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Abstract
Optical implementations of neural networks (ONNs) herald the next-generation high-speed and energy-efficient
deep learning computing by harnessing the technical advantages of large bandwidth and high parallelism of
optics. However, due to the problems of the incomplete numerical domain, limited hardware scale, or inadequate
numerical accuracy, the majority of existing ONNs were studied for basic classification tasks. Given that regression
is a fundamental form of deep learning and accounts for a large part of current artificial intelligence applications, it
is necessary to master deep learning regression for further development and deployment of ONNs. Here, we
demonstrate a silicon-based optical coherent dot-product chip (OCDC) capable of completing deep learning
regression tasks. The OCDC adopts optical fields to carry out operations in the complete real-value domain instead
of in only the positive domain. Via reusing, a single chip conducts matrix multiplications and convolutions in
neural networks of any complexity. Also, hardware deviations are compensated via in-situ backpropagation
control provided the simplicity of chip architecture. Therefore, the OCDC meets the requirements for
sophisticated regression tasks and we successfully demonstrate a representative neural network, the AUTOMAP
(a cutting-edge neural network model for image reconstruction). The quality of reconstructed images by the
OCDC and a 32-bit digital computer is comparable. To the best of our knowledge, there is no precedent of
performing such state-of-the-art regression tasks on ONN chips. It is anticipated that the OCDC can promote the
novel accomplishment of ONNs in modern AI applications including autonomous driving, natural language
processing, and scientific study.

Introduction
Because of the flourishment of artificial intelligence

(AI), we witness the revolution of technical foundations
of emerging applications, such as autonomous driving,
natural language processing, and medical diagnosis1–3.
In addition, profound insights are offered to scientific
studies across disciplines such as chemistry4, physics5,6,

and biomedicine7. One of the major driving forces of AI
is the blooming of artificial neural networks (ANNs),
which are mathematically composed of thousands of
nodes and millions of interconnections layer by layer. A
high-dimension representation space is thus supported
by the large-scale neural network. Such large repre-
sentation space of ANNs enables high-volume auto-
matic feature extraction from original data, so that
intricate transformations of chemical, physical, and
biological systems can be precisely fitted and predicted.
However, large representation space demands massive
computational costs. Currently, Moore’s law of inte-
grated circuits is slowing down8 while the scale
expansion of ANNs is speeding up9. The compute
capability of conventional digital computers is falling
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behind. To solve the problem, optical implementations
of neural networks (ONNs) have been recently pro-
posed and demonstrated to realize high-speed and
energy-efficient AI hardware10–14. Linear propagation
of light equivalently carries out the linear computing of
ANNs15–19; ultra-wide optical transparent spectrum
and high-speed modulators/detectors enable a fast
clock rate (tens of GHz)20,21; and non-volatile photonic
memory makes the computing “zero-consuming”22.
However, a substantial improvement of ONNs needs to

be achieved for accomplishing state-of-the-art AI appli-
cations. For now, ONNs are mostly demonstrated with
classification tasks on elementary datasets such as MNIST
handwritten digit recognition23 because of their simplicity
for primary validation. As an important form of deep
learning, regression tasks, such as image reconstruction24,
machine gaming25, and nanostructure design26,27, remain
uninvestigated. Distinct from classification, regression
demands the neural network to output continuous values
instead of discrete categories. Carrying out computations
in the complete real-value domain with high numerical
accuracy is the basic requirement for regression, which is
still challenging for the existing ONN chips. Firstly, for
non-coherent ONN architectures16,20–22, input values are
represented by non-negative optical intensities, causing
incompleteness of the numerical domain. In contrast,
coherent ONN architectures15,28,29 adopt optical fields to
represent real-valued inputs and homodyne detection to
yield real-valued outputs, showing the capability of com-
puting in the complex-valued domain. Nonetheless, the
size of existing ONN chips is much smaller than that of
regression neural networks, and the complexity of chip
calibration for coherent ONNs increases the difficulty of
reaching high numerical accuracy. Therefore, high-quality
deep learning regression still remains challenging in the
ONN field.
Here, we propose and experimentally demonstrate a

silicon-based optical coherent dot-product chip
(OCDC) to implement sophisticated regression tasks.
Values are modulated into the amplitudes of optical
fields and the output field is read out via optical inter-
ference. In this sense, it is feasible to operate the OCDC
in the complete real-value domain. The chip is recon-
figured to conduct linear operations including matrix
multiplications and convolutions, and it is reused to
carry out arbitrarily sophisticated neural networks. As
the OCDC is an analog computing device, parameters
represented by nonideal hardware often deviate from
desired ones. The simple architecture of the OCDC
enables compensation for such deviations by in-situ
backpropagation control (BPC), thus obviously enhan-
cing numerical accuracy. With these properties, the chip
meets the basic prerequisites for deep learning regres-
sion tasks. We benchmark the OCDC with a neural

network, AUTOMAP30, which achieves state-of-the-art
performance in image reconstruction. The experimental
result verifies that the OCDC can effectively compute
both fully connected (FC) layers and convolutional
layers, covering all linear operations required by most
neural networks. The performance of OCDC in the
AUTOMAP image reconstruction task is comparable
with that of a 32-bit digital computer. To the best of our
knowledge, it is the first time demonstrating sophisti-
cated deep learning regression tasks with on-chip opti-
cal computing hardware. The insights provided by this
work are inspiring for further investigations on practi-
cally applicable ONNs.
In Fig. 1a, a simplified model of an ANN for regression

tasks is depicted. The network is composed of nodes and
connections layer by layer. A node represents a single
value in FC layers or a feature map in convolutional
(conv.) layers. Connections represent the weight matrix
or convolutional kernels for FC layer or conv. layer
correspondingly. Each layer contains a linear part, i.e.,
matrix–vector multiplication (MVM) and convolution,
and a nonlinear activation function to obtain the acti-
vated values. From left to right, the input nodes are
calculated layer by layer to yield the final output nodes.
For regression tasks, weights in the network are trained
to minimize the distance between the final outputs and
the ground truth (data deemed as reference). In general
cases of regression networks, the numerical basis for
both activated values and weights is the real-value
domain. In Fig. 1b, c, we illustrate the histograms of
weights and activated values of three well-known
regression ANNs, long short-term memory (LSTM)31,
U-net32, and AUTOMAP30. The overall distribution of
trained weights in these ANNs always obeys normal
distributions and the mean values are near zero. Nega-
tive weights are as many as positive ones. The activated
values perform diversely. In the U-net with the ReLU
activation function, activated values are non-negative.
For this kind of neural network, only positive input
values are need and non-coherent ONN architecture
performs similarly with coherent architectures. How-
ever, the LSTM network and the AUTOMAP, which are
based on hybrid sigmoid, ReLU, and tanh functions,
contain both positive and negative activated values.
Therefore, the capability of representing real activated
values and weights is a basic requirement for the optical
implementation of regression networks. Also, we note
that the dot product is a building block of MVMs or
convolutions. Building hardware for dot products
enables equivalent calculation of the linear part of
ANNs. Following these guidelines, we design the OCDC
as shown in Fig. 1d. To keep the signs of activated values
and weights, optical amplitude modulation is adopted
and the output amplitude is detected via coherent
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interference. The light from a coherent laser source is
split into M+ 1 branches, with M branches performing
the dot product and the last one being the local reference
for coherent detection. Optical power is evenly dis-
tributed in these M branches. Inside each branch, two
modulators under push-pull configuration are deployed
serially to impose optical amplitude modulation without

introducing extra phase shift. As the first one represents
the value of xi and the next one represents wi, the output
is the multiplication of these two values18. When all
branches match in phase, the optical fields interfere
constructively in the optical combiner to complete
summation. Before photodetection, the local reference is
combined with the summed optical field, introducing an
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Fig. 1 Schematic of the optical coherent dot-product chip (OCDC). a Simplified model of a neural network for regression. A neural network is
typically composed of nodes, connections, and activation functions. Three typical functions (sigmoid, rectified linear unit (ReLU), and hyperbolic
tangent (tanh)) are depicted in the figure. Positive, negative, and zeros nodes are depicted with different colors. For fully connected networks, a node
represents a single value and a connection is a weight. For convolutional networks, a node is a feature map and a connection is a convolutional
kernel. b Histograms of weights in LSTM31, U-net32, and AUTOMAP30, respectively. They approximately obey normal distribution with a mean value of
zero. c Histograms of activated values in LSTM, U-net, and AUTOMAP, respectively. The distribution depends on the activation functions being used.
d The conceptual schematic of the OCDC. It contains several parallel branches for dot product and one extra branch for coherent detection. The
optical field in each branch is symbolized with red curves. The push-pull configured modulator imposes amplitude-only modulation to the optical
field without introducing phase shift. Hence, the phase of each branch is stable
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amplitude bias to avoid the elimination of negative
amplitude at photodetection. The process of the OCDC
can be formulated as the following equation.

Iphoto / Re ~Eref þ
P
i
wixi~Ei

� �
~Eref þ

P
i
wixi~Ei

� ��� �

¼ ~Eref þ
P
i
wixi~Ei

����
����
2

ð1Þ

When the amplitude of local reference ~Eref is larger than
the weighted sum, the sign of dot product is maintained
after photodetection.

Results
The OCDC is fabricated with a silicon-on-insulator

(SOI) process. Fig. 2a shows the packaged OCDC and its
periphery circuits. Common metal wires on the bottom
provide voltages for the chip. Transmission lines on the
top are used to transfer high-speed signals. The layout of
the chip is shown in Fig. 2b. Optical splitters, push-pull
modulators, combiners, couplers are systematically
integrated on the chip. Two optical splitters (shown in
Fig. 2c) are used to divide optical power into the nine
modulating branches and the reference. A multi-mode
interferometer split half of the optical power to the
reference. The left power is split into nine branches by
cascaded directional couplers (DCs). The coupling
length of each DC is designed so that the optical power
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Fig. 2 Chip characterization results. a The packaged OCDC with periphery circuits. b The top view of the OCDC. Modulating branches are located
vertically as the red block shows. Every modulator contains four phase shifters, two of which are used to conduct push–pull modulation and the
remaining two are used to control the bias voltage. Tail phase shifters are appended to compensate for the phase difference among branches.
c The structure of light input and splitter. d Characterization of evenness of optical power splitting. e Modulator characterization with push–pull
driven. The experimental result is fitted with a curve formulated by a * sin(b * x+ c)+ d. The information on fitting is also given in the plot. f The
effect of constructive interference of three branches. Three curves are obtained one by one. Firstly, only the first branch is modulated to the highest
transparency when the other two branches are closed. By changing the voltage on its tail phase shifter (PS-1), the yellow curve is shown. It denotes
the interference result of branch 1 and reference branch. Secondly, keep the voltage on the PS-1 at the constructive interference point (black circled);
modulate the second branch to its highest transparency; change the second tail phase shifter (PS-2). The purple curve is recorded. By operating the
same process for the third branch, we obtain the green curve
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is divided evenly. Figure 2d provides the measured
splitting ratio of the cascaded DCs, showing an evenness
lower than 1.2 dB. At each modulating branch, we fab-
ricate a tail phase shifter to compensate for the phase
difference between branches and the reference. More
details of chip fabrication and characterization are
provided in the Supplementary Section. In the OCDC,
stable push–pull modulation is important to keep the
constructive interference for photodetection. Figure 2e
shows an example result of push-pull modulation (see
“Methods”). This result is yielded by complementarily
changing voltages on the upper and lower arms of a
single modulator with other modulators staying static.
The amplitude of the output optical field varies along a
cosine curve when the applied voltages change. The R2

of the fitting is 0.9994, indicating that the push–pull
modulation is accomplished with high stability. Then
the constructive interference of multiple branches is
inspected in Fig. 2f. It is shown that, with proper con-
figuration of the tail phase shifter, the output optical
fields of different branches can match in-phase, per-
forming a jointly constructive interference. Implied by
the results, the OCDC is capable of amplitude mod-
ulation and coherent detection, laying the basis for
calculations of the real-valued dot products.
We implement AUTOMAP as a representative

example of deep learning regression to validate the
OCDC. Figure 3a shows the structure of the AUTO-
MAP containing two FC layers, two convolutional lay-
ers, and a de-convolutional layer. Details of the neural
network can be found at the ref. 30. and “Methods”.
Given that the linear part of FC layers and convolutional
layers can be decomposed to dot products; we can
realize these layers by reusing the OCDC temporally.
Figure 3b–d shows the method of conducting MVMs
and convolutions via temporal multiplexing. The
decomposition of MVMs is straightforward since they
are naturally calculated via vector-vector dot product.
The input vector is loaded onto the second row of
modulators marked “slow mod.”, and a vector from the
matrix is modulated onto the “fast mod.” modulators.
By temporally changing the vectors loaded on the “fast
mod.” modulators, the result of MVM is eventually
calculated. When the size of vectors is too large to be
loaded onto these modulators in one time, the vector
and the matrix can be divided into small parts as
depicted in Fig. 3c. For convolutions, the process of
patching33,34 can rearrange pixels of the feature map
into a matrix. The kernel is flattened as a vector. In this
way, MVMs and convolutions can be similarly con-
ducted by the OCDC. Figure 3d is the experimental
setup (detailed in “Methods”) for temporally multi-
plexing the OCDC. A signal generator (max. bandwidth
is 20 MHz) is used to provide signals for amplitude

modulation and a voltage source (VS) supplies the bias
voltages. A computer (the gray block) is adopted to
carry out programs. It controls the signal generator and
the VS to work as a whole. It also records and processes
the output data from the OCDC.
As analog computing hardware, the OCDC suffers

from the imperfectness of fabricated devices. The actual
values represented by the analog devices often deviate
from the desired ones. Such deviations come from
multiple sources including uneven splitter, combiner,
modulation efficiency, and phase drift. Distinct from
classification tasks, deep learning regression asks for
higher numerical accuracy since it directly corresponds
to the quality of regression (see Fig. S9 for more infor-
mation). Therefore, we adopt an in-situ BPC method to
minimize such deviations (see “Methods”). Figure 4a, b
shows the effectiveness of the BPC with an example of
random inputs. The weights adopted is [1, 1, 1].
Although the modulators are coarsely calibrated before
conducting dot products, the numerical accuracy is
insufficient for high-quality deep learning regression.
After the BPC, the accuracy of the analog computing is
improved with residual error dropping from 0.061 to
0.032. With more weight combinations (see Fig. 4c and
Fig. S10), we validate that the BPC can increase the
numerical accuracy of the coarsely calibrated hardware
within two iterations.
Based on the BPC method, we experimentally imple-

ment the first FC layer and the first convolutional layer
of AUTOMAP using the OCDC. Due to the limited
hardware scale, the parameters are trained on a com-
puter and the OCDC is used for inference (see the
“Methods” for details of network training). For the FC
layer, the sizes of the input vector (1 × 32768) and the
weight matrix (32768 × 8100) are massive. We decom-
pose the vector and the matrix to the size of 1 × 3 and
3 × 8100, respectively, according to the size of the
OCDC. For the convolutional layer, the input feature
map (128 × 128) is firstly patched to a matrix (25 ×
16384) and the kernel (5 × 5) is flattened. Similarly, we
decompose the massive matrix into small parts for the
feasibility of the OCDC. The OCDC carries out the
linear parts and the nonlinear activation functions are
implemented in the computer. Further details of the
experiment are provided in “Methods”. An example
result is shown in Fig. 4d. Each temporal waveform
contains 8100 samples since the OCDC is temporally
multiplexed by 8100 times. Limited by the bandwidth of
the thermo-optic modulator and the signal generator,
the modulation rate is 100 Hz. A high-speed OCDC is
further discussed in Supplementary Section. In Fig. 4e, f,
the computing accuracy of the FC layer and the con-
volutional layer are inspected, respectively. We observe
that the measured samples tightly concentrate at the
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diagonal line where indicates correct results. The nor-
malized standard deviation of the residual error is
0.0518/7.0= 0.0074 and 0.0026/0.25= 0.0104, respec-
tively. Such results are competitive among coherent
ONN architectures, around six times less than that
reported in ref. 15.
Then, the task of image reconstruction is demon-

strated with the accuracy achieved by the OCDC (details
are provided in “Methods”). Example results are shown
in Fig. 5 and Figs. S12–14. Since the AUTOMAP is a
unified neural network that can reconstruct images from
various input formats30, we demonstrate three typical
reconstruction processes for magnetic resonance ima-
ging (MRI): misaligned Fourier (MF) space35, variable
Poisson disk sampled (vPDS) Fourier space36, and Radon
projection37 (see “Method” for further details). Figure
5a–c illustrates a comparison of the results yielded by a
standard 32-bit computer and the OCDC. The corre-
sponding process is MF. We observe that the OCDC
accomplishes image reconstruction with high quality.
The standard deviations of image absolute error are
0.0036 and 0.0062 for the digital computer and the

OCDC, respectively. Note that the values of error are
amplified by 10 times for better visibility. Such an
increase of error of the OCDC is hardly visible from the
reconstructed image. Figure 5d–f is the reconstructed
images of the vPDS process. The quality of the OCDC
reconstructed image is also acceptable. For the Radon
reconstruction, the performance of the AUTOMAP
conducted by the computer is inferior to the previous
two processes. The gap between the 32-bit computer
and the OCDC is greatly reduced. From the results, we
observe that the OCDC can achieve comparable per-
formance with a 32-bit digital computers on image
reconstruction, implying its further applications on
other regression tasks.

Discussion
Researches on ONNs are commonly in pursuit of high-

speed and energy-efficient computing. Although the
main contribution of this work is originally demon-
strating regression tasks, we note that the proposed
architecture is the potential to be upgraded toward a
high-speed one. Recent breakthroughs of electro-optic
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integrated modulators, on conventional SOI platforms
or thin-film lithium niobate platform38–40, pave the way
for a high modulation rate. Replacing the thermo-optic
modulators used in the proof-of-concept (the “fast mod.”
part) can greatly enhance the computing speed. In
Supplementary material, an electro-optic version of
OCDC is measured and discussed. If the OCDC is
designed at high speed, the system noise will increase
inevitably. The signal-to-noise ratio (SNR) might
become a limiting factor to the performance of the
OCDC. Generally speaking, SNR is mostly determined
by the insertion loss and photodetection noise12. If the
insertion loss and the photodetection noise are kept low
with current advanced waveguide and photodetection
technologies, high SNR is achievable at a high modula-
tion rate over 10 GHz and high-quality image recon-
struction is also expectable. The OCDC has the potential
to be duplicated spatially for exploiting the optical
advantage on parallelism (described detailly in Supple-
mentary Section). The operation speed can thus be
multiplied and the energy consumption per operation
can be lowered11–13,19. Moreover, the phase shifters in
the “slow mod.” part can be replaced with non-thermal

devices such as nano-optical electromechanics41, which
are “zero-consuming” in static states. Energy consump-
tion can thus be significantly lowered. In the coming
future, it is unlikely the complexity of physical ONN
systems should surpass that of practical ANNs. The key
to implementing sophisticated ANNs, as demonstrated
by this work, is temporal multiplexing with the assis-
tance of electronic devices10. Thanks to recent progress
in hybrid integration of electronics and photonics42,43, it
is optimistic to build a monolithic system with the
OCDC for high-performance computing and affiliated
electronics for instructions and memory.
As the prosperity of modern AI relies heavily on the

success of deep learning regression, we demonstrate the
OCDC to promote the application of ONNs in regression
tasks. In our approach, firstly, values in the complete real
domain are represented by optical fields. Output values
are detected via optical coherent interference to maintain
amplitude information. Secondly, the size of neural net-
works that are used in regression tasks is far larger than
that of currently available ONNs. We reconfigure and
reuse the OCDC so that matrix multiplications and
convolutions of arbitrary size can be equivalently
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conducted. Thirdly, the OCDC features precise control
through the BPC method to reach a high numerical
accuracy (normalized deviation of ~0.01). Therefore, the
OCDC meets the prerequisite for sophisticated deep
learning regression tasks. A state-of-art image recon-
struction neural network, AUTOMAP, is adopted to
benchmark the proposed chip. Experimental results
validate that the OCDC can accomplish AUTOMAP with
the comparable performance of the 32-bit digital com-
puter. Since the basic building blocks of ANNs across
different applications are similar, we believe the OCDC
can be further applied in more advanced AI fields,
including autonomous driving, natural language proces-
sing, medical diagnosis, and scientific study.

Materials and methods
Experimental setup
A brief schematic of the experimental setup is illu-

strated in Fig. 3d. A continuous-wave laser (Alnair Lab
TLG-220) working at 1550 nm is used as the coherent
light source. The output of the OCDC is directly
linked with the amplifier photodetector (THORLABS
PDA10CS2). The electrical signal is digitized and recor-
ded with an oscilloscope (KEYSIGHT DSO-S 804A). A
multi-channel arbitrary waveform generator (AWG) is
used as the signal source for the OCDC. The AWG
contains 9 NI-PXIe-5413 blades, each of which has two
output channels, and an embedded computer (NI-PXIe-
8880) to control the system. The signals recorded by the

oscilloscope are also transmitted to the computer for
further processing. In the experiment, we use three
branches (six modulators) to demonstrate the OCDC’s
feasibility on dot products. Since each modulator requires
2 electrical signals for push-pull driving, 12 output
channels of the AWG are adopted. The trigger of the
oscilloscope and the AWG are synchronized for stable
sampling. A homemade 45-channel VS is used for sup-
plying the bias voltages of the modulators. The control
signal is also provided by the embedded computer. As the
proof-of-concept, single-ended photodetection is used in
this work, so that the photocurrent is quadratic to the
optical amplitude. To achieve a linear mapping between
the electrical signal and optical amplitude, homodyne
photodetection is preferred (see Fig. S8b). Note that the
correct operation of OCDC is based on stable coherent
interference, a thermo-resistor and a thermo-electric
cooler are packaged in the module and are controlled
by a temperature controller (Thorlabs ITC4002QCL).
The module is stored and measured with indoor humidity
of 30–70%. Long-time exposure to high humidity might
shift the position of the fiber port, increasing the insertion
loss. Therefore, it is preferred to use airtight seals in
module packaging.

Push–pull modulation
In the OCDC architecture, the final output is yielded

by constructive interference. It is important to keep
the phases of different branches stable to maintain

MF

vPDS

Radon

Ground truth 32-bit digital computer OCDC

a

d

g

b

e

h

c

f

i

�=0.0036 �=0.0062

�=0.0029 �=0.0057

�=0.0162 �=0.0169

0 1 0 0.1 0 0.10 1 0 1

Fig. 5 Reconstructed images of the AUTOMAP by a 32-bit computer and the OCDC. a, d, g The ground-truth images with MF, vPDS, and Radon
processes, respectively. b, e, h The reconstructed images by the 32-bit computer. Values of the images are normalized to 1. Scale bars are attached on
top. The residual error maps are attached to the right. Values of the error are amplified by 10 times for better visibility. Standard deviations (σ) are
shown on the error maps. c, f, i Reconstructed images of the OCDC, with the same normalization
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constructive interference. Ordinary single-driven con-
figuration of modulators not only impose amplitude
modulation but also introduce extra phase shift.
Therefore, the push–pull configuration is necessary for
the OCDC. In the experiment, thermo-optic mod-
ulators are adopted, where phase shift from the thermal
effect is proportional to applied power (quadratic to
voltage). Therefore, the relation between applied vol-
tages and the expected phase difference Δφ is for-
mulated as

Vupper ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0 þ Δφ

2π � Pπ
R

s
Vlower ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0 � Δφ

2π � Pπ

R

s
ð2Þ

where Vupper and Vlower are the voltage applied to the
upper arm and the lower arm of a modulator,
respectively. P0 is a bias power applied to the upper
and lower arms at the same time. This bias power
allows negative phase shift to the lower arm, thus
realize push–pull configuration. Pπ is the required
power for a 180° phase shift, which is different for every
single thermal phase shifter. R is the resistance of the
thermal phase shifter, which is measured to be 1.6 kΩ.
For simplicity, for all thermal phase shifters, the P0 is
set at 2.28 mW, and an approximate value of Pπ,
1.81 mW, is used. With a proper bias voltage, the
transmission function of the modulator is sin(Δφ). With
this transmission function, we encode the pixel values
in grayscale to voltages for modulation. We have also
built an electro-optic (EO) version of OCDC (see
Supplementary Section for more information) with
silicon-based modulators. To achieve push–pull mod-
ulation on these EO modulators, a common positive
bias voltage should be applied to the phase shifters of
the upper arm and lower arm before the differential
voltage signals are applied.

The architecture of the AUTOMAP
The AUTOMAP is composed of, from first to last, two

FC layers, two convolutional layers, and a de-convolutional
layer. The input images are flattened to an input vector of
the first FC layer. For MF and vPDS processes, the shape of
input images is 128 × 128 × 2. Therefore, the length of the
input vector is 32,768. For the Radon process, the size of the
input image is 185 × 180= 33,300. The number of output
neurons in the first layer and the second layer is 8100 and
16,384, respectively. The original number of neurons in the
first layer is 16,384. In our experiment, this number is
modified due to the memory limitation of our training
platform (NVidia RTX-2080ti with 10.6 GB graphic mem-
ory). The activation function of FC layers is “tanh”. After
two FC layers, the resultant vector is transformed back to
the form of an image with the shape of 128 × 128 for 2D
convolutions. The number of output feature maps of these

two convolutional layers is 64, and their size is 128 × 128.
The kernel size is 5 × 5, and the activation function is ReLU.
The kernel size of the de-convolutional layer is 7 × 7. The
de-convolutional layer directly outputs the image result
without activation.

Neural network training
The dataset for image reconstruction is assembled from

four subjects of the MGH-USC HCP program44. Totally,
3100 sagittal scanned brain MRIs are used for neural
network training and validation. The original size of these
images is 256 × 256, and they are undersampled to 128 ×
128 for the capability of the AUTOMAP. The maximal
values of these images are normalized to 1 and the mean
values are subtracted.
The AUTOMAP is a generally feasible network that

can reconstruct images from various processes with the
same network hyperparameters. In this work, we
demonstrate three processes: reconstructing images
from MF spaces35, from undersampled Fourier spaces36,
and from Radon projections37.

● The MF process. In MRI, ghost images often occur
when the Fourier spaces of two trajectories are
physically misaligned. The AUTOMAP is trained to
reconstruct images without ghosts from the MF
spaces. For training, MF spaces are generated from
the original images. The images are firstly transformed
to their Fourier space by fast Fourier transform. Then
an extra phase shift is added to the even row of the
Fourier space. The real part and the imaginary part of
the processed Fourier spaces are used as the inputs of
the AUTOMAP and the original images are the
ground truths for training.

● The undersampled Fourier process. In this process,
the AUTOMAP is trained to reconstruct images from
the Fourier spaces which have been sparsely
undersampled, i.e., only a few pixels are reserved and
others are set to zeros. To generate these
undersampled Fourier spaces, we adopt the vPDS
method with a sparsity of 0.6 to the Fourier spaces
transformed from the original images. Again, during
training, the real part and the imaginary part of the
undersampled Fourier spaces are used as inputs and
the original images are used as the ground truths.

● The Radon process. Radon projection is a
conventional method for MRI. Here, the
AUTOMAP is trained to perform inverse Radon
transform with better quality than the conventional
one. The Radon projection is generated directly
from the original images using discrete Radon
transform (180 projection angles with 185 parallel
rays). These Radon projections are used as inputs
and the original images are the ground truths for
training.
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The dataset with 3100 examples is randomly divided
into a training set (2700 examples) and a validation set
(400 examples). The loss function of training is for-
mulated as

LΘ ¼ 1
N2

PN
i¼1

PN
j¼1

yΘi;j � ŷi;j
� 	2

þ λ

KN2

PK
s¼1

PN
i¼1

PN
j¼1

hΘs;i;j




 



ð3Þ

where yΘ is the output image by the neural network and
ŷ is the ground truth image. hΘ represents the output
feature maps of the second convolutional layer. N=
128 is the width of the images, and K= 64 is the
number of feature maps. The penalty factor λ is 0.0001.
The optimization method is the “Adam” optimizer45

with a learning rate of 2e−5. After 850 epochs of
training, the learning rate is decayed to 2e−6 for better
convergence. For different reconstruction processes,
the neural network is trained independently. The
training platform comprises an Intel Xeon-E5-2640v4
CPU and an Nvidia RTX-2080ti GPU, and the training
time is 2 h 10 min.

Figure S6 illustrates the loss functions during training
(please see the “CBD” curves). The training loss con-
verges well and the validation loss does not show
overfitting, indicating a successful training. As for
comparisons, we also show the performance of training
when the AUTOMAP is not real-valued (see Figs. S6
and S7, and Supplementary Section for further infor-
mation). We find that if an ONN fails to represent the
complete real-value domain, it will perform poorly or
even fail to reconstruct images. Therefore, the ability of
amplitude modulation and coherent detection of the
OCDC is necessary.

In-situ BPC
The OCDC is analog computing hardware. The

imperfections of the fabricated devices have a large
impact on the final numerical accuracy. Even if we
can calibrate the OCDC by measuring the modulation
curve (transparency vs. applied voltage) of every mod-
ulator, the computing results still deviate from the
desired ones when all modulators work simultaneously.
We use the BPC method to further minimize the
deviations of the hardware. In contrast to the previous
ONN in-situ training methods such as46, our BPC is
used to fine-tune parameters from a computer-
pretrained network. Instead of updating the parameter
as a whole, the BPC updates parameters independently
and it is suitable for the OCDC to reach higher
numerical accuracy. Assume k × k parameters are to be
fine-tuned. The computing complexity of BPC is O(k2),
which is at the same order of magnitude as the in-situ

training method46. For a temporally multiplexed OCDC,
the forward propagation is formulated as

yi ¼
XM
j¼1

xi;j � wj; i ¼ 1; 2; :::;N ð4Þ

where M is the number of branches used for dot product.
It is 3 in the experiment. The time step N is 250. By
defining the mean square error (MSR) of the results as the
loss function, we can calculate the derivatives of the loss
function (L) on the hardware-represented weights (w).

∂L
∂wj

¼ 2
N

XN
i¼1

yi � ŷið Þ � xi;j ð5Þ

where ŷ is the result of the desired dot product. Update
these weights by changing the applied voltages on
the modulator, the MSR of the results is minimized
(more examples of BPC are illustrated in Fig. S10). Since
the BPC is conducted on a digital computer, we estimate
the overhead of this process. By assuming a single-core
CPU working at 4-GHz clock speed, the backpropagation
theoretically takes only 0.18 μs to finish. Considering the
accuracy improvement provided by the backpropagation,
such overhead is acceptable. Note that the forward
propagation and backpropagation of the OCDC are all
linear. Nonlinear distortions cannot be eliminated by this
method. Therefore, such nonlinearity imposes a limitation
for BPC (further discussed in the Supplementary Section).

Conducting the AUTOMAP by the OCDC
The linear part of the first FC layer and the first con-

volutional layer of the AUTOMAP is experimentally
conducted by the OCDC chip. In the first FC layer, the
size of the input vector is 1 × 32768 and the size of the
weighting matrix is 32768 × 8100. They are decomposed
to small parts with the size of 1 × 3 and 3 × 8100,
respectively. The values from the input vector are loaded
to the “slow mod.” modulators and the values from the
matrix is loaded to the “fast mod.” modulators. Because of
the massive weight matrix of the FC layer, it is impractical
to conduct all operations with the OCDC working at a
modulation rate of 100 Hz. The OCDC carries out
operations for three typical parts in the input vector: the
corner, the center, and the edge (see Fig. S11 for further
information). For the convolutional layer, we conduct the
convolution with the first kernel (5 × 5). The kernel is
flattened to a vector and the input feature map is rear-
ranged to a matrix with the size of 25 × 16384. Then, the
decomposition method is similar to that of the FC layer.
The OCDC conducts linear parts, and the nonlinear
activation functions are implemented in the computer.
From all the experimental results, we calculate the
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normalized standard deviation of residual errors intro-
duced by the OCDC. It is averagely 0.0076 for the FC layer
and 0.0104 for the convolutional layer. In the image
reconstruction processes, we impose these experimental
deviations to every layer of the AUTOMAP as additive
noise to simulate the situation that the neural network is
completely conducted by the OCDC. Corresponding
results are provided in Fig. 5 and Figs. S12–14. In addi-
tion, the quality of image reconstruction with different
levels of computing error is simulated and discussed in
Supplementary Section.
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