Abstract
Higherorder topological insulators, as newly found nontrivial materials and structures, possess topological phases beyond the conventional bulkboundary correspondence. In previous studies, ingap boundary states such as the corner states were regarded as conclusive evidence for the emergence of higherorder topological insulators. Here, we present an experimental observation of a photonic higherorder topological insulator with corner states embedded into the bulk spectrum, denoted as the higherorder topological bound states in the continuum. Especially, we propose and experimentally demonstrate a new way to identify topological corner states by exciting them separately from the bulk states with photonic quantum superposition states. Our results extend the topological bound states in the continuum into higherorder cases, providing an unprecedented mechanism to achieve robust and localized states in a bulk spectrum. More importantly, our experiments exhibit the advantage of using the time evolution of quantum superposition states to identify topological corner modes, which may shed light on future exploration between quantum dynamics and higherorder topological photonics.
Similar content being viewed by others
Introduction
Topological phases, possessing intriguing bulk and edge properties, play an important role in understanding matter^{1,2,3,4,5}. It displays extraordinary robustness to smooth changes in material parameters or disorders and endows the system with inherent protection^{2,3}. In the past decades, topologically robust phases have been widely investigated in various systems^{2,3,4,5,6,7,8,9,10,11,12,13,14}. Recently, higherorder topological insulators (HOTIs) have been proposed as a novel topological phase of matter with unconventional bulkboundary correspondence^{15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32}, where an Nthorder topological insulator has topological boundary states with codimension N^{33,34}.
Generally, there are two kinds of HOTIs. The first one is the topological multipole insulators, which are theoretically proposed by Benalcazar et al^{15,16}. and lately experimentally realized in various classical wave systems^{18,19,20,28,31}. The other one is the topological crystalline insulators with quantized bulk polarization, which is theoretically proposed by considering tightbinding models^{22,23} and experimentally achieved in photonics^{23,24,30,32} and phononics^{25,26,27}. Currently, the characterizations of HOTIs rely on the corner states and hinge states existing in the bandgap and are well separated from other states, which guarantees that the corner states can be independently excited.
Meanwhile, waves can also be localized even if the corresponding states are embedded into the bulk spectrum, called the bound states in the continuum (BICs). The BICs can appear by controlling symmetries or separability of crystal, parameter tuning, or inverse construction^{35}. Different types of BICs have been realized in optical systems^{36,37,38,39,40,41,42,43,44,45,46,47,48,49}. With the introduction of the topological concept, recent work finds that the carried conserved and quantized topological charges of realspace vortex field in optical BICs ensure their robust existence^{50}. At the same time, the combination of topological phase based on band theory and the BICs is also the topic attracting a wide range of research interests. Recently, it is theoretically shown that lowerdimensional boundary states can also be embedded into the bulk spectrum in C_{4} symmetric HOTIs and regarded as the higherorder topological BICs^{51,52}. The combination of higherorder topological phase and BICs sheds light on new materials design. Specifically, it will be promising for practical applications, such as designing lowerdimensional higherQfactor topological cavities if the corner states in higherorder topological BICs can be experimentally independently triggered^{53}.
Here, we present the experimental observation of the higherorder topological BICs. Specifically, we demonstrate two ways of identifying the BICs in HOTI photonic lattices, with singlesite and superpositionstate injections. We show that the corner states lie inside the continuum and coexist with extended waves, even so, their existence is still closely related to the size of the bandgap which protects the HOTI against disorders. By reducing the bandgap size, we observe a gradually broken down of the higherorder topological BICs. Our work combines topological photonics and quantum dynamics, providing a method of exploring HOTI from quantum dynamics.
Results
The model of higherorder topological BICs
In our experiment, we construct a twodimensional lattice containing 8 × 8 sites formed by the C_{4} symmetric SuSchriefferHeeger (SSH) model. In the real space, the Hamiltonian of the designed photonic lattice can be expressed as
where t_{a} = t − λ, t_{b} = t + λ, \(\hat a_{m,n}^{\dagger}\) (\(\hat a_{m,n}\)) is the creation (annihilation) operator at site (m,n), t_{a} (t_{b}) represents the intracell (intercell) coupling strength. The corresponding Hamiltonian in the momentum space can be expressed as
where h_{12} = t_{a} + t_{b}exp(ik_{x}), h_{13} = t_{a} + t_{b}exp(−ik_{y}), h_{24} = t_{a} + t_{b}exp(−ik_{y}), h_{34} = t_{a} + t_{b}exp(ik_{x}), and wave vector k = (k_{x}, k_{y}) defined in the first Brillouin zone. We integrate various samples in a photonic chip, as shown in Fig. 1a. The constructed twodimensional lattice contains 8 × 8 waveguides and the evolution distances (i.e. the length of waveguides, mapping the evolution time) vary from 10 to 30 mm with a step of 5 mm. The couplings between lattice sites are modulated through the separation distances between waveguides. Specifically, as shown in Fig. 1b, the coupling strengths t_{a} and t_{b} are respectively modulated through the separation distances d_{a} and d_{b}. For our waveguide array, the couplings between nearestneighbour sites are positive, which means t_{j} > 0 for j = a, b and the couplings between nextnearestneighbour (or higherorderneighbour) sites are exponentially suppressed^{54}, which ensures the validity of the tightbinding approximation (see Supplemental Materials for more details).
By diagonalizing the Hamiltonian in Eq. (2), we obtain the band structure of the photonic lattice (see Fig. 1c–e). The competition between t_{a} and t_{b} determines the existence of the bandgap where the bandgap closes at the topological phase transition point t_{a} = t_{b}, during this process, the above Hamiltonian always respects a C_{4} rotation symmetry. The band structures corresponding to t_{a} > t_{b}, t_{a} = t_{b}, and t_{a} < t_{b} are respectively presented in Fig. 1c–e. From there, we can observe that there accompanies a bandinversion process when the bandgap closes and reopens.
For the topologically nontrivial configuration, the photonic lattice possesses a secondorder topological insulating phase and zerodimensional corner states, which can be characterized by the secondary topological index (see Supplemental Materials). We find that these corner states are located at zeroenergy, which is sharply contrast to the case in photonic crystals^{23}. The difference comes from that the frequencies of corner states are influenced by the existence of higherorder couplings in the lattices such as the nextnearestneighbour coupling. In 1D SSH model with only nearestneighbour coupling^{55,56,57}, due to the staggered coupling strengths between intercell and intracell sites, there is a sublattice symmetry which is also the chiral symmetry of the Hamiltonian, i.e., ΓH(k)Γ^{−1} = −H(k), where Γ represents the chiral operator. It restricts the band structures (or more precisely, the eigenvalues) to be symmetric with respect to “zero energy”. In the 2D SSH model, due to the exponentially suppressing of the higherorder couplings, the chiral symmetry is preserved in C_{4} symmetric lattice. Therefore, different from the alldielectric photonic crystals^{30} where higherorder couplings are significant, in our case, the corner states are pinned on the zeroenergy level and embedded into the bulk states.
For the finite lattice, the edge states and the corner states manifest due to the dimensional hierarchy of topological phases. To see the emergence of these topological boundary states, we plot the energy spectrum of finite C_{4} symmetry lattices as a function of t_{a}/t_{b} in Fig. 1f. In particular, we present the energy spectrum for t_{a}/t_{b} = 0.1 in Fig. 1g, where we can find there are four ingap zeroenergy corner states embedded in many edge and bulk states. Furthermore, we exhibit the spatial distributions of the corner, edge, and bulk states in the insets of Fig. 1h, which is obtained by
where E_{m} is the energy of the mth eigenstate \(\varphi _n^{\left( m \right)}\). As shown in the spatial distributions, for the corner states, the photons are confined at four or two corners of the lattices under the norm of zeroenergy corner states, see insets (i−ii). For the edge states, the photons occupy boundaries of the lattices with high probability, see insets (iii). In contrast, the photon distributes in the bulk of the lattices for bulk states, see insets (iv).
Observing the bound states in the continuum
Intuitively, the above corner states may not be observed since they have the same energy as bulk states. However, we find that the corner states protected by the C_{4} and timereversal symmetries, are orthogonal to bulk states in Hilbert space, forming the bound states in the continuum, which makes it possible to be independently excited by eigenmodes injections from degenerate bulk states. More detailed analysis and discussion can be found in Supplementary Materials.
According to the principle of quantum mechanics, if we inject the photons into the lattice from one of the corners, due to the overlap of spatial distribution, the initial injected states can be expressed in the form of a superposition of almost only four corner states. The probability amplitude proportion and the relative phase of the corner states are maintained with evolution. In this case, the photons will be confined in the excited corner of the lattice, and the evolution is stable, detailed discussion can be found in Supplemental Materials. The result is different from classical wave systems such as the photonic crystal^{30}, where the photon can evolve to all four corner sites with singlesite excitation.
In experiment, the separation distances are chosen as d_{a} = 22 μm, d_{b} = 9 μm (the corresponding coupling strengths are t_{a} = 0.05, t_{b} = 0.59) for our lattice. We inject photons into each corner and capture the photon density distribution after different evolution distances varying from 10 to 30 mm with a step of 5 mm, see Fig. 2a. The measured photon distribution probabilities are shown in Fig. 2b, where the photon almost only occupies the excited site varying with the evolution distance. To quantify the localization of outgoing photons distribution in real space, we can define the generalized localization index as \(\xi = \mathop {\sum}\nolimits_{i = k  w}^{k + w} {I_i} /\mathop {\sum}\nolimits_{i = 1}^n {I_i}\), where the n is the site number of the lattice. The quantity ξ quantifies the probability of the photon remaining within a small width w from the injected site k. For corner states, the photon is expected to be localized in only the corner site, then the accumulated width is w = 0. Such that the localization index of corner state is \(\xi = \mathop {\sum}\nolimits_{i = k} {I_i} /\mathop {\sum}\nolimits_{i = 1}^n {I_i}\). In our experiment, as shown in Fig. 2c, the localization index of corner state ξ maintains in high value close to one and does not change with the increase of evolution distance. For comparison, we set \(d_a^x = d_a^y = 14\,\upmu {\mathrm{m}}\), \(d_b^x = d_b^y = 18\,\upmu {\mathrm{m}}\) (the corresponding coupling strengths are t_{a} = 0.23, t_{b} = 0.11) for the trivial lattice. Photons can not be confined in corners and diffuse into the whole lattice, and the ξ approaches to zero.
Identifying the single corner state
In the above measurement, though we successfully excite the corner states separately from bulk states, both four corner states are excited simultaneously. Furthermore, we are able to identify the single corner state with the help of a photon superposition state. As we know, the quantum superposition, as the most fundamental principle of quantum mechanics, allows the photon to be in more than one state simultaneously. As shown in Fig. 3a, b, we prepare the photon superposition state as \(\left \psi \right\rangle = \frac{1}{2}\Sigma _{i = 1}^4\left {\psi _i} \right\rangle\) by injecting photons into a 3D 1 × 4 photonic coupler. Subsequently, the prepared photon superposition is injected into four corners of the lattice. The distribution probability of photon in the lattice is identical to the zeroenergy corner state with the same phase. The system now is excited into the zeroenergy corner state and the photon superposition state in the lattice will be maintained due to the orthogonality among eigenstates, which means that the single corner state is identified. More detailed analysis and discussion can be found in Supplementary Materials.
In the experiment, five lattices with different evolution distances are fabricated and integrated with the 3D 1 × 4 photonic coupler on one chip. The adopted parameters of the 3D 1 × 4 photonic coupler in the experiment are shown in Fig. 3b. In Fig. 3c, we show the measured photon distribution probability and the localization index. The output probability distribution of photons follows the distribution of corner states and is maintained under the change of the evolution distance. In this way, only one zeroenergy corner mode has been excited by precisely preparing the system into its Eigenwavefunctions.
The topological protection of the higherorder BICs
Next, we study the topological protection of the higherorder BICs. As the spectrum shown in Fig. 4a, b, the degenerate corner modes will turn into nondegenerate bulk states with the increase of t_{a}/t_{b} for the topological phase. Corner modes will also quickly decay into the bulk as t_{a}/t_{b} approaches to one (the bandgap approaches to zero). The behind physical mechanism is the deterioration of the topological protection when approaching the topological phase transition, which is influenced at the boundary sites for the finitesize system with open boundary. Such a perturbation renders corner modes away from zero energy, see the inset in Fig. 1g. For the small t_{a}/t_{b} case, the perturbation term is smaller than the bandgap size, the topological higherorder BICs are well protected. With the increase of t_{a}/t_{b} approaching to 1, the perturbation term becomes larger than the bandgap size, the topological higherorder BIC becomes decayed. Therefore, if we increase t_{a}/t_{b} in the finite lattice (i.e., reduce the bandgap size), such deterioration of the topological protection will lead to the breaking of the higherorder BICs. In this case, the corner states are decayed, and cannot be wellseparately excited from the edge modes and bulk states.
As discussed above, the corner states tend to decay and diverge from zero energy with the increase of t_{a}/t_{b}, as shown in Fig. 4a, b. In the view of quantum evolution, when we inject the photons into the lattice from the corner site, the probability of corner states in the initial injected states is not dominant anymore. The increase of the probability of edge state and bulk states means that the photons will be able to evolve into other corners with the evolution time. A more detailed discussion can be found in Supplemental Materials.
In the experiment, we further fabricate the lattice with parameters as d_{a} = 13 μm, and d_{b} = 11 μm, the corresponding coupling strengths are t_{a} = 0.27, t_{b} = 0.40, and t_{a}/t_{b} = 0.68. We inject photons into lattices from one of the lattice corners. The photon is not localized in the excited corner and the probability distribution occupies all four corners and the sites in the lattice boundaries. We confirm and demonstrate the decayed corner states as shown in Fig. 4c.
Discussion
In summary, we have demonstrated a direct observation of higherorder topological BICs in twodimensional photonic lattice fabricated with femtosecond laser direct writing technique. We show that corner states can be individually excited even if they are embedded into the bulk spectrum. We finally show that these BICs can be diminished by reducing the bandgap size. Our results extend the conventional topological BICs into higherorder cases, providing an unprecedented mechanism to achieve robust and localized states in a bulk spectrum. In terms of physical explanation, we combine topological photonics and quantum dynamics and provide a method to identify the single corner state with the help of a photonic quantum superposition state. In terms of applications, our demonstration may support highquality factor modes and lower threshold lasers^{46,48}. Moreover, higherorder BICs can be used to enhance lightmatter interaction and lead to nonlinearity enhancement, nanophotonic circuits, and quantum information processing^{44,45}.
Materials and methods
Fabrication and measurement
We fabricate the samples in alkaline earth boroaluminosilicate glass substrate (refractive index n_{0} = 1.514 for the writing laser at a wavelength of 513 nm) using the laser system operating at a repetition rate of 1 MHz and a pulse duration of 290 fs. The light is focused inside the sample with a 50× microscope objective (NA = 0.50) after being reshaped with a spatial light modulator. We continuously move the substrates using a highprecision threeaxis translation stage with a constant velocity of 10 mm/s to create the lattices by the laserinduced refractive index increase. According to the characterized relationship between the coupling coefficients and the separation of adjacent waveguides, we control the coupling strength t between the adjacent sites by modulating the corresponding separation distance d.
In the experiment, we inject the photons into the input waveguides in the photonic chip using a 20× objective lens. After a total propagation distance through the lattice structures, the outgoing photons are first collimated with a 10× microscope objective, then detected and analyzed by a combination of wave plates and polarizers.
The generation and imaging of the heralded singlephoton state
The singlephoton source with the wavelength of 810 nm is generated from periodicallypoled KTP (PPKTP) crystal via typeII spontaneous parametric downconversion. The generated photon pairs are separated into two components, horizontal and vertical polarization, after a longpass filter and a polarized beam splitter (PBS). One should notice that the measured patterns would come from the thermalstate light rather than single photons if we inject only one polarized photon into the lattices without external trigger. Therefore, we inject the horizontally polarized photon into the lattices, while the vertically polarized photon acts as the trigger for heralding the horizontally polarized photons out from the lattices with a time slot of 10 ns. We capture each evolution result using the ICCD camera after accumulating in the external mode for 600 s.
References
Klitzing, K. V., Dorda, G. & Pepper, M. New method for highaccuracy determination of the finestructure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).
Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).
Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).
Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Atala, M. et al. Direct measurement of the Zak phase in topological Bloch bands. Nat. Phys. 9, 795–800 (2013).
Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).
Zhang, D. W. et al. Topological quantum matter with cold atoms. Adv. Phys. 67, 253–402 (2018).
Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).
Zhang, X. et al. Dimensional hierarchy of higherorder topology in threedimensional sonic crystals. Nat. Comm. 10, 1–10 (2019).
Xie, B. Y. et al. Photonics meets topology. Opt. Express 26, 24531–24550 (2018).
Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).
Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).
Wang, Z. et al. Observation of unidirectional backscatteringimmune topological electromagnetic states. Nature 461, 772–775 (2009).
Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).
Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole moments, topological multipole moment pumping, and chiral hinge states in crystalline insulators. Phys. Rev. B 96, 245115 (2017).
Song, Z. D., Fnag, Z. & Fang, C. (d2)dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).
SerraGarcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).
Peterson, C. W. et al. A quantized microwave quadrupole insulator with topologically protected corner states. Nature 555, 346–350 (2018).
Imhof, S. et al. Topolectricalcircuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018).
Schindler, F. et al. Higherorder topological insulators. Sci. Adv. 4, eaat0346 (2018).
Ezawa, M. Higherorder topological insulators and semimetals on the breathing Kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018).
Xie, B. Y. et al. Secondorder photonic topological insulator with corner states. Phys. Rev. B 98, 205147 (2018).
Noh, J. et al. Topological protection of photonic midgap defect modes. Nat. Photonics 12, 408–415 (2018).
Zhang, X. J. et al. Secondorder topology and multidimensional topological transitions in sonic crystals. Nat. Phys. 15, 582–588 (2019).
Xue, H. R. et al. Acoustic higherorder topological insulator on a Kagome lattice. Nat. Mater. 18, 108–112 (2019).
Ni, X. et al. Observation of higherorder topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019).
Zhang, X. et al. Symmetryprotected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals. Nat. Comm. 11, 1–9 (2020).
Chen, X. D. et al. Direct observation of corner states in secondorder topological photonic crystal slabs. Phys. Rev. Lett. 122, 233902 (2019).
Xie, B. Y. et al. Visualization of higherorder topological insulating phases in twodimensional dielectric photonic crystals. Phys. Rev. Lett. 122, 233903 (2019).
Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photonics 13, 692–696 (2019).
EI Hassan, A. et al. Corner states of light in photonic waveguides. Nat. Photonics 13, 697–700 (2019).
Chiu, C. K. et al. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016).
Kunst, F. K., van Miert, G. & Bergholtz, E. J. Boundaries of boundaries: a systematic approach to lattice models with solvable boundary states of arbitrary codimension. Phys. Rev. B 99, 085426 (2019).
Hsu, C. W. et al. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).
Dreisow, F. et al. Adiabatic transfer of light via a continuum in optical waveguides. Opt. Lett. 34, 2405–2407 (2009).
Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).
Ulrich, R. In Symposium on Optical and Acoustical Microelectronics (ed Fox, J.) 359 (New York, 1975).
Lee, J. et al. Observation and differentiation of unique highQ optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109, 067401 (2012).
Weimann, S. et al. Compact surface fano states embedded in the continuum of waveguide arrays. Phys. Rev. Lett. 111, 240403 (2013).
Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).
Corrielli, G. et al. Observation of surface states with algebraic localization. Phys. Rev. Lett. 111, 220403 (2013).
Regensburger, A. et al. Observation of defect states in PTsymmetric optical lattices. Phys. Rev. Lett. 110, 223902 (2013).
Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photonics 6, 56–61 (2012).
Zheng, H. X. & Baranger, H. U. Persistent quantum beats and longdistance entanglement from waveguidemediated interactions. Phys. Rev. Lett. 110, 113601 (2013).
Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).
Yu, Z. J. et al. Photonic integrated circuits with bound states in the continuum. Optica 6, 1342–1348 (2019).
Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).
Yu, Z. J. & Sun, X. K. Acoustooptic modulation of photonic bound state in the continuum. Light.: Sci. Appl. 9, 1 (2020).
Zhen, B. et al. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).
Chen, Z. G. et al. Corner states in a secondorder acoustic topological insulator as bound states in the continuum. Phys. Rev. B 100, 075120 (2019).
Benalcazar, W. A. & Cerjan, A. Bound states in the continuum of higherorder topological insulators. Phys. Rev. B 101, 161116 (2020).
Cerjan, A. et al. Observation of a higherorder topological bound state in the continuum. Phys. Rev. Lett. 125, 213901 (2020).
Keil, R. et al. Direct measurement of secondorder coupling in a waveguide lattice. Appl. Phys. Lett. 107, 241104 (2015).
Meier, E. J., An, F. A. & Gadway, B. Observation of the topological soliton state in the SuSchriefferHeeger model. Nat. Commun. 7, 13986 (2016).
BlancoRedondo, A. et al. Topological optical waveguiding in silicon and the transition between topological and trivial defect states. Phys. Rev. Lett. 116, 163901 (2016).
Wang, Y. et al. Direct observation of topology from singlephoton dynamics. Phys. Rev. Lett. 122, 193903 (2019).
Acknowledgements
The authors thank Roberto Osellame and JianWei Pan for helpful discussions. This research is supported by the National Key R&D Programme of China (2017YFA0303700, 2017YFA0303702, 2017YFA0304203, 2018YFA0306200, 2019YFA0706302, and 2019YFA0308700), National Natural Science Foundation of China (11690033, 61734005, 11761141014, 11625418, 11890700, 12034012, 12074234, and 51732006), Science and Technology Commission of Shanghai Municipality (17JC1400403, and 2019SHZDZX01), Shanghai Municipal Education Commission (201701070002E00049), IRT_17R70, 1331KSC and 111 Project (D18001), China Postdoctoral Science Foundation Funded Project (2019M661784). X.M.J. acknowledges additional support from a Shanghai talent programme and support from Zhiyuan Innovative Research Center of Shanghai Jiao Tong University.
Author information
Authors and Affiliations
Contributions
X.M.J., M.H.L., S.J. and F.M. conceived and supervised the project. Y.W., Z.Q.J., Z.F. and X.Y.X. fabricated the samples. Y.W., Y.H.L., Y.J.C. and J.G. performed the measurements. Y.W., B.Y.X. and H.F.W. conducted the theoretical analysis. Y.W. and B.Y.X. analyzed the data and wrote the paper with input from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Wang, Y., Xie, BY., Lu, YH. et al. Quantum superposition demonstrated higherorder topological bound states in the continuum. Light Sci Appl 10, 173 (2021). https://doi.org/10.1038/s41377021006128
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41377021006128
This article is cited by

Fractal photonic anomalous Floquet topological insulators to generate multiple quantum chiral edge states
Light: Science & Applications (2023)