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Abstract
We demonstrate a photonic analog of twisted bilayer graphene that has ultra-flat photonic bands and exhibits
extreme slow-light behavior. Our twisted bilayer photonic device, which has an operating wavelength in the C-band
of the telecom window, uses two crystalline silicon photonic crystal slabs separated by a methyl methacrylate
tunneling layer. We numerically determine the magic angle using a finite-element method and the corresponding
photonic band structure, which exhibits a flat band over the entire Brillouin zone. This flat band causes the group
velocity to approach zero and introduces light localization, which enhances the electromagnetic field at the expense
of bandwidth. Using our original plane-wave continuum model, we find that the photonic system has a larger band
asymmetry. The band structure can easily be engineered by adjusting the device geometry, giving significant freedom
in the design of devices. Our work provides a fundamental understanding of the photonic properties of twisted bilayer
photonic crystals and opens the door to the nanoscale-based enhancement of nonlinear effects.

Introduction
Over the past decade, the stacking and twisting of two-

dimensional (2D) materials have led to the development
of novel materials with remarkable electronic properties.
For example, in twisted bilayer graphene (TBG), an
engineered material consisting of two stacked layers of
graphene that are rotated relative to each other, at the so-
called magic angle of θ ¼ 1:1�, the Fermi velocity drops to
zero and the energy bands near the Fermi energy become
flat1. These flat bands have high effective mass and half-
filled correlated insulating states, resulting in super-
conductivity due to the formation of moiré superlattices
and Dirac cone hybridization2,3. Exploring these unusual
phenomena is central in the developing field of quantum
twistronics4,5. The concept of twistronics has been
extended to include the study of nano-light properties in
materials like TBG and twisted α-MoO3

6–9. Recently, it
was shown that applying the ideas of twistronics to both

1D and 2D photonic moiré lattices in dielectric nano-
photonic materials leads to slow-light effect10,11, light
localization/delocalization phenomena12, and tunable
resonant chiral behavior13. However, the connection
between atomic twistronics and its nanoscale photonic
analog has not been thoroughly explored.
Many concepts in condensed matter theory have pho-

tonic analogs. For example, photonic systems with non-
trivial topological invariants are the photonic analog of
the anomalous quantum Hall effect and the anomalous
quantum spin hall effect14–22. The periodic dielectric
lattice of honeycomb lattice photonic crystals with “arti-
ficial atoms” (the unit cell in the dielectric structure) is
analogous to the hexagonal atomic lattice of graphene.
Indeed, these materials have been shown to give rise to
topological photonics23–29. In this context, it is natural to
expect two layers of twisted honeycomb photonic crystal
slabs to have similar physics as TBG. Yet, while the
microscale analog to TBG has recently been demon-
strated through phononic crystals and microwave pho-
tonic crystals30,31, and while tunable light properties have
been observed in metamaterials with moiré patterns32–36,
a nanoscale photonic band structure similar to the band
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structure in TBG-like systems has not been reported.
Here, we correct that deficit.
In this paper, we report on the modeling of twisted bilayer

photonic crystals (TBPhCs) consisting entirely of dielectric
materials. We find that TBPhCs have a photonic band
structure that is similar to the electronic band structure of
TBG. At a twist angle of 1.89°, the resulting moiré flat bands
have group velocities (vg) that vanish at the K point leading
to an extreme slow-light effect. In analogy to the confine-
ment of electronic wavefunctions in magic-angle TBG, we
observe low-loss light localization in this linear periodic
photonic system. Unlike Anderson localization in optical
quasicrystals, the localization we observe does not require
disorder12,37. As many photonic crystal and crystal analogy,
TBPhCs and TBGs are that photonic states are not as tightly
bound as their electronic counterparts and that the photonic
system has a larger band asymmetry. The tunneling layer
between the PhC slabs and the geometry of the slabs provide
additional degrees of freedom for engineering the photonic
band structure.
A major advantage of TBPhCs over conventional slow-

light media is that TBPhCs display slow-light behavior over
an extremely narrow bandwidth. We can therefore design
versatile TBPhCs that operate across a broad range of visible

and infrared frequencies, which can be used to realize slow-
light and flat-band applications. These TBPhCs open the
door to studying strong light-matter interactions, such as
nanoscale-based enhancement of nonlinear effects, where a
combination of light localization, low loss, and slow light is
required38–41. In addition, they can be used to investigate
flat-band phenomena and wave-packet localization in 2D
systems at the nanoscale. Finally, the flexibility in designing
TBPhCs permits simulating and exploring the band struc-
ture behavior of their electronic counterparts.

Results
Here we introduce a dielectric photonic crystal platform

that hosts a band structure analogous to TBG. We start with
a monolayer 2D honeycomb photonic crystal inspired by
graphene28. The 2D photonic crystal is a silicon membrane
with C6v symmetry-protected triangular shape air holes (Fig.
1a). By placing two photonic crystal slabs close to each other,
the guided resonances in the two slabs couple through an
evanescent tunneling pathway (Fig. 1b). We use a finite-
element method (COMSOL Multiphysics) to numerically
calculate the band structure. In the monolayer band struc-
ture, the lowest singly degenerate quasi-transverse-electric
(quasi-TE) band is well isolated from other higher-order
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Fig. 1 Twisted bilayer photonic crystals. a Bilayer photonic crystal (BPhC) consisting of a tunneling layer with a low refractive index sandwiched
between two twisted dielectric layers. The 2D photonic crystal is a d= 220-nm-thick crystalline silicon membrane (nSi ¼ 3:48) with C6v symmetry-
protected triangular shape air holes. The triangular holes have a side length of b ¼ 279nm and the unit cell pitch is a ¼ 478nm. The interlayer
tunneling membrane has a thickness of h ¼ 250nm and the refractive index of polymethyl methacrylate (PMMA) is nPMMA ¼ 1:48. b Two layers are
separated by PMMA with only a subwavelength distance h, suggesting an evanescent coupling between two layers of photonic crystals. c Moiré
pattern for a TBPhC, where the two dielectric layers are rotated by angle θ with respect to each other around the AA-stacked center. In a moiré
pattern, lattice structure locally resembles the regular stacking arrangement such as AA, AB, and BA. d Evanescent waves from two layers of photonic
crystals are mostly coupled in the AA-stacked region
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bands (see Fig. 2a). The C6v symmetry of the lattice also
protects a Dirac-like crossing at the K point centered at the
Dirac cone frequency (fDC), which is equivalent to the Fermi
level in graphene (see Fig. 2a). In this monolayer PhC, quasi-
TE electromagnetic modes that primarily propagate through
air holes are weakly coupled with neighboring holes,
mimicking how electrons hop between carbon atoms in
graphene. The nearest- and next-nearest-neighbor coupling
strength of electromagnetic modes can be controlled inde-
pendently by varying the monolayer geometry, providing a
platform to implement a broad class of tight-binding mod-
els. Building off this monolayer band structure, two sheets of
photonic crystals are then coupled by an interlayer tunneling
membrane to accurately recreate the AB- and AA-stacked
configurations of bilayer graphene. In the AA-stacked con-
figuration, two layers of PhCs are exactly aligned, while in
the AB-stacked configuration, the top layer honeycomb
center lies over one of the bottom layer’s triangular airhole
centers. The band structure of the AA-stacked configuration
looks like two copies of the monolayer bands with a vertical
offset of the Dirac cones at the K point (see Fig. 2b). The
AB-stacked configuration has a pair of touching parabolic
bands with additional parabolic bands away from the

touching bands (see Fig. 2c). Note that the AB- and BA-
stacked configurations give identical band structures but not
identical eigenmodes. The frequency separation between the
bands in both stacking configurations is controlled by the
tunneling strength between the two PhC layers, which is set
by the properties of both tunneling membranes and the PhC
layers.
Next, we consider two adjacent PhC layers twisted by an

angle θ relative to one another. This produces a moiré
pattern with a macroscopic periodicity of distinct AA and
AB/BA stacking regions that grow in size as the angle
decreases (Fig. 1c). Because our finite-element calculation
relies on the existence of Bloch waves (see Fig. S1), we
ensure that the structures created by twisting two lattices
relative to each other are exactly periodic, or commen-
surate, by considering only specific twist angles42,

θ ¼ 2arcsinarcsin
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3n2 þ 3nþ 1

p
� �

8 n 2 Zþ

ð1Þ
The twist angle θ controls the energy scale (E= hf) at

which the Dirac cones of the two PhC layers intersect in
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Fig. 2 Band structures. Band structure of the monolayer (a), AA-stacked (b), and AB-stacked BPhCs (c). In b–d, the insets show the respective real-
space configuration of the crystal unit cells. Band structure obtained from the finite-element calculation (black dots) and fitted continuum model
band structure (blue line) of d θ ¼ 3:89� , e θ ¼ 2:65� , and f θ ¼ 1:89� . At small angles, the Dirac cones from each layer are pushed together and
hybridized due to the interlayer tunneling
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momentum space. When this energy scale is comparable
to the interlayer tunneling strength, band hybridization
induces moiré flat bands (see Fig. S2). The moiré flat
bands are fully compressed around the Dirac cone fre-
quency fDC and degenerate at the superlattice K point (see
Fig. 2d–f). Our TBPhCs therefore reproduce a similar
band-flattening mechanism as TBG, eventually becoming
flat with a zero K point group velocity (vg ðKÞ ¼ 0) at a
“magic angle” of 1.89°.
Quasi-TE modes in the moiré bands have symmetry

properties and spatial profiles that agree with electronic
wavefunctions in magic-angle TBG43. For the monolayer
PhC slab, the quasi-TE modes are located across the
entire supercell (Fig. 3a). When two layers of PhC are
twisted, evanescent modes are coupled more strongly in
the AA site than in the AB site (Fig. 1d). For large angles,
the moiré quasi-TE modes start to localize around the AA
site (Fig. 3b, c). At the magic angle θ ¼ 1:89�, as vg ðKÞ
vanishes, the quasi-TE modes become mostly localized
around the AA site (Fig. 3d). This type of localization is
observed over most of the Brillouin zone except at the Γ
point, where the AA site has zero-mode intensity due to
the symmetry (see Fig. S3)43. The moiré modes, including
non-flattened moiré modes, are all low-loss modes with
quality factors (Q-factors) varying from 2´ 105 to 1 ´ 107.
While large, these Q-factors are finite in contrast to the
infinite Q-factors of the monolayer and AA/AB-stacked
photonic crystals modes (see Fig. S4). The localization and
high Q-factor properties of the moiré modes are impor-
tant in the realization of device-based enhancement of
nonlinear effects.
Compared to TBG’s electronic band structure, the Dirac

cone frequency fDC of the TBPhCs depends more strongly
on twist angle and moves 0.2 THz between 3:48� and
1:89� (0.51% of its’ first nearest-neighbor coupling
amplitude, which in TBG would correspond to a roughly
15meV variation in Dirac cone energy). Moreover, com-
pared to graphene, the band structure of TBPhCs has a

greater asymmetry in both the moiré bandgaps (Δfgap) and
K point group velocities (vg ðKÞ) (see Fig. 2f). The bandgap
above the flat band is twice as larger as that below the flat
band (see Fig. 4a). We also find that at angles >3�, the
bottom bands show a much slower dispersion than the
top bands.
To investigate the origin of these differences, we also

calculated the band structure using a plane-wave con-
tinuum model and by considering a low-energy expansion
of the TBG’s band structure. The effective Hamiltonian
consists of Dirac Hamiltonians from both layers, sampled
on momenta that are scattered by the moiré reciprocal
lattice, and off-diagonal interlayer tunneling terms5. We
begin with the block diagonal part, which is the Dirac
Hamiltonians of each monolayer given in terms of the
relative momentum q away from that layer’s K point
(Oðq2Þ):

Hgr Kþ qð Þ � �a t1 � 2t3ð Þ ffiffiffi
3

p

2
σ ´ q � 3a2t2

4
q2 � 3t2

ð2Þ

where σ is the 2 ´ 2 Pauli matrices, a is the lattice
constant, and the ti is the ith nearest-neighbor couplings
in a tight-binding picture for graphene. Note that
although we use tight-binding coefficients to parameterize
our model here, it is still a Bloch wave expansion of
photonic crystal states. Some of the unconventional
behavior can already be explained by this monolayer
Hamiltonian. Due to relatively strong tunneling between
the photonic states of the two layers, if the effective
second nearest-neighbor coupling term (t2) changes by a
fraction of a THz as a function of twist angle, then the
Dirac cone frequency fDC will also vary with twist
angle because of the last term in Eq. 2. A large t2 also
explains the difference between the top and bottom
νg (K) at large angles, due to the frequency-asymmetric
q2 term.

AA

AB BA

AA

Mono

a 51.0a 79.0a 105.0a

1

H
z

–1

� = 3.89° � = 2.65° � = 1.89°a b c d

Fig. 3 Mode localization in the twisted bilayer photonic crystals. a For monolayer photonic crystal slab, the quasi-TE modes at the K points are
itinerant and persist across the entire supercell. b, c At large angle like 3.89° and 2.65°, the quasi-TE modes become localized on the AA-stacked
region in the center of the supercell as θ decreases. d The quasi-TE modes are mostly localized when θ ¼ 1:89�
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We now move to the block off-diagonal terms in the
effective Hamiltonian. The interlayer tunneling in TBG
between pairs of orbital types of different layers (say, AA
or AB) varies smoothly with the periodicity of the moiré
superlattice (see Fig. 1d). This justifies their para-
meterization by just the first-order Fourier coefficients,
commonly labeled ω0 for tunneling between orbitals of
the same type (AA and BB) and ω1 for orbitals of differing
types (AB and BA)1. To open up significant superlattice
gaps, ω0 must be smaller than ω1, with ω0 ¼ 0 maximizing
the superlattice gap, while ω1 defines the effective tun-
neling strength for the magic-angle condition44. This
simple model produces similar bandgaps above and below
the Fermi energy. DFT calculations of lithium-
intercalated TBG, however, show a large disparity in the
top and bottom gaps45. This asymmetry was attributed to
the Li atoms preferentially enhancing or screening the
tunneling between the layers at different energies, affect-
ing the effective interlayer tunneling strength for the top
and bottom bands differently. As the photonic crystal
states are not as tightly bound as the pz orbitals in gra-
phene (see our estimations of the monolayer’s ti values
below), having an asymmetry in the effective interlayer
tunneling at high and low frequency is even less surprising
here. Therefore, we fit our continuum model to the
TBPhC band structures obtained by finite-element mod-
eling by tuning variables in the following manner: for the
monolayer model, we pick fixed values of t1, t2, and t3

across all twist angles, but shift the Dirac cone frequency
to a constant value; for the interlayer tunneling, we pick
ω0 and ω1 independently for the top and bottom bands,
giving four variables: ωt

0; ω
t
1; ω

b
0; ω

b
1. In addition, near the

magic angle, these terms should become similar, so we
allow them to generically depend on θ.
We find that ½t1; t2; t3� ¼ ½�39; 17;�5�THz works well

for all twist angles. For the low-energy Hamiltonian, vg ðKÞ
depends on t1 � 2t3; the asymmetry in vg ðKÞ sets the
strength of t2, so we increase t1 and t3 together to give a
sequence of couplings that show reasonable decay in
strength. In contrast, for TBG the coupling strengths given
by DFT simulations decay by roughly a factor of 10 between
t1 and t2

46, indicating that these electronic states are much
more tightly bound than their photonic counterparts.
At the magic angle (θ ¼ 1:89�) we find good agreement

when selecting ωt
0 ¼ 1:43 and ωt

1 ¼ 1:85THz for the top-
side tunneling (above Dirac frequency) and ωt

0 ¼ ωb
1 ¼

1:85THz for the bottom-side tunneling (below Dirac fre-
quency). We obtain a good fit to the bands using a linear
dependence of the tunneling strengths on the twist angle

ωt
i θð Þ ¼ 1� 0:15 θ � θmð Þ½ �ωt

i θmð Þωb
i θð Þ

¼ 1þ 0:15 θ � θmð Þ½ �ωb
i ðθmÞ

ð3Þ

for θ evaluated in degrees. At θ ¼ 4�, the tunneling
coefficients are roughly 30% weaker for the top side and
30% stronger for the bottom side. The enhancement of the
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bottom-side tunneling is counterbalanced by a suppression
of the top-side tunneling, implying that the “net” tunneling
is unchanged, while its distribution between the relevant
orbitals is modified, in agreement with the study of Li-
intercalated TBG. This unusual interlayer tunneling beha-
vior results in the severe top band and bottom band
asymmetry we observe in the TBPhC’s band structure.
Our model gives a very reliable reproduction of the

bands close to the Dirac cone frequency, with only small
disagreements occurring in the top and bottom parts of
the flat bands at the magic angle (see Fig. 2d–f). This is
due to terms not captured by our simple model. Specifi-
cally, we omit the momentum dependence of the inter-
layer tunneling terms47,48 that provide a more accurate
description of their Fourier transform.
The photonic moiré flat bands exhibit slow-light effects

both at the magic angle θ= 189° and at θ= 2°. Figure 4b
shows the group velocity (νg= dω/dk) is drastically reduced
in the Γ to K direction. While νg= 0.2c–0.68c in a mono-
layer PhC, in the TBPhCs at θ= 2°νg is reduced to 0.005c
near the K point and never exceeds 0.04c over the entire
Brioullin zone. At the magic angle θ= 189°, νg is reduced to
zero at the K point and never exceeds 0.08c. Note that
although the magic angle is at θ= 189°, because of the
higher νg around Γ point at 1.89°, the narrowest moiré
bandwidth, Δfband ¼ 0:217THz, is obtained at θ= 2° (see
Fig. 3a). The small νg over the entire Brillouin zone is
essential for all-directional photonic devices and any device-
based enhancement of nonlinear effects.

We also studied the dependence of the TBPhC band
structure on the geometry parameters. We fix θ ¼ 2:13�

and individually vary the tunneling layer thickness (h),
the refractive index of the tunneling layer (ntunneling), and
the refractive index of the PhC bilayer (nPhC). Varying h,
we find that fDC remains unchanged and obtain a
minimum in vg ðKÞ at h ¼ 250nm and the narrowest
bandwidth Δfband ¼ 0:185THz at h ¼ 240nm (see Fig.
5a). Increasing ntunneling decreases fDC, and vg ðKÞ is
reduced to zero when ntunneling ¼ 1:59, while the nar-
rowest bandwidth Δfband ¼ 0:18THz is obtained at
ntunneling ¼ 1:55 (see Fig. 5b). Decreasing nPhC increases
fDC, and vg ðKÞ is reduced to zero when nSi ¼ 3:05, while
the narrowest bandwidth Δfband ¼ 0:2THz is obtained at
nPhC ¼ 3:3 (see Fig. 5c). In all three cases, the Dirac cone
frequency fDC is modified due to the change in the
effective refractive index of the TBPhC. To study how
the interlayer tunneling depends on the three geometry
parameters, we again fitted the continuum model to the
band structures obtained from finite-element modeling
(wee Fig. S5). Starting from the original values of h ¼
250nm; ntunneling ¼ 1:48, and nPhC ¼ 3:48, and we
obtain the following dependence of the tunneling
parameters ωt

0; ω
t
1; ω

b
0; ω

b
1 on the three geometry

parameters:

ωb
1 ¼ ωb

1ðθmÞ
ωj
i ¼ βωj

iðθmÞ
ð4Þ
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with

β hð Þ ¼ 1� h�250nm
135nm

β nPhCð Þ ¼ 1� 0:85ðnPhC � 3:48Þ
β ntunneling
� � ¼ 1þ ðntunneling � 1:5Þ

ð5Þ

Changing the geometry parameters affects all tunneling
parameters except the AA orbital tunneling represented
by ωb

1. As h or ntunneling increases or nPhC decreases, the
strength of the tunneling becomes smaller. It is possible
that the change in these parameters modifies not only the
ω terms but also the in-plane couplings ti, but near the
magic angle, the band structure is predominantly defined
by a ratio between these two types of model parameters1;
therefore, we consider the ti fixed for simplicity. The
parameter independence of ωb

1 is motivated by observa-
tions of the near parameter independence of the bottom
bands, which is likely because the geometry parameters
predominantly modify the higher frequency photonic
modes (see Fig. S6). Understanding the dependence of the
band structure on the geometry parameters provides
additional degrees of freedom in further engineering the
optical moiré flat band and indicates the possibility of
having a magic angle at higher θ, where localized modes
are closer to each other in distance30.

Discussion
Our numerical calculations show that the dispersion of

electromagnetic waves can be manipulated dramatically,
from highly dispersive to flat, by simply changing the
angle between two photonic crystal slabs. We identified
the magic angle where moiré flat bands appear, leading to
a large reduction in group velocity compared to mono-
layer PhC. At this angle, TBPhCs exhibit slow-light
behavior within an extremely narrow bandwidth and the
eigenmodes are highly localized in the regions exhibiting
AA stacking. We studied the photonic band structure
behavior using a plane-wave continuum model and found
that TBPhCs differ from TBG both in intralayer coupling
and interlayer tunneling characteristics. We find that
interlayer tunneling can be controlled by tuning the
geometry parameters ðh; ntunneling; nPhCÞ, facilitating the
design of an optical flat band.
The “twisted photonic crystal toolkit” we present here

provides access to slow-light effects and light localization
that cannot be accomplished by conventional photonic
crystals. Therefore, TBPhCs will drastically enhance
access to optical nonlinearities and quantum interactions
in photonic devices. Because TBPhCs are designed for
standard silicon-on-substrate wafers and can be fabricated
by a wafer bonding and transferring technique, the fab-
rication of such devices is immediately feasible.

Materials and methods
Simulation
The finite-element band structure, eigenmode, and Q-

factor simulations were computed using three-
dimensional finite-element methods (COMSOL Multi-
physics 5.4). We first calculated all the modes in a PhC
unit cell/super unit cell with Floquet periodic boundary
conditions in the two lattice–vector directions and per-
fectly matched layers at the boundaries in the out-of-
plane direction. TM/TE-polarized modes were selected by
evaluating the energy ratio of the electric and magnetic
fields in all directions. The simulations were carried out
on a Dell M630 computer (2 × Intel Xeon CPU E5-2697
v4 2.30 GHz 18 core, 247 Gb RAM, 1 GbE, FDR Infini-
band). The time to calculate the photonic band structure
at the magic angle is roughly 24 h. The plane-wave con-
tinuum model is implemented using MATLAB. The
estimated calculation time is a few seconds per band
structure.
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