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Quantum-dot microlasers based on whispering
gallery mode resonators
A. E. Zhukov1, N. V. Kryzhanovskaya1, E. I. Moiseev1 and M. V. Maximov2

Abstract
The subject of this paper is microlasers with the emission spectra determined by the whispering gallery modes. Owing
to the total internal reflection of light on the sidewalls, a high Q-factor is achieved until the diameter is comparable to
the wavelength. The light emission predominantly occurs in the plane of the structure, which facilitates the microlaser
integration with other elements. We focus on microdisk lasers with various types of the In(Ga)As quantum dots (QDs).
Deep localization of charge carriers in spatially separated regions suppresses the lateral diffusion and makes it possible
to overcome the undesirable effect of non-radiative recombination in deep mesas. Thus, using conventional epitaxial
structures and relatively simple post-growth processing methods, it is possible to realize small microlasers capable of
operating without temperature stabilization at elevated temperatures. The low sensitivity of QDs to epitaxial and
manufacturing defects allows fabricating microlasers using III–V heterostructures grown on silicon.

Introduction
In recent years, the use of optical communication lines

for data exchange between a processor and memory has
been actively discussed and already partially imple-
mented1. In the ultimate case, optical signals can probably
be used to interconnect photonic and microelectronic
elements in a single chip. The laser miniaturization,
required for a denser device arrangement, also contributes
to lowering the threshold current, facilitates single-
frequency lasing, and also promotes an increase in the
direct modulation bandwidth2. Soon after their inven-
tion3, the ability to reduce the lateral size down to <10 µm
was demonstrated in vertical cavity surface-emitting lasers
(VCSELs)4–6. Together with the progress in epitaxy of
strained quantum wells and in methods of lateral blocking
of charge carriers7, this made it possible to achieve
threshold currents <0.1 mA8, modulation frequencies
over 10 GHz9 and power consumption <100 fJ/bit10.

The use of microlasers in the computers or cellphones
of the future would be greatly facilitated by a low cost of
the laser, which can be achieved in case of simplification
of its design and manufacturing method. The ability to
integrate light emitters with silicon-based components is
also very useful. However, the VCSEL structure, which
comprises distributed Bragg reflectors, layers of gradient
compositions, and oxidized apertures, is quite complex.
Vertical light emission is not convenient for the integra-
tion11, because it requires additional elements such as 45°
microreflectors12, integrated gratings13, microprisms14,
etc. All this, despite the significant success in VCSELs,
motivates the search for microlaser designs that are
simpler than VCSELs, have a lateral light outcoupling, and
can be integrated with Si-based elements, even if such
microlasers have slightly worse performance. All the
above characteristics can be realized with the help of
optical microcavities supporting whispering gallery modes
(WGM), as lasers can be implemented using a thin layer
sequence, very similar to that is commonly exploited in
edge-emitting lasers. No thick distributed Bragg reflec-
tors, layers to be oxidized, or complicated compositional
profiles are required.
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When the in-plane size shrinks to tens or even several
micrometers, non-radiative recombination at the side-
walls can become a serious problem. The first WGM
microlasers were fabricated using the InGaAsP/InP
material system15,16, the advantage of which is an unu-
sually low velocity of surface recombination (≤104 cm/
s17), i.e., more than an order of magnitude lower than that
for (In)GaAs/(Al)GaAs QWs18,19. Meanwhile, InGaAsP/
InP and, albeit to a lesser extent, AlGaInAs/InP materials
suffer from low heterojunction band offsets20,21, which
leads to a poor temperature stability22. The application of
InGaAs/(Al)GaAs materials in WGM microlasers would
be problematic if not for quantum dots (QDs). The
reduced diffusion length and lowered velocity of surface
recombination can prevent an increase in the threshold
current density in small devices23. It has been revealed
that deep etching of a QD material, unlike QWs, does not
result in degradation of the laser performance24. This
behavior is explained by a strong reduction in the diffu-
sion length from several μm in InGaAs QWs to ~0.1 μm
in InAs/GaAs QDs25. Moreover, a low surface recombi-
nation velocity (~5 × 104 cm/s) was found in QD edge-
emitting lasers26. A reduced sensitivity of QDs to defects
also contributes to the achievement of acceptable laser
characteristics even with highly defective materials, e.g.,
grown on a non-parent substrate. In view of the above, we
focused on microdisk lasers with QD-active region.

Epitaxial structures for microlasers
For microlaser fabrication, we used a separate confine-

ment AlxGa1−xAs/GaAs heterostructure. The waveguide
thickness and AlAs mole fraction x is always chosen to
support the fundamental vertical mode only. For x= 0.35,
this corresponds to ~0.6 µm. Because GaAs spacers are
typically 35–50 nm thick27,28, this gives enough space for at
least 10 planes of QDs, including those emitting ~1.3 µm.
Possible vertical alignment of QDs was not taken into
account when choosing the thickness of the spacer layers.
We exploited several types of epitaxial structures. The

first type structures were grown on n+ -GaAs (100)
substrates by molecular-beam epitaxy (MBE) by Innolume
(Dortmund, Germany). They comprise several planes of
InAs/InGaAs Stranski–Krastanow (SK) QDs separated
with GaAs spacers. The active region is deposited from
solid elemental sources at lowered temperature (~480 °C).
First, initial InAs QDs are deposited in SK growth mode
and then they are overgrown with a thin InGaAs layer to
tune the emission wavelength. The amount of InAs in the
initial QDs is typically ~2.5…2.7 monolayers, whereas
the InGaAs covering layer has a thickness of ~5 nm and
the InAs mole fraction of ~15%. The emission wavelength
(ground-state (GS) optical transition) is ~1.27…1.29 µm.
This sort of QDs has previously allowed achieving very
low-threshold current densities29 and high temperature

stability30 in edge-emitting (macro) lasers, so it was very
natural to test them as the active region of injection
microlasers. Hereinafter, microlasers of this type are
referred to as QD-on-GaAs.
The structures for microlasers of another type, which

we called QWD-on-GaAs, are grown by metal-organic
vapor phase epitaxy at the Ioffe institute (St. Petersburg,
Russia) on GaAs substrates misoriented off (100) plane by
6°, which promotes transformation of InGaAs thin layers
of a moderate indium composition (~40%) into a dense
array of islands referred to as quantum well-dots
(QWDs)31. Trimethylgallium, trimethylindium, trimethy-
laluminum, and arsine were used as precursors; tem-
perature of the active region growth was ~500 °C. The
effective thickness of the deposited InGaAs was ~2 nm.
The QWD layer represents a dense array of In-rich islands
with typical lateral size of ~20–30 nm and a height of
~3 nm. A characteristic plan-view TEM image is pre-
sented in the left-hand inset to Fig. 1. The islands tend to
group into elongated nanowire-like objects; the surface
density of the islands in the mid of 1011 cm−2, i.e., ~10
times higher than that of SK QDs. Our idea was to
investigate the influence of the parameters of the active
region on the performance of microlasers: QWDs possess
an order of magnitude higher optical gain compared with
conventional Stranski–Krastanow QDs;32 their spectrum
is shifted to shorter wavelengths (~1.05 µm).
The majority of the experimental results discussed in

the present paper were obtained for microlasers of the
above-mentioned types. Still another type of hetero-
structures we exploited was developed at UCL (London,
UK). They also contain multiply stacked arrays of MBE-
grown InAs/InGaAs QDs described above. The distin-
guishing feature is that the III–V layers are monolithically
grown on silicon substrate with additional transient layers
including a short-period superlattice and dislocation fil-
ters to reduce the density of threading dislocations below

1.5o

p+ GaAs cap6.0

p AlGaAs clad

u.d. GaAs WG + active region

n AlGaAs clad

n+ GaAs buffer

3 µm100 nm

1.0

0.0

|E|

Fig. 1 Microdisk laser. Main panel: SEM image of QD-on-GaAs
microdisk with top contacts. Insets: plan-view TEM image of QWD
array (left panel); electric field distribution (right panel)
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106 cm−2 33,34. The structural properties of QDs grown on
Si are very similar to those grown on GaAs except density
of defects. The Si (100) substrate is 4° misoriented toward
[011], which facilitates single-domain growth. Broad-area
lasers made of epitaxial structures of this sort have
demonstrated promising threshold and reliability char-
acteristics. Our goal was to investigate the possibility of
their application to create microdisk lasers monolithically
integrated with silicon (QD-on-Si). When discussing the
threshold characteristics of microdisk lasers, we also
present the data we obtained for a structure with triple
Ga0.7In0.3N0.02As0.98 quantum wells (QW-on-GaAs)
grown by nitrogen plasma MBE an n+ -GaAs (100)
substrate at TUT (Tampere, Finland). The emission
wavelength is ~1.25 µm; thus, the localization energy of
charge carrier in the active region is close to that in QD-
on-GaAs. These microlasers provide an opportunity to
study the effect of active region quantum dimensionality
on the device performance. Table 1 summarizes the types
of microlasers we studied and their main features.

Microcavity structure
The epitaxial structures of all types are processed into

cylindrical mesas of different diameters D varying from 10
to 50 µm, which are defined photolithographically. No
passivation or coating is applied. A wide variety of etching
techniques have been used and we now rely upon the
inductively coupled BCl3/Ar plasma dry-etching process.
The sidewall verticality within 5° is resulted, Fig. 1.
Although the mode intensity falls off quickly into the
depth of the cladding layer (right-hand inset to Fig. 1), we
found that the etching front should go deep enough, so
the mesa height is ~5 µm. Otherwise, a sharp increase in
the threshold or even complete absence of lasing is
resulted. We also investigated microrings (Fig. 2), as well
as more complex shapes, e.g., race-tracks. Since the
WGMs are concentrated at the periphery of the micro-
cavity, we observe very little effect of the inner holes on
Q-factor, inter-mode distance, mode spectral positions
(inset to Fig. 2), and, to a lesser extent, on their intensities.
Moreover, the removal of some of the active material
leads to a decrease in the current required for the popu-
lation inversion. We guess, for this reason some research
groups prefer to deal with microrings rather than disks

(e.g., 35,36). However, our opinion is not so straightfor-
ward, as an additional open surface can cause additional
non-radiative recombination, and a smaller footprint
increases the electrical and thermal resistances.

Electrical contacts and resistance
Electrical n- and p-contacts are made using AgMn/Ni/

Au and AuGe/Ni/Au metallization, respectively. Top p-
contacts have a few µm smaller diameter than the mesa
itself. The mesas can be planarized, e.g., with SU-8 epoxy
dielectric, and larger contact pads are made over the
coating, Fig. 3. A common n-contact is usually placed on
the bottom side of the conductive GaAs substrate. The
substrate electrical resistance 1=ð2DσÞ is described using
the model of current spreading in a semi-infinite med-
ium with conductivity σ37. Unlike large-area mesas, it
turns out to be small compared with the resistance of the
mesa itself, which is Rbottom � ρdiskπðD=2Þ2 with the
specific resistance ρdisk≈1 × 10−4Ω × cm2, Fig. 4. We did
not find a significant difference in the electrical char-
acteristics of microdisk lasers on a conductive GaAs
substrate made from different epitaxial structures we
exploited.

Table 1 Summary of microlasers

Notation Growth method Active region Quantum dimensionality Substrate Emission wavelength, µm

QD-on-GaAs MBE InAs/InGaAs 0D GaAs(100) ~1.28

QWD-on-GaAs MOCVD In0.4Ga0.6As 0D GaAs 6° off ~1.05

QD-on-Si MBE InAs/InGaAs 0D Si 4o off ~1.3

QW-on-GaAs MBE InGaAsN 2D GaAs(100) ~1.25
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Fig. 2 Microring laser. Main panel: SEM image of QD-on-GaAs
microring. Inset: comparison of emission spectra of microdisk (upper
curve) and microring (lower curve) made of the same structure
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For structures on Si, the n-contact covers the n+ -GaAs
buffer between the microdisks, Fig. 5. The resistance is
determined by the current crowding at the contact
edges38,39. We found40 it can be approximated as

Rtop � ffiffiffiffiffiffiffiffiffiffiffi
ρdiskr

p
=πD

� �
I0 D

2
ffiffiffiffiffiffiffiffiffiffi
ρdisk=r

p
� �

=I1 D
2

ffiffiffiffiffiffiffiffiffiffi
ρdisk=r

p
� �

, r being

sheet resistance of the buffer, Im—modified Bessel
function of the first kind of the m-th order. If the disk
diameter is large, Rtop � ffiffiffiffiffiffiffiffiffiffiffi

ρdiskr
p

=ðπDÞ, which notice-
ably exceeds Rbottom for typical thicknesses of the buf-
fer, Fig. 6. For small diameters (Dt 30 µm), the
asymptotic behavior of the Bessel functions gives
Rtop � ρdisk=πðD=2Þ2, i.e., top location of the n-contact
can be used in this case without compromising the
resistance.

Spectral characteristics and optical loss in QD WGM
microdisks
The emission wavelengths of microlasers are controlled

by the wavelengths of the GS optical transition of the
active region, which in turn is set by their specific features,
such as quantum dimensionality, chemical composition,
growth regime, etc., as summarized in Table 1. WGMs
manifest themselves as sharp lines located near the
maximum of the inhomogeneously broadened QD GS
optical transition, Fig. 7. Usually, the spectra exhibit from
one to four modes simultaneously with a separation
between them of ~5…10 nm being inversely proportional
to D. The mode intensity starts to grow sharply upon
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Fig. 3 Planarization of microlaser. Planarized QWD-on-GaAs
microdisk with contact pad placed aside
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Fig. 4 Electrical resistance. Series electrical resistance of QWD-on-
GaAs microdisk lasers as a function of diameter; line correspond to
specific resistance of 10−4Ω × cm2
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Fig. 5 Arrays of microdisks. 6 × 5 arrays of QD-on-Si microdisks of
different diameters (11, 15…31 μm) with gold-plated buffer layer
between mesas
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Fig. 6 Impact of the n-contact location. Calculated microdisk
resistance for conductive Rbottom (bottom-contact; solid line) and non-
conductive Rtop (top-contact; dashed and dotted lines) substrate with
the conductive buffer of thickness h
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reaching the threshold current, Fig. 8, which evidences the
onset of lasing. Similar behavior is also observed, when
QWD active region is used. The WGM lasing is further
confirmed by narrowing the mode linewidth (inset to
Fig. 8), as expected from the Schawlow-Townes laser
linewidth equation41. At high injections, a gradual ignition
of the adjacent longer-wavelength WGM is observed, Fig.
9, whereas the initial lasing mode declines. Nevertheless,
at certain currents, the side mode suppression ratio is as
high as 25…35 dB, i.e., the laser is quasi-singlemode. Still
higher currents can ignite the next mode, so the spectral
position of the brightest line jumps from one WGM to
another. This phenomenon appears to be similar to the

two-state lasing in quantum-dot edge-emitting lasers42,43,
but its nature is quite different. Different explanations for
the origin of two-state lasing in QDs44–47 always involve a
shorter-wavelength (excited-state) optical transition. In
contrast, the lasing wavelength of the microlasers is red-
shifted remaining within the GS band, and thus can be
caused by an increase in temperature and a resulting shift
of the gain spectrum.
Q-factor of a WGM in a perfect dielectric cylinder is

limited by the light emission through the side surface48,49,
and the loss sharply increases as soon as the diameter
becomes comparable to the wavelength, Fig. 10. Sidewall
roughness causes additional loss, which depends on the
effective volume of the light scatterers50. It can be esti-
mated from the splitting of a single WGM line into a
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doublet owing to the lift of the degeneracy of waves
propagating clockwise and counter-clockwise51,52, inset to
Fig. 10. Suggesting that the surface roughness amplitude
is independent of D, the scattering induced loss / D and
becomes below 2 cm−1 for diameters exceeding 10 µm.
The free carrier absorption and some other mechanisms
known as internal loss in properly optimized QD- and
QWD-based edge-emitting lasers can be t1…
2 cm−1 29,53,54, so the total optical loss in QD-on-GaAs
microdisks of typical size is expected to be about few
cm−1.

Threshold current density
In Fig. 11, the threshold current densities Jth are sum-

marized for microlasers of various types on GaAs sub-
strates. The statistical scatter of the data is probably
associated with some difference in the internal loss
(varying from wafer to wafer) and in sidewall scattering
(varying from one etching process to another). When both
of these effects are at their minimum levels, low values of
Jth are achieved, such as 257 A/cm2 that belongs to 31-µm
QD-on-GaAs microdisk. In general, lower Jth among
other counterparts are achieved in microlasers with these
InAs/InGaAs Stranski-Krastanow QDs, where the
majority of the experimental data can be described as:55

Jth � J2 þ 4j1=D; with J2 � 250 A/cm2 and j1 � 0.38 A/cm.
As D decreases from 50 to 15 µm, Jth rises rather slowly,
from ~0.55 to ~1.2 kA/cm2 in average. We believe these
features can be explained by the low transparency current
density, relatively low optical loss, and suppressed non-
radiative recombination in QD structures.
QWD-on-GaAs microdisks exhibit higher threshold

current densities (on the order of kA/cm2) and stronger
dependence on the diameter (j1 � 0.75 A/cm). We explain

this by smaller localization energy (since their emission is
shifted to shorter wavelengths compared to QD-on-GaAs)
and, therefore, higher population of the waveguide with
charge carriers, which can diffuse to the sidewalls. QW-
on-GaAs microlasers56,57 are characterized by yet higher
values of Jth ~ 10 kA/cm2; the / 1=D term has an order of
magnitude higher coefficient j1 � 4.5 A/cm. This is
despite the fact that the localization energy there is quite
large, since the emission wavelength is ~1.25 µm. The
only reasonable explanation can be a stronger surface
recombination, as the charge carriers in the active region
have the ability to freely approach the edges of the disk.

Microdisk thermal properties
Microdisk chips were mounted onto a copper holder,

Fig. 12, and tested in continuous-wave regime without
external cooling. In QD microdisk lasers with sufficiently
large diameters the characteristic temperatures T0 of
~90–100 K was found58, whereas in smaller microlasers,
Jth increases sharply. It is attributed to a temperature
increment caused by Joule heat. This effect also manifests
itself through a redshift of the WGM lines, Fig. 9. Owing
to a relatively low temperature coefficient (~0.08 nm/K),
the redshift is small, but it increases with increasing
electrical power consumed with a slope determined by the
thermal resistance. The experimental data can be descri-
bed, suggesting the one-dimensional heat flux through the
mesa and the three-dimensional heat flow into the sub-
strate with the mean thermal conductivities κdisk and κsub
of ~0.15 and 0.5 cm ×W/K (solid line in inset to Fig. 12),
which correlate with the thermal conductivity of
Al0.35Ga0.65As and GaAs and, respectively59.
Because of self-heating, there exists a minimum diameter,

until which CW lasing can be realized; for a given microdisk
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size there is an upper limit of the operating temperature,
Fig. 13. For example, Tmax is 110 °C for 30-µm QWD-on-
GaAs disk, but it drops to 40 °C for D= 10 µm. The max-
imum operation temperature we achieved with QD-on-
GaAs microlasers is quite similar being 100 °C for a 30-µm
disk. The model60,61, which takes into consideration the Jth-
vs-D relationship, satisfactorily describes the experimental
data. Self-heating is also responsible for the thermal rollover
behavior, inset to Fig. 13, revealed in the light-current
curves of the microdisk lasers similar to the behavior
reported for VCSELs62–65.

High-speed performance
It was revealed that QWD-on-GaAs microlasers are

capable of providing high-output power emitted into free
space. For example, in a 31 µm diameter QWD-on-GaAs
microdisk we measured a maximum power of 18 mW,
whereas a differential efficiency was ~31%58. This greatly
simplifies (compared with other types of microlasers we
studied) their characterization and, in particular, the
measurements of high-speed modulation performance.
Experiments on large signal modulation were performed
using a 27–1 pseudo random binary sequence; the
microdisk emission was coupled to a lensed fiber and
analyzed with a large bandwidth optical sampling module
and a digital serial analyzer. Error-free data transmission
was realized with a maximum speed of 10 Gb/s66. This
correlates with the doubled values of −3 dB small-signal
modulation bandwidth; f3dB in the 6…7 GHz range was
measured in QWD-on-GaAs microdisk lasers67. Our
results are in agreement with the data reported for QD
microrings68,69. Somewhat better performance was
achieved for InP-based microlasers, which, however,
require cooling as their temperature stability is poor (e.g.,
f3dB of 14-μm InGaAsP/InP microdisk decreases from 20

to 12.4 GHz in the 14–40 °C interval22). In contrast, the
absence of thermal stabilization of the QD microlaser
leads, at a fixed bias, to a decrease in f3dB by only 3%,
Fig. 14.
The dynamic performance of relatively large (>20 µm)

injection microdisks was found to be limited by the
capacitance-resistance time constant and capture times70.
In smaller microdisks, the bandwidth is additionally affec-
ted by overheating ΔT , as f3dB / ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

I � IthðΔTÞ
p

71, Fig. 15.
Meanwhile, the K-factor limited modulation bandwidth, as
extracted from the relationship between the damping rate
and frequency of relaxation oscillations, is above 10GHz72.
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Even higher peak bandwidth of 20 GHz was estimated from
damped oscillations of the WGM intensity observed in
optically pumped 6-µm-microdisk laser73.
The energy-to-data ratio (EDR) is a figure-of-merit for a

laser used for fata transmission74. EDR < 2 pJ/bit55,75 have
been demonstrated for QWD-on-GaAs microdisk lasers.
For QD microrings on silicon the estimate gives a mini-
mum EDR of ~3.4 pJ/bit68. These values are lower ~7 pJ/
bit previously reported for InP microlasers of comparable
size76. The minimum EDR in the QWD-on-GaAs
microdisk is achieved at a bias of about double Ith since
a rapid decrease in f3dB occurs at lower currents, whereas
Joule heat dissipation increases at higher currents, Fig. 16.
The EDR of 100 pJ/bit could be achieved in microdisk
lasers with a diameter of ~4 μm if the problem of over-
heating of small microlasers were solved55.

Microdisk lasers on silicon
Success in synthesis of III–V materials on silicon would

allow combining the capabilities of the CMOS technology
and high-speed optical sources to create optoelectronic
integrated systems for processing and transmitting
information77. Despite the fact that the quality of III–V-
on-Si materials is still inferior compared with those on
GaAs, a reduced sensitivity of QDs to defects has made it
possible to make a breakthrough in Si-based lasers78,79.
The threshold current densities of QD broad-area laser on
silicon (e.g., 62.5 A/cm2 78) are not too far from the best
values for those on GaAs. The threshold currents of QD
microlasers, monolithically integrated with silicon, have
also approached the values typical for GaAs, Fig. 17. In
microring lasers on V-grooved Si, the lowest Jth increases
from 0.42 to 0.61 kA/cm2 as an outer diameter is reduced

from 50 to 30 µm35. We have recently report a lower value
of 0.36 kA/cm2 in 31-µm-microdisk (QD-on-Si), operat-
ing in CW regime without thermal stabilization. Special
mention should be made of microdisk/microring lasers
hybridly integrated with Si or SOI substrates. For these
purposes, heterostructures grown on InP substrates80–82

are usually used. It has been recently demonstrated that
microlasers based on QD synthesized on GaAs sub-
strates36,83,84 can be used as well.
In83, the temporal stability of the emitted power of the

QD-on-Si microdisk laser was analyzed and the mean
time to failure of 8 × 104 h was estimated. This agrees with
the estimated time to failure of 105 h extracted for broad-
area lasers made of similar epitaxial structures79. It should
be noted that although it is significantly better than the
values previously reported for QW lasers on Si sub-
strates85,86, it is still an order of magnitude inferior to the
lifetime of QD lasers on GaAs87.

Conclusion
In conclusion, the use of self-organized QDs in mac-

rolasers has led to a significant reduction of the laser’s
threshold current density and drastic improvement of
their temperature stability. QD lasers have demonstrated
some unique properties such as the possibility to cover
previously inaccessible spectral ranges, ultrawide gain
spectra and lasing spectra, low-intensity noise of indivi-
dual optical modes, etc. This, however, did not strongly
change the market, which is still dominated by QW lasers.
With the advent of microdisk/microring lasers, including
microlasers on silicon, a niche appears for QDs, in which
their specific properties are even more in demand, as they
provide the very possibility of implementing such devices.
The localization of charge carriers in spatially separated
islands makes QD microlasers weakly sensitive both to
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defects arising from the synthesis on a non-native sub-
strate and to those formed during the microcavity etching.
As a result, the design of the device and its manufacturing
technology can be significantly simplified without sacri-
ficing its functionality. Investigations carried out in recent
years have shown not only the fundamental possibility of
creating such QD-based microlasers, but also demon-
strated promising characteristics. For example, low-
threshold microdisk lasers capable of operating at ele-
vated temperatures have been reported; robustness
against deep etching was revealed; monolithic or hybrid
integration with silicon was implemented; some pre-
liminary, but promising results on high-speed operation,
data transmission, and reliability have been achieved. All
this supports our expectations regarding the possible use
of these lasers for optical interconnects and on-chip
optical sources.
Our experimental findings confirm that 3D localiza-

tion of charge carriers in the active region is a key factor
for high-performance microlasers. For example, it was
demonstrated that acceptably low-threshold current
densities can be achieved in microlasers of small dia-
meter with either InAs/InGaAs Stranski-Krastanow
QDs (QD-on-GaAs) or InGaAs dense quantum dots
(QWD-on-GaAs), whereas quantum well-based
microlaser (QW-on-GaAs) suffer from significant sur-
face recombination. When comparing microlasers
based on different types of quantum dots (QD-on-GaAs
and QWD-on-GaAs), we found that deeper localization
energy contributes to better threshold characteristics,
which can be explained by more complete suppression
of charge carrier transport along the GaAs matrix
waveguide. Meanwhile, the higher density of islands in
QWD-on-GaAs structures is possibly the reason for
their higher external efficiency compared to QD-on-
GaAs, which favors their use in various applications,
including optical data transmission.
The recent studies have also revealed a number of issues

to be addressed. First of all, this concerns a further
reduction in the power consumption and heat dissipation,
which should make it possible to realize the high-speed
operation of microlasers with diameters of several
micrometers rather than several tens of micrometers.
Another serious challenge is the suppression of parasites
that reduce the modulation speed. One can also hope for
the development of various schemes for microlaser inte-
gration with functional substrates and photonic elements.
In particular, a possible way to integrate a III–V-based
emitter with silicon is to transfer a prefabricated QD-
based device or an array of devices onto a silicon surface
with the use of a soft intermediate paste capable of
compensating for the difference in thermal expansion
coefficients. The very first steps in this direction have
been made recently.
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