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Abstract
Orbital angular momentum interactions at the nanoscale have remained elusive because the phase structure becomes
unresolved. Now researchers have shown how to overcome this with tightly focused beams, demonstrating a record-
high six-dimensional encoding in an ultra-dense nanoscale volume.

The demand for ultrafast, condensed, broadband and
secure transfer of energy and information is advancing at
an unprecedented pace, with 6 G telecommunication
already on its way. An enabler of this is to exploit light’s
many degrees of freedom (DoF) for optical multiplexing
technology, now an essential tool for modern information
delivery. The use of ultrafast pulsed lasers has facilitated
the transition of data recording from a surface layer to a
3D volume1. Advances in nanotechnology, especially
plasmonic nanomaterials, have enabled light multiplexing
to be performed with five DoFs2. An exciting prospect to
overcome the impending data crunch3 is to use the spatial
mode of light as an additional DoF, with orbital angular
momentum (OAM) a popular candidate4. But modern
optical information technology systems require minia-
turised and integrated solutions, and here OAM has a
problem: as one zooms into the nanoscale, the telltale
helical structure of OAM gets lost as the light wave
appears locally flat. Just as ants cannot easily tell whether
they are walking along a straight rod or a helical cork-
screw, nanostructured matter cannot discern the OAM of
a spatial mode. In a recently published paper5, Xu Ouyang
and co-authors overcome this challenge in an ingenious
manner. They note that while the OAM phase itself

cannot be detected, its influence on the resulting sub-
wavelength polarisation structure can. In a tightly focus-
sed OAM beam, fine polarisation ellipses arise with
orientations dictated by the OAM charge. This orientation
can be detected by nanostructures with a similar orienta-
tion. Using this as a tool, the authors demonstrate that six-
dimensional optical OAM multiplexing can be realised at
the nanoscale, exploiting wavelength, polarisation, and
three spatial dimensions simultaneously (Fig. 1).
A combination of tight focusing and synthetic helical

dichroism (HD) play important roles in this breakthrough.
High numerical-aperture (NA) lenses, which are essential
for tight beam focusing, feature intrinsic polarisation
aberrations6,7 (for example, owing to Fresnel and geo-
metric effects). One aspect of its overall representation is
that in the nonparaxial vectorial electric field, spatial
variations exist in the state of polarisation, which varies
for different incident OAM beams. While commonly seen
as a nuisance (e.g., for polarisation imaging) or overlooked
(e.g., in optical multiplexing), this property is in contrast
harnessed by the team in conjunction with the synthetic
HD. Dichroism, a material property that induces diatte-
nuation during light propagation, has been used in many
research fields, ranging from quantum physics to clinical
applications. In principle, it is associated with a difference
in absorption coefficients for orthogonal polarisation
states, resulting in different polarisation responses that are
encoded in the corresponding materials. The team
describes and leverages the synthetic HD of a nanos-
tructure under the excitation of OAM beams with respect
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to the topological charge, linear polarisation, and wave-
length. Such synthetic HD is polarisation-sensitive, hence
can be utilised together with the different polarisation
ellipses in the tightly focused beam that link with different
OAM charges, enabling sensitive OAM multiplexing at
the nanoscale. Compared with conventional HD in chiral
structures, this synthetic HD is not restricted to opposite
topological charges, hence provides more versatile
possibilities5,8.
The team utilise these properties to demonstrate six-

dimensional optical encryption with nanometric QR
codes via OAM division regarding two wavelengths and
orthogonal incident polarisation states. Their success also
build upon plasmonic coupling effects that introduce
hotspots with remarkably augmented local fields to
enhance synthetic HD, and two-photon luminescence for
an intuitive indication of the synthetic HD. These phe-
nomena are of significant benefit in the encoding and
decoding processes. Furthermore, the six-dimensional
encoded images are retrieved from different layers of the
coupled disordered nanoparticle aggregates. It is worth
noting that the sensitivity of the photothermal deforma-
tion of gold nanorods and the two-photon luminescence
contrast can both be boosted considerably by the

enhanced HD, hence benefiting the multiplexing process
via improved signals.
The results obtained by the team open exciting pos-

sibilities of multiplexing the OAM division for high-
information capacity and security. Building upon these
advances in six-dimensional multiplexing, there is still
work to be done. The polarisation effects vary between
different high NA lenses and these effects can disorder
the traceable polarisation ellipses in the focal region.
Hence, cross-talk could occur between different OAM
channels. However, this is likely to be conquered with
engineering solutions through lens optimisation. There
are also prospects for further extensions, such as
towards higher-dimensional structured light multi-
plexing. Recent advances in structured light9 have
pushed the limits of what is possible. The present work
highlights the exciting prospects in marrying structured
light with structured matter, for control at scales from
the large to the small.
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Fig. 1 Illustrations of six-dimensional OAM multiplexing. SOP
state of polarisation, λ wavelength
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