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Abstract
NaYF4:Ln

3+, due to its outstanding upconversion characteristics, has become one of the most important luminescent
nanomaterials in biological imaging, optical information storage, and anticounterfeiting applications. However, the
large specific surface area of NaYF4:Ln

3+ nanoparticles generally leads to serious nonradiative transitions, which may
greatly hinder the discovery of new optical functionality with promising applications. In this paper, we report that
monodispersed nanoscale NaYF4:Ln

3+, unexpectedly, can also be an excellent persistent luminescent (PersL) material.
The NaYF4:Ln

3+ nanoparticles with surface-passivated core–shell structures exhibit intense X-ray-charged PersL and
narrow-band emissions tunable from 480 to 1060 nm. A mechanism for PersL in NaYF4:Ln

3+ is proposed by means of
thermoluminescence measurements and host-referred binding energy (HRBE) scheme, which suggests that some
lanthanide ions (such as Tb) may also act as effective electron traps to achieve intense PersL. The uniform and spherical
NaYF4:Ln

3+ nanoparticles are dispersible in solvents, thus enabling many applications that are not accessible for
traditional PersL phosphors. A new 3-dimensional (2 dimensions of planar space and 1 dimension of wavelength)
optical information-storage application is demonstrated by inkjet-printing multicolor PersL nanoparticles. The
multicolor persistent luminescence, as an emerging and promising emissive mode in NaYF4:Ln

3+, will provide great
opportunities for nanomaterials to be applied to a wider range of fields.

Introduction
In the past decades, lanthanide-activated NaYF4

(NaYF4:Ln
3+) has become one of the best-known lumi-

nescent nanomaterials1–3. The tremendous and ongoing
interest in NaYF4:Ln

3+ mainly comes from its outstanding
upconversion characteristics, including the highest
upconversion efficiency in single nanoparticles, excellent
wavelength tunability via energy-transfer engineering, and
superior emission stability against irradiation and heat

exposure4–6. Consequently, NaYF4:Ln
3+ has found a wide

range of applications in in vivo/in vitro bioimaging7–13,
biological therapy14–17, optical sensors18–20, 3-
dimensional (3D) optical information storage21,22, and
volumetric 3D displays23. Over the past twenty years, the
efforts to explore more functionalities in NaYF4:Ln

3+

nanoparticles have never stopped. However, the large
specific surface area of nanoparticles easily causes emis-
sion quenching, which greatly hinders the discovery and
application of new functionalities.
Persistent luminescence (PersL, also known as after-

glow) is a slow photon emission resulting from the con-
trolled release of charge carriers from traps in solid-state
luminescent materials24–26. PersL materials with unique
delayed emission have received much attention and
exhibit great promise in night-vision security27–30,
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bioimaging30–42, optical information storage43–51, and
anticounterfeiting applications52,53. In the biological field,
PersL nanoparticles with near-infrared (NIR) emission
have been developed as an advanced fluorescent probe for
in vivo/in vitro bioimaging30–42. NIR PersL imaging
technology enables a high signal-to-noise ratio and deep-
tissue detection, as clearly demonstrated in small-animal
models. Similar to upconversion, the NIR PersL imaging
mode can also be merged into multimodal imaging
technologies or theranostic platforms, thus opening up
new opportunities for future biomedical applica-
tions37,38,40,41. On the other hand, PersL materials with
deep traps capable of storing incident photon energy have
been investigated for optical information-storage appli-
cations43,44,46–51. The readout information delivered by
controlled photon emissions includes wavelength and
intensity as additional dimensions for each pixel in a
plane. This allows wavelength-multiplexing or intensity-
multiplexing technologies for multidimensional optical
information storage44,51,54.
Undoubtedly, whether in bioimaging, optical informa-

tion storage, or anticounterfeiting, nanoparticles with
bright PersL and multicolor emissions are indispensable
for practical applications, as the nanoscale size is directly
connected to higher spatial resolution and larger infor-
mation capacity. Although they have long been desired,
unfortunately, chemically stable and bright PersL particles
with sizes less than 100 nm reported to date are majorly
limited to ZnGa2O4 and its germanium-substituted spinel
derivatives. The wavelength of PersL available in these
nanoparticles is approximately 700 nm (activated by Cr3+)
or 500 nm (Mn2+).31–33,35–37,39–41,55,56 Recently, Han et al.
reported multicolor PersL in SiO2/CdSiO3 hybrid nano-
particles, giving a new direction for high-contrast bioi-
maging applications.57 Also, Ou et al. reported very
exciting results of PersL in lanthanide-doped NaLuF4:
Ln3+@NaYF4 nanoscintillators to achieve ultralong-lived
X-ray trapping for flat-panel-free, high-resolution, three-
dimensional imaging58. This pioneering work on new
PersL nanomaterials opens a window to explore new
applications in the information and biological fields.
In this work, multicolor PersL nanoparticles with tun-

able emission maxima from 480 to 1060 nm are reported
in NaYF4:Ln

3+. NaYF4 is chosen as the host and produces
intense X-ray-irradiated PersL and stable optical perfor-
mance at a nanoscale. The PersL intensity can be greatly
enhanced by using a classical surface-passivated
core–shell structure strategy. Excitingly, the lanthanide-
doping protocol is effective in realizing PersL color tun-
ability in NaYF4:Ln

3+, enabling a new application in
multidimesional optical information storage. The multi-
color PersL nanoparticles reported in this work may
provide a new emissive mode for the extensively studied
NaYF4:Ln

3+ nanomaterials and more possibilities for

multifunctional applications. More importantly, this work
provides an interesting family of PersL materials with
tunable emissions and controllable nanosizes, thus paving
an avenue toward optical information storage, antic-
ounterfeiting, and bioimaging applications.

Results
PersL in NaYF4:Ln

3+ and the core–shell structure
A surface-passivated core–shell structure was adopted

for the synthesis of nanoparticles (i.e., NaYF4:
Ln3+@NaYF4, as schematically illustrated in Fig. 1a),
which would impact a positive effect on the PersL per-
formance, as reported in the upconversion studies9.
Taking the Tb3+-doped nanoparticles as an example, the
pure hexagonal phase of β-NaYF4 was confirmed in the
NaYF4:Tb

3+ cores. After coating an Ln3+-free shell, there
was no change in the XRD pattern (Fig. S1). The TEM
images show that the synthesized NaYF4:Tb

3+ cores are
well-shaped nanospheres with an average diameter of
~13.3 nm (Fig. 1b). The average size of the NaYF4:
Tb3+@NaYF4 nanoparticles is increased to ~16.5 nm (Fig.
1c), indicating that Ln3+-free NaYF4 is epitaxially grown
on the shell layer.
Interestingly, bright-green PersL from NaYF4:Tb

3+

nanoparticles in cyclohexane solution can be observed by
the naked eye after X-ray irradiation for 10min (X-ray
with a dose rate of ~2.58 μSv/s from a portable X-ray
tube). The PersL intensity of the NaYF4:Tb

3+@NaYF4
nanoparticles (in powder) was greatly enhanced compared
to that of the cores (the inset of Fig. 1f), giving luminance
higher than 0.32 mcd/m2 1800 s after turning off the X-
ray source (Fig. S2). The NaYF4:Tb

3+@NaYF4 nano-
particles still gave strong PersL even at very low irradia-
tion dose (total dose of 38.7 μSv, irradiation time of 15 s)
as shown in Fig. S3a. Moreover, the PersL intensity was
linearly increased with the increase of irradiation time up
to 4500 s (Fig. S3b), which indicated that the nano-
particles possessed a high storage capacity of X-ray-
induced charge carriers in traps and the used X-ray dose
rate was quite small to reach saturation charging. This left
much room to use an X-ray irradiator with a larger irra-
diation dose rate.
To reveal the possible reason for the PersL enhance-

ment, PL spectra, TL glow curves, and PersL decay curves
of the two samples were characterized. As shown in Fig.
1d, the X-ray-excited luminescence (RL) intensity of Tb3+

at ~550 nm is enhanced by 1.5 times after the NaYF4
coating (Fig. 1d). Additionally, the TL intensity and the
PersL intensity of the NaYF4:Tb

3+@NaYF4 nanoparticles
are both ~5 times higher than those of the cores (Fig. 1e,
f). On the other hand, the peak temperature and the range
of the two TL glow curves are almost identical, suggesting
that the PersL would be originated from the same traps.
The above results indicate that the surface passivation

Zhuang et al. Light: Science & Applications          (2021) 10:132 Page 2 of 10



strategy that isolates the activators away from surface
quenchers is valid to block energy transfer to surface
quenchers (Fig. 1a)59,60. Moreover, the enhancement of
PersL is more significant than that of RL. This is possibly
because the charge carrier transferring from the traps to
the surface quenchers could also be blocked by the surface
passivation process (also refer to the energy-level diagram
in Fig. 2a).
We further studied the effect of the core–shell structure

on the PersL properties of other NaYF4:Ln
3+ nano-

particles. The RL and PersL intensities in all of the syn-
thesized NaYF4:Ln

3+ nanoparticles are enhanced after
growing the NaYF4 coating (Ln=Nd in Fig. 1g, i; Ln = Er,
Dy, Ho, and Tb@Eu in Figs. S4, S5). Additionally, the
emission intensity in the TL glow curve is entirely

increased without greatly changing the TL peak tem-
peratures (Ln=Nd in Fig. 1h; Ln= Er, Dy, Ho, and
Tb@Eu in Fig. S6). Accordingly, the surface passivation
strategy based on the core–shell structure should be a
general and effective route to optimize the PersL prop-
erties in nanoparticles with a large surface area. In the
following sections, the core–shell structure was adopted,
unless otherwise specified. TEM images of NaYF4:Ln

3+

and NaYF4:Ln
3+@NaYF4 nanoparticles (Ln=Dy, Ho, Nd,

Er, and Tb@Eu) are given in Figs. S7–S11.

Multicolor PersL achieved by lanthanide substitution
The emission wavelength of PersL is highly significant

for optical information storage, anticounterfeiting, and
bioimaging applications; however, tuning the PersL
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Fig. 1 PersL enhancement by the surface-passivated core–shell structure a Schematic illustration of the core–shell structure and proposed PersL
enhancement mechanism. The description of particle components is given on the right side. b–c TEM images of NaYF4:Tb

3+ and NaYF4:Tb
3+@NaYF4

nanoparticles. The insets show the particle size distributions of the nanoparticles. d–f RL spectra (d), TL glow curves (e) and PersL decay curves (f) of
NaYF4:Tb

3+ and NaYF4:Tb
3+@NaYF4 monitored in the range of 400–750 nm. The insert of (f) shows the PersL images of NaYF4:Tb

3+ and NaYF4:
Tb3+@NaYF4 dispersed in cyclohexane. g–i RL spectra (g), TL glow curves (h) and PersL decay curves (i) of NaYF4:Nd

3+ and NaYF4:Nd
3+@NaYF4

monitored in the range of 400–1000 nm. The RL spectra in (d) and (g) were measured under X-ray excitation. The TL glow curves in (e) and (h) as well
as the PersL decay curves in (f) and (i) were recorded after X-ray irradiation for 5 min
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wavelength is still a major challenge for nanoparticles. In
this work, considering that the Y3+ sites in the NaYF4 host
can provide suitable accommodation for a variety of tri-
valent lanthanides, the lanthanide substitution was
adopted to realize multicolor PersL. As expected, when
doping with Tb, Er, Dy, Ho, Tb@Eu, and Nd into the
NaYF4 cores, multicolor PersL in an ultrawide range from
480 to 1060 nm is achieved (e.g., Dy3+: 4F9/2→

6H15/2 at
480 nm; Tb3+: 4D4→

7F6 at 490 nm; Er3+: 4S3/2→
4I15/2 at

542 nm; Tb3+: 4D4→
7F5 at 545 nm; Dy3+: 4F9/2→

6H13/

2 at 570 nm; Eu3+: 5D0→
7F2 at 615 nm; Ho3+: 5F5→

5I8
at 645 nm; Er3+: 4F9/2→

4I15/2 at 660 nm; Nd3+: 4F3/
2→

4I9/2 at 862 nm; Nd3+: 4F3/2→
6I11/2 at 1060 nm, Fig.

3a). Encouragingly, green (Tb3+), white (Dy3+), and red
(Ho3+) PersL of nanoparticles dispersed in cyclohexane
can be clearly observed by the naked eye after X-ray
excitation at RT (Fig. 3b), which demonstrates their great

potentials in inkjet printing and biomedical applications.
The emission colors of the synthesized PersL nano-
particles are charted in the Commission Internationale de
I’Eclairage (CIE) chromaticity diagram, forming a triangle
in the green–white–red area (Fig. 3c).
To determine the origin of multiple PersL bands from a

single activator, temperature–wavelength-intensity TL
glow graphs (3D plots) were constructed. As shown in Fig.
3d, four narrow TL bands due to the Tb3+: 5D4→

7F3,4,5,6
transitions are recorded in the NaYF4:Tb

3+@NaYF4
nanoparticles. All the emissions give a main TL peak at
~350 K, indicating that they should be originated from the
same traps. The independence of TL glow peaks on dif-
ferent transitions is also found in other Ln3+-activated
nanoparticles (see Figs. S12–S16). A major advantage of
multiple narrow-band PersL emissions is that high-quality
optical signals can be obtained by selecting a suitable
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data provided by Dorenbos62. The trap depth was estimated to be 0.64 eV according to the TL measurements presented in (c). The overall process of
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optical filter to cut off other wavelengths. This will be
further discussed in the application section.
All of the synthesized nanoparticles show intense PersL

at RT, holding PersL intensities higher than the noise level
for 1800 s after turning off the X-ray source (Fig. 3e, f). It
should be noted that the NaYF4:Tb

3+@NaYF4 nano-
particles have much more intense PersL than other Ln3+-
activated nanoparticles.

PersL mechanism in NaYF4:Ln
3+ nanoparticles

To understand the PersL mechanism in NaYF4:Ln
3+

nanoparticles, an energy-level diagram is illustrated in Fig.
2a to interpret the charge-carrier transition process. Upon
the X-ray irradiation, many ionized electrons are pro-
duced by cascading collisions of hot electrons with atoms
in the material61. The following low-energy collisions may
lead to electron excitation from the valence band (VB) to
the conduction band (CB), resulting in the formation of
many electron–hole pairs. The generated electrons and
holes are subsequently captured by electron traps and
activators (e.g., Tb3+), respectively. After turning off the

X-ray source, the trapped electrons can be thermally
released to the CB and further migrate to the excited
states of Tb3+. The green PersL comes from the recom-
bination of electrons and holes of the Tb3+ ions. It should
be noted that the electrons excited by X-ray or released
from traps to the CB may also freely migrate to lumi-
nescent quenchers if the defect density is high enough.
Thus, blocking the energy transfer toward surface
quenchers should be an effective way to achieve efficient
X-ray-irradiated PersL in nanoparticles (Fig. 2a).
Furthermore, the host-referred binding energy

(HRBE) and vacuum-referred binding energy (VRBE)
schemes of NaYF4 were constructed based on the
experimental values provided by Dorenbos (Fig. 2b)62.
The ground-state (GS) energies of all 14 divalent lan-
thanides (upper zigzag, Ln2+:4 f) and 14 trivalent lan-
thanides (lower zigzag, Ln3+:4 f) with respect to the CB
and VB can be found in Fig. 2b. According to the HEBE
scheme, the GS energy of Tb3+ is 3.92 eV above the top
of the VB, and Tb2+ is 0.64 eV below the bottom of
the CB.
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On the other hand, the trap depth for the observed
green PersL in NaYF4:Tb

3+@NaYF4 was estimated by
employing the following formula proposed by Hoogen-
straaten63:

βE
kB � T2

m
¼ sexp

�E
kB � Tm

� �
ð1Þ

where β (K/s) is the heating rate, E (eV) is the trap
depth, kB is the Boltzmann constant, Tm (K) is the peak
temperature in the TL glow curves, and s (s−1) is the
frequency factor (Fig. 2c). The straight line fitting of ln
(Tm

2/β) against 1/(kB·Tm) suggests that the trap depth E in
NaYF4:Tb

3+@NaYF4 is 0.73 eV, which is close to the
energy difference between the GS of Tb2+ and the bottom
of the CB (0.64 eV). Accordingly, we consider that the
main traps contributing to the intense PersL of the NaYF4:
Tb3+@NaYF4 nanoparticles are probably due to the Tb2+

states. In other words, a portion of the Tb3+ ions could be
temporarily reduced by the X-ray-generated electrons
into a metastable trap state, and the other Tb3+ ions act as
activators. The dual roles of Tb ions as electron traps and
activators consequently enable the intense PersL in the
Tb3+ singly doped NaYF4 nanoparticles.
The TL glow curves of other Ln3+-activated core–shell

NaYF4 nanoparticles are also characterized (Figs. 3d,
S17–S20). The NaYF4:Nd3+@NaYF4 nanoparticles show
multiple TL bands. The trap-depth estimation of the main
peak suggests a value of 1.05 eV (Fig. 2d), basically con-
sistent with the energy difference between the GS of Nd2+

and the bottom of the CB (1.43 eV). The other TL bands
could be attributed to unknown traps that may intrinsi-
cally exist in the NaYF4 nanoparticles. The TL glow
curves of the NaYF4:Er

3+@NaYF4 and NaYF4:
Ho3+@NaYF4 nanoparticles indicate that the relatively
weak PersL may be mainly derived from intrinsic traps
(Figs. S18, S19). The NaYF4:Tb

3+@NaYF4:Eu
3+@NaYF4

nanoparticles show a TL glow curve similar to that of
NaYF4:Tb

3+@NaYF4 (Fig. S20), which supports that Eu3+

PersL should be stemmed from Tb3+ via PersL energy
transfer. It should be acknowledged that the contribution
of intrinsic traps or Ln-induced traps to PersL for dif-
ferent activators is unclear yet and deserves deeper
investigations in further studies.

Applications of multicolor persistent luminescent
nanoparticles
The NaYF4:Ln

3+@NaYF4 nanoparticles exhibit desir-
able morphology (~20 nm in size and a nearly spherical
shape), narrow-band multicolor PersL (wavelength tun-
able from 480 to 1060 nm), and excellent chemical/dis-
persion stability in various solvents, which suggests great
promise in optical information storage, anticounterfeiting,
and bioimaging applications. In this work, we focus on

optical information storage, aiming to bring new break-
throughs in multidimensional information storage by
utilizing the developed multicolor PersL nanoparticles.
An inkjet printing system was applied to output user-

defined 2-dimensional (2D) patterns (Fig. 4a). Lumines-
cent inks containing NaYF4:Ln

3+@NaYF4 nanoparticles
were installed in the printing system (Fig. 4b, photograph
of NaYF4:Tb

3+@NaYF4 ink). 2D patterns can be printed
on a glass sheet, which is hardly recognizable under nat-
ural light (Fig. 4c). After X-ray irradiation, the printed 2D
pattern made up of long-lasting PersL nanoparticles can
be read by an image sensor in the dark. Fig. 4e gives an
example of a printed emergency exit sign, which is read-
able for more than 600 s. The enlarged photograph of the
printed pattern under a fluorescence microscope indicates
that the size of a single-print dot is ~60 μm (Fig. 4d).
The main principle of a proposed 3D optical informa-

tion storage scheme is schematically illustrated in Fig. 4f.
Three kinds of luminescent inks containing different
NaYF4:Ln

3+@NaYF4 nanoparticles (Ln=Tb, Dy, and Ho)
were applied to print overlapping patterns on the same
glass sheet (the information write-in step). Upon X-ray
irradiation, the luminescent patterns are activated. Sub-
sequently, the spectral information of each pixel in 2D
space was collected by a full-spectral image sensor. The
spectral information can be decomposed into three
groups of independent patterns after passing through
appropriate optical filters (information readout). For
example, we printed three quick-response (QR) codes on
a glass sheet by using NaYF4:Ln

3+@NaYF4 (Ln=Tb, Dy,
and Ho) PersL inks. The original luminescent image
contains mixed information, which is further interpreted
into three readable QR codes after passing through 545BP
(exclusively transmittable by the Tb3+: 4D4→

7F5 emis-
sion), 570BP (Dy3+: 4F9/2→

6H13/2), and 605LP (Ho3+:
5F5→

5I8) optical filters (Fig. 4g). Additionally, the inkjet-
printing scheme based on multicolor PersL nanoparticles
can be used to record combined graphic and textual
information (Fig. 4h). With these results, the multicolor
PersL with narrow emission bands provides several
independent wavelength channels for signal readout, thus
enabling 3D information storage on a single layer of
recording medium. Meanwhile, the signal readout based
on PersL shows a lower noise level than the online-excited
fluorescence mode, leaving room for achieving a high
signal-to-noise ratio. Moreover, these PersL nanoparticles
have great potentials for bioimaging applications, as PersL
in the first and second biological windows can be realized
by doping Nd or Er.

Discussion
We reported multicolor PersL in NaYF4:Ln

3+@NaYF4
nanoparticles with a surface-passivated core–shell struc-
ture. The surface-passivation strategy was proven valid to
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enhance the RL and PersL intensities for all the synthe-
sized nanoparticles by isolating the activators away from
the surface quenchers. The NaYF4:Ln

3+@NaYF4 nano-
particles showed narrow-band PersL, which was tunable
in a broad range from 480 to 1060 nm. By means of TL
measurement and the HRBE scheme, a possible
mechanism for PersL in NaYF4:Ln

3+ was proposed, which
suggested that some lanthanide ions (such as Tb) might
act as effective electron traps to achieve intense PersL. We
also demonstrated a 3D optical information-storage
scheme by using multicolor PersL nanoparticles. We
firmly believe that the discovery of multicolor PersL in the

NaYF4:Ln
3+ nanoparticles well known for upconversion

studies will provide great opportunities for nanomaterials
in the fields of optical information storage, antic-
ounterfeiting, and bioimaging.

Materials and methods
Chemicals and materials
Tb(CH3COO)3·6H2O (99.9%), Er(CH3COO)3·6H2O

(99.9%), Dy(CH3COO)3·6H2O (99.9%), Nd(CH3COO)3·6H2O
(99.9%), Ho(CH3COO)3·6H2O (99.9%), Eu(CH3COO)3·6H2O
(99.9%), Y(CH3COO)3·6H2O (99.9%), NaOH (99.9%), NH4F
(99.9%), 1-octadecene (ODE, 90%), and oleic acid (OA, 90%)

a b c d

e

f g

h

0 s 30 s 60 s 120 s 180 s 300 s 360 s 480 s 600 s

3-D Information Write-in

Inkjet
Printing

X-ray
Activ.

3-D Information Readout

PersL Filter 1

Filter 2 Filter 3

Original Image                545BP                 570BP                    605LP

Original Image                545BP                 570BP 605LP

Fig. 4 Applications of multicolor persistent luminescent nanoparticles to optical information storage a–c Photographs of an inkjet printer (a),
luminescent inks (b) and a quartz glass sheet with printed patterns (c) under natural light. d Photograph of the printed pattern under a fluorescence
microscope. The size of a single printed pixel is ~60 μm. e PersL images of a printed pattern (emergency exit sign) with delay time from 0 to 600 s.
The pattern was printed using the NaYF4:Tb

3+@NaYF4 ink and irradiated by the X-ray source for 5 min. f Schematic illustration of the application in 3-
D optical information storage. The upper and lower figures illustrate the information write-in and readout processes, respectively. Three independent
overlapping patterns were printed on a glass sheet. The luminescent patterns were activated after X-ray irradiation. Mixed information was read
directly by an image sensor, and the patterns could be correctly decomposed by using specific optical filters. g, h The original images and
monochromatic images after passing through 545BP, 570BP and 605LP filters. The transmittance spectra of the three optical filters are given in Figs.
S21–S23. The scale bars are 100 μm in (d) and 10 mm in (e, g, and h), respectively.
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were used as raw materials for the synthesis of fluoride
nanoparticles. Deionized water (prepared in the lab), ethanol
(99.7%), cyclohexane (99.7%), acetone (99.5%), or HCl (36%)
were used as solvents.

Synthesis of NaYF4:Ln
3+ nanoparticles

NaYF4:Ln
3+ nanoparticles (cores) were synthesized

using a reported coprecipitation method with some
modifications64. In a typical synthesis procedure, OA
(3 mL) and ODE (7 mL) were put into a 50-mL flask. The
mixture was added to a water solution (2 mL) containing
Y(CH3COO)3 and Ln(CH3COO)3 (Ln=Tb, Er, Dy, Ho,
Eu, or Nd) in a total amount of 0.4 mmol. The molar ratio
of Y/Ln was varied from 95/5 to 80/20. The mixture was
heated to 150°C and kept for 1 h to form a transparent
colorless solution. After cooling to 50°C, a methanol
solution (6 mL) containing NaOH (1mmol) and NH4F
(1.6 mmol) was added into the flask and stirred for 30min.
The solution was heated again to 110°C for 30min to
remove volatile components and further to 300°C for 1.5 h
under an argon flow to promote the coprecipitation
reaction. After cooling to room temperature (RT), the
NaYF4:Ln

3+ nanoparticles were collected by centrifuga-
tion after adding excessive ethanol into the reaction sys-
tem. The NaYF4:Ln

3+ nanoparticles were washed with a
mixture of ethanol and cyclohexane and dispersed in
cyclohexane (4 mL) for further use. For the doping of
Eu3+, a double-layered structure, NaYF4:Tb

3+@NaYF4:
Eu3+, was adopted to obtain better PersL of Eu3+ through
the Tb3+-to-Eu3+ transfer energy. The preparation
method was similar to the following synthesis process of
NaYF4:Ln

3+@NaYF4 core–shell nanoparticles. The opti-
mal doping concentrations for Tb, Dy, Nd, Er, and Ho in
the NaYF4 nanoparticles are 20, 5, 5, 15, and 15mol%,
respectively, according to the TL glow curve measure-
ments (Fig. S24). The optimal doping concentration of
NaYF4:Tb

3+@NaYF4:Eu
3+@NaYF4 is NaYF4:Tb

3+(70 mol
%)@NaYF4:Eu

3+(30 mol%)@NaYF4. The optimal doping
concentrations were used for sample preparation unless
otherwise specified.

Synthesis of NaYF4:Ln
3+@NaYF4 core–shell nanoparticles

NaYF4:Ln
3+@NaYF4 core–shell nanoparticles were

prepared by using the obtained NaYF4:Ln
3+ nanoparticles

as seeds. The detailed procedure was similar to that the
synthesis of cores. Briefly, the same transparent water
solution (2 mL) containing OA (3 mL), ODE (7 mL), and
Y(CH3COO)3 (0.4 mmol) was prepared. A cyclohexane
dispersion (4 mL) of NaYF4:Ln

3+ nanoparticles
(~0.25 mmol) was added to the reaction system along
with a methanol solution (6 mL) containing NaOH
(1mmol) and NH4F (1.6 mmol). The NaYF4:Ln

3+@NaYF4
nanoparticles were then produced using the same reac-
tion conditions and washing method. The NaYF4:

Ln3+@NaYF4 nanoparticles were dispersed in cyclohex-
ane (4 mL) for further use.

Structural and optical characterization
X-ray diffraction (XRD) patterns of the nanoparticles

were examined using an X-ray diffractometer (Bruker, D8
Advance) with Cu Kα radiation. The microstructure was
observed using a field-emission transmission electron
microscope (FE-TEM, FEI, Talos F200s). RL and PersL
spectra were recorded at RT with a fiber-type spectro-
meter (Ocean Optics, QE Pro). The excitation source
came from a portable X-ray tube (Amptek, Mini-X2) with
a maximum output of 10W (typical voltage 50 kV, tube
current 200 μA, and average dose rate 2.58 μSv/s). The
measurement setup for the PersL decay curves and ther-
moluminescence (TL) glow curves was similar to that
reported in our previous work65, except that the X-ray
tube was used as the excitation source (see Figs. S25, S26).
For the measurement of TL glow curves, the nano-
particles (powders) were first exposed to the X-ray source
for 60 s at RT. After turning off the excitation, the TL
signals were simultaneously monitored with a photo-
multiplier tube (PMT) detector (Hamamatsu, R928P) and
a spectrometer (Ocean Optics, QE Pro). The temperature
was controlled by a cooling/heating stage (Linkam,
THMS600E), typically from −23°C to 227°C with a rate of
20°C/min. The measurement system was driven by a
customer-built LabVIEW operation program. Photo-
graphs of PersL-emitting samples (aqueous solutions
containing the nanoparticles or inkjet-printed patterns on
glass sheets) were taken with a digital camera (Canon,
EOS 5D Mark II) in an all-manual mode (exposure time:
3.2 s, aperture: f/3.5, and sensitivity: ISO 12800).

Preparation of luminescent inks
The NaYF4:Ln

3+@NaYF4 (Ln=Tb, Dy and Ho) nano-
particles were centrifuged from cyclohexane and dis-
persed in acetone (6 mL) after sonicating for 20 min. HCl
(0.5 mL) was added to the new solution to remove the
surface oleate capping ligands66. The ligand-free nano-
particles were collected by centrifugation and redispersed
in water to form a stable aqueous ink.

Applications in optical information storage
An inkjet-printing system for nanomaterial deposition

(MicroFab, Jetlab@4) with three different luminescent inks
was used to prepare multilayered patterns of nanoparticles.
The luminescent inks were loaded into different cartridges
connected with 50-μm-diameter piezoelectric-type nozzles.
The driving voltage waveforms and negative-pressure values
of the inkjet printer were adjusted to generate stable and
continuous droplets. The spatial accuracy of the inkjet
printing system was ~5 μm. Quartz glass sheets (50mm×
50mm×1mm) were placed on a substrate under the
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printing nozzle. The temperature of the substrate was set to
50°C. The entire inkjet-printing process was accomplished in
air with ambient humidity higher than 60%. Three over-
lapping layers of nanoparticle patterns using different lumi-
nescent inks were deposited (inkjet-printed) on the quartz
glass sheet. The printed patterns were irradiated by the X-ray
source for 10min. The PersL images were acquired by a
digital camera, with or without specific optical filters.
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