chips
provide the potential to achieve larger scale and higher
integration density as the manufacture technologies
improve. Furthermore, optical devices promise massive
parallelism by employing WDM and mode division mul-
tiplexing (MDM)17,90, these parallel operations can be
performed in a single physical optical processing core90.
The scale-out issue can also be solved by optimizing and

improving optical components. For example, the number
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of neurons can be further expanded utilizing spectrum
reuse strategies for the WDM scheme82, and the topology
structures of neuron cluster, small-world neural network,
and interconnected SNN PICs were proposed to build
larger-scale on-chip photonic neurons28. As the scale of
MRR array becomes larger, the controlling technique
would be paramount, integrated photoconductive heaters
enable control of large-scale silicon photonic MRR array
without requiring additional components, complex tuning
algorithms, or additional electrical I/Os131. The electro-
optical modulators using lithium niobate and barium
titanate integrated with silicon photonics offer high-speed
phase modulation and low operating voltage, making
these devices very attractive for PICs designed for pho-
tonic computing132. The maturity of state-of-the-art sili-
con nitride platform has enabled low-loss waveguides (<1
dB/m), thus reducing energy consumption and cost
compared with current digital electronics, and provided
opportunities for the practical application of photonic
accelerators to SOI and III–V PICs especially when
computation bandwidth and modulation rates continue to
increase rapidly133. Challenges arise in scaling to larger
matrices, since phase shifters in MZI mesh scheme typi-
cally consume 10 mW to 20 mW per unit for thermal
tuning134, and thermal power consumption accumulation
for thousands of phase shifter units will deteriorate the
competitiveness of the photonic accelerator. Nano-
optical-electro mechanical system (NOEMS) technology
can be applied to replace traditional thermal phase shif-
ters to reduce the power consuming of maintaining the
status of MZIs135. Compared to thermal phase shifters,
the static power dissipation of NOEMS components
is nearly zero because mechanical displacements only

require a small amount of energy to move the waveguide
back and forth.
To form a scalable neural network, optical neurons

should be able to excite with a certain strength to evoke at
least an equivalent response in a downstream neuron82.
To construct a cascadable neuron, the first step is to use
an active amplifier, which provides energy gain in the
optical or electrical domain136. The second step is to
improve the efficiency of optoelectronic devices, which
can be achieved by enhancing the interaction between the
active materials and propagating waveguide mode (i.e.,
light-matter interaction) with nanoscale devices and novel
materials137–140. And hybrid integration technology is
significant for integrating the low-loss passive silicon or
silicon nitride waveguides with the active amplifiers and
lasers141–143. These promising technologies pave the way
for cascadable photonic neurons.

Activation functions
MVMs and activation functions are two basic elements

of perceptrons94. Photonic MVMs show significant
advantages on signal rate, latency, computing density and
power consumption compared to electrical neurons, while
photonic activation functions are still not mature. The
implementation of photonic neurons relies on the non-
linear response of optical devices. Based on the physical
representation of signals inside a neuron, the techniques
are divided into two primary categories: optical-electrical-
optical (OEO) and all-optical activation functions. OEO
neurons convert optical power into an electrical current
and then back into the signal pathway. Their nonlinearities
manifest themselves in the electrical domain as well as
during the EO conversion step, in which lasers144–146 or

Table 2 Comparison of different recently demonstrated photonic AI accelerators with electronic hardware

Technology Signal/frame rate Computing density

(TMACs/s/mm2)

Energy/MAC Latency Precision (bits)

MPLC with a reconfigurable diffractive processing unit58 27,000 FPSa 45,000a 0.82 fJ MAC-1 – 8

Broadcast-and-weight based on WDM147,170 ~1 GHz 50 2.7 fJ MAC-1,a <100 ps >5

TeraMAC processor with integrated laser neuron18 5 GHz — 270 fJ MAC-1,a <1 ns —

Sub-λ Nanophotonics171 10 GHz 5000a 30.6 aJ MAC-1,a <50 ps >5

Photonic WDM/PCM in-memory computing90 18 GHz 81 17 fJ MAC-1,a 250 ps 5

Optical convolutional accelerator based on WDM16 63 GHz — 1.58 pJ MAC-1 110 ns (50 nsa) 8

Coherent MZI mesh3 100 GHza 0.56a 30 fJ MAC-1,a <100 ps 8

Google TPU172 0.7 GHz 0.58 0.43 pJ MAC-1 1.42 ns 8

PUMA173 1 GHz 0.29 2.39 pJ MAC-1 <10 ns 16

ISAAC174 1.2 GHz 0.41 1.9 pJ MAC-1 ~200 ns 16

Resistor crossbar array (from Mythic)175 900 FPS 0.02 0.24 pJ MAC-1 <100 μs 8

aThese specifications can be finished by reequipping the setup with existing technologies.
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saturation modulators147,148 are employed. Using foundry-
compatible silicon-on-insulator (SOI) technology, OEO
neurons were demonstrated by Tait et al. using a high-
speed silicon MRR modulator147 and by Williamson et al.
with a Mach–Zehnder-type modulator149. All-optical
neurons depend on semiconductor carriers, reverse satu-
rated absorption, or optical susceptibility, which can be
found in a variety of materials150. All-optical neuron
implementations are thought to be faster than the OEO
techniques. All-optical neurons have been proven using
optical nonlinearities, such as the carrier effect in
MRRs151–153 and the alteration of a material state89,154.
Generally, for different AI applications, activation func-
tions need to be chosen dependent on particular tasks.
Due to the weak optical nonlinearity, the resonant devices
were used to reduce the threshold and simultaneously
enhance the phase sensitivity89,152. Huang et al. proposed
using multiple coupled cavity devices to optimize different
activation functions for different machine-learning
tasks152, followed by an experimental demonstration153.
And the microring resonators with PCMs were also
demonstrated as effective all-optical activation functions89.
The active optical devices are also promising candidates for
activation functions144,155–157. A reconfigurable photonic
activation function was also demonstrated using injection-
locked Fabry–Perot semiconductor lasers155. The neuron-
like excitable behavior in a micropillar laser with saturable
absorber was experimentally demonstrated by introducing
optical perturbations144. And the vertical-cavity surface-
emitting laser with an embedded saturable absorber was
employed as a spiking neuron156,157. The semiconductor

optical amplifiers were also demonstrated for all-optical
activation functions158–161.

Optoelectronic-hybrid AI
The activation function can be realized by using either

electronic or photonic methods. The optical activation
function is still in the preliminary research stage, and there
is no mature scheme since the efficiency of optical non-
linearity is rather low. The realization of an all-optical
activation function with a low loss and a high nonlinear
effect remains a key issue in the entire optical network. On
the other hand, all-optical cascaded ONNs are still difficult
to achieve due to the accumulative loss of optical net-
works. In fact, only ANNs with quite simple structures or
without activation functions were all-optical, such as the
SNNs with PCMs89, reservoir computing using optical
amplifiers or passive silicon circuits31,162,163, and D2NN
with passive phase masks46,47,54. On the contrary, most
previous works of deep ANNs were implemented based on
optoelectronic-hybrid hardware3,16,18,58,90. Before the all-
optical ANNs are mature, especially in optical nonlinear
effect and optical cascade, optoelectronic-hybrid AI is a
more practical and more competitive candidate for deep
ANNs. Therefore, the development of a highly efficient
and dedicated optoelectronic-hybrid AI hardware chip
system is one of the core research routes of photonic AI.
Photonic matrix multiplication has revealed great

potential for optical signal processing and AI acceleration.
It can greatly reduce the power consumption and signal
delay. In the future, the photonic matrix core would be
more comprehensive and cover richer functions. Figure 14
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shows a possible route for the optoelectronic-hybrid AI
computing chip framework. It mainly contains three lay-
ers: the bottom hardware layer, the algorithm layer and
the top application layer.
Electronic computing has become quite mature, and it

has outstanding advantages in terms of data storage and
flow control, which are basically unknown for photonic
computing. The computing capacity and speed of photons
are superior to those of electronic computing, which can
be improved by several orders of magnitude23,164. By
combining the advantages of electronic and photonic
systems, the performance in terms of the power con-
sumption, computing capacity, computing speed, etc., can
be improved by orders of magnitude compared with that
of traditional electronic methods3,16,58. The hardware
layer is mainly regarded as the photonic AI hardware
system built on photoelectric devices. The electronic part
of the hardware layer completes the data storage, data
write/read, flow control and slight computations. The
optical part executes the matrix computation operators,
which take up most of the computing tasks58.
The algorithm layer is used to develop universal algo-

rithm frameworks for the photonic AI hardware system,
such as linear regression and gradient descent165, or to
develop computing models, such as the feedforward
neural network and convolutional neural network7. These
algorithms can be efficiently executed in the physical
layer. Different algorithms can be combined with photo-
electric AI hardware depending on the type of problem.
For example, the linear regression algorithm is often used
in prediction, and logistic regression is often used to solve
the problem of binary classification165. Neural network
algorithms are the most widely used machine-learning
methods and can significantly improve deep learning
based on text, images, and voice7. In addition, based on
the activation function, various logical computing func-
tions can be developed as the basic unit of the
optoelectronic-hybrid digital computer166. The algorithm
framework can be learned from the mature AI algorithms
of electronic computing, but it should be adjusted
appropriately considering the hardware differences.
The application layer is a user-oriented interface based

on the entire AI hardware system and algorithm fra-
meworks. Users can develop various applications, such
as channel equalization69,103, Google PageRank104, image
recognition16,90, and voice recognition3. For example, the
linear part of the optical computing core can be directly
used in image sharpening, smoothing, etc., as well as in
all-optical signal processing (such as channel equaliza-
tion)167. Neural network algorithms can be employed for
image recognition and voice recognition3,16,90. In addi-
tion, multiple algorithms can be combined to jointly
address optimization and decision issues, such as NP-
hard problems and high-speed tracking problems51,74,168.

An optical computing system based on digital logic can
also be built with all-optical or optoelectronic-hybrid
logic computing functions166,169.
In summary, photonic matrix multiplication has been

applied in many areas, such as optical signal processing in
optical communications and AI accelerators. Numerous
promising applications established based on matrix
multiplication computation provide a complementary
opportunity to expand the domain of photonic accel-
erators. We have reviewed the recent progress in pho-
tonic matrix multiplication with various methods and
applications. A perspective for photonic matrix multi-
plication was further discussed, which might be extended
to an easy-to-operate minicomputer for different pho-
tonic accelerator applications.
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