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Abstract
Nodal lines are degeneracies formed by crossing bands in three-dimensional momentum space. Interestingly, these
degenerate lines can chain together via touching points and manifest as nodal chains. These nodal chains are usually
embedded in two orthogonal planes and protected by the corresponding mirror symmetries. Here, we propose and
demonstrate an in-plane nodal chain in photonics, where all chained nodal lines coexist in a single mirror plane
instead of two orthogonal ones. The chain point is stabilized by the intrinsic symmetry that is specific to
electromagnetic waves at the Г point of zero frequency. By adding another mirror plane, we find a nodal ring that is
constructed by two higher bands and links with the in-plane nodal chain. The nodal link in momentum space exhibits
non-Abelian characteristics on a C2T - invariant plane, where admissible transitions of the nodal link structure are
determined by generalized quaternion charges. Through near-field scanning measurements of bi-anisotropic
metamaterials, we experimentally mapped out the in-plane nodal chain and nodal link in such systems.

Introduction
Topological photonics has attracted a lot of attention

recently1,2. The application of topological band theory to
photonics not only opens the door to novel devices such
as topological lasers3–7, but also stimulates the explora-
tion of new topological phases, such as Floquet8 and high-
order topological insulators2,9. Photonic systems offer a
mature and highly flexible platform for topological phase
discovery and realization10–28. We know that most elec-
tronic topological systems have their photonic counter-
parts, except for those depending on the intrinsic
properties of fermion system, for example, 2D and 3D
topological insulators29,30 with T2 ¼ �1, where T is the

time reversal operator. On the other hand, there are
symmetries that are unique to electromagnetic (EM)
waves, which can intrinsically protect the band degen-
eracies at isolated points in the momentum space31–33.
Topological systems realized using such symmetries are
uniquely “photonic”, having no counterparts in electronic
or phononic systems.
Identifying nodal features in the band structure of

topological materials, such as nodal points (Dirac or Weyl
points) or nodal lines, can help to understand their
topological characters. Among various topological fea-
tures in momentum space, nodal chain34–38 is a special
configuration of nodal lines35,39–53 where two nodal
curves touch at isolated points. It is generally perceived
that the two nodal lines should reside on two separate
mirror planes, each protected by their corresponding
mirror symmetries. The chain points are then found to be
stabilized on their intersection lines. Here, making use of
symmetries being intrinsic to electromagnetism, we the-
oretically propose and experimentally demonstrate a type
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of in-plane nodal chain, where the nodal lines are chained
together in a single plane. In-plane chain points are
usually fragile against perturbations, but the chain point
in our system is protected by the electromagnetic intrinsic
symmetry at the Γ point unless a cut-off frequency is
introduced due to artificial resonances. The in-plane
nodal chain is uniquely stable in photonics due to the
internal symmetries of the Maxwell equations and has no
counterparts in other systems. This new type of nodal
chain should widely exist in photonic systems, as long as
additional symmetries such as mirror symmetries, protect
the existence of nodal line branches. We also find a nodal
ring linking with the in-plane nodal chain in our studied
model with only two mirror symmetries, and the linked
nodal structure exhibits non-Abelian features54–59 on a
C2T - invariant plane57. The present study provides a
realization of non-Abelian nodal links in the absence of
Parity-Time (PT) symmetry58, and can be described using
generalized quaternion charges of the photonic multi-
band topology54,55. Finally, we experimentally demon-
strate the in-plane nodal chain and nodal link with bi-
anisotropic metamaterials.

Results
We first use a generic two-band Hamiltonian to show

the presence of the in-plane nodal chain. We then show
that photonic intrinsic symmetry can stabilize the chain
point. The Hamiltonian that exhibits the nodal line con-
sists of two Pauli matrices as,

H ¼ dxσx þ dzσz

where dx ¼ kykz , and

dz ¼ k2x � k4y �m
� �

þ k2x þ k2z �m
� �

The nodal line structure, as a function of the parameter
m, is shown in Fig. 1. For a value of m=+1, there are two
chain points as shown in Fig. 1a. Going from left to right
across the chain point, the two mirror-symmetry (both are
represented by σz) eigenvalues change from Mz;My

� � ¼

ðþ1;þ1Þ to ð�1;�1Þ on the intersection line of the two
mirror planes (ky= kz= 0). For a two-band model with
PT symmetry, the eigenfunctions are purely real, so that a
loop encircling the chain point (or a general point on the
nodal line) carries a Z-valued charge, i.e., integer charges
with positive or negative signs, which can be understood
as the orientation defined on each nodal line54. Keeping
the mirror symmetries intact, one can smoothly eliminate
the vertical nodal ring (the blue one) by tuning m to zero,
as shown in Fig. 1b, leading to an in-plane nodal chain.
Meanwhile, the two out-of-plane chain points vanish
concomitantly and merge into an in-plane chain point.
The mirror eigenvalues of the eigenstates on the ky= kz=
0 line have the same (+) sign across the chain point,
which indicate that the in-plane chain point is no longer
stable since the symmetry eigenvalue sign change going
across that point no longer exists. As shown in Fig. 1c, the
in-plane chain point can be gapped by tuning m to
negative values while preserving the mirror symmetry
eigenvalues as labelled.
In photonic systems, however, the in-plane nodal chain

can be stabilized by the intrinsic symmetry of electro-
magnetic wave at the Г point of zero frequency. In order
to demonstrate the stable in-plane chain point, we start
with an effective model of bi-anisotropic material, where
inversion symmetry is explicitly broken, but two mirror
symmetries preserve the nodal lines, one for the in-plane
nodal chain and the other for the nodal ring that con-
tributes to the nodal link. The effective constitutive
parameters for the bi-anisotropic metamaterial under
consideration (explicit design and experimental realiza-
tion will be discussed in subsequent sections) are:

ε⃡ ¼
ε 0 0

0 ε 0

0 0 εb

2
64

3
75; μ⃡ ¼

1 0 0

0 1 0

0 0 μ

2
64

3
75; ς⃡ ¼

0 0 0

0 0 0

�iχ �iχ 0

2
64

3
75; ⃡ξ ¼

0 0 iχ

0 0 iχ

0 0 0

2
64

3
75:

The matrix elements depend on frequency and the
structural parameters of the metamaterials, and take the
form of ε ¼ εb þ 1

ω2
0�ω2

l2
L , μ ¼ 1þ 2

ω2
0�ω2

ω2A2

L , χ ¼ ω
ω2
0�ω2

Al
L ,

where ω0 is a structure-induced resonance frequency, εb is
the permittivity of substrate material, L is the effective
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Fig. 1 Transition from orthogonal nodal chain to in-plane nodal chain and separated nodal lines. a A normal nodal chain embedded in two
orthogonal mirror planes. Green circle indicates the π1 homotopy loop. b The blue nodal ring can be shrunk continuously by tuning the system
parameter m (see text), resulting in an in-plane nodal chain when m= 0. c Further perturbation finally gaps the chain point. For all panels, “±”
indicates the signs of mirror symmetries eigenvalues, red color for Mz and blue color for My. Within the framework of the two-band model, the
eigenstates bounded inside the red (blue) degeneracy lines are of even (odd) parity, those outside are of odd (even) parity. Arrows indicate
orientations of nodal lines with Z classified topological charges in a real two-band model
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inductance, l and A are the effective length and area of
resonators. The bi-anisotropic metamaterial’s response to
electromagnetic waves is given by Maxwell equations as
∇ ´E ¼ �∂t μ⃡H þ ς⃡Eð Þ, ∇ ´H ¼ ∂tðε⃡Eþ ⃡ξHÞ.
The energy bands of the proposed bi-anisotropic

material can be studied with these effective constitutive
parameter matrices. In Fig. 2a, band dispersions are cal-
culated on the diagonal mirror plane of kx ¼ �ky, where
degeneracy lines are found between the 1st and 2nd bands
and are highlighted as blue curves. As frequency decrea-
ses, the equi-frequency surfaces shrink, and the degen-
erate lines move closer to each other which finally merge
at zero frequency at the Г point. By showing the degen-
eracy lines in the full momentum space, we can see from
Fig. 2c that a pair of nodal lines (blue curves) touches each
other at the Γ point. These nodal lines are embedded in a
single plane of mirror symmetry, and as such, they are
concrete examples of in-plane nodal chains we have
referred to. It is important to note that the chain point is
robust to perturbations due to the stable degeneracy of
electromagnetic wave at zero frequency.
By examining the band structure on the other mirror

plane (kz= 0), a degeneracy ring (marked in red) between
the 2nd and 3rd bands is found as shown in Fig. 2b. The

nodal ring is induced by the electric resonance and
appears at the frequency of ω|ε= 0, where a dispersionless
longitudinal mode (flat band) appears and intersects the
propagating transverse mode. More interestingly, the in-
plane nodal chain (blue) threads through the nodal ring
(red) in the momentum space as shown in Fig. 2c. A nodal
link is thus constructed by three adjacent bands which
give enough freedom to define non-Abelian charges. The
non-Abelian charges represent the frame rotations of a set
of real eigenfunctions, which form the elements of non-
Abelian (generalized) quaternion groups. The charges
characterize the band degeneracies and explain the pro-
tection of the global nodal structure that will be discussed
later. The peculiar nodal link in Fig. 2c can be analytically
described with the effective medium model (supplemen-
tary information 3), and linear dispersions of the nodal
structures can be checked by considering k·p expansions
(Supplementary information 4).
The nodal link in momentum space can be character-

ized by non-Abelian topological charges. We consider the
first homotopy group (π1) loop encircling the chain point
in the C2T - invariant plane, as indicated in Fig. 2c with a
green circle. In the C2T - invariant plane, the photonic
bands have real eigenvectors, and at each k-point, the set
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Fig. 2 In-plane nodal chain and nodal link in bi-anisotropic metamaterials. a Band structure of the bi-anisotropic effective medium model in the
space of [k−45°, kz, ω]. The blue lines are band degeneracies. Parameters adopted are ω0= 2, A= 0.5, l= L= 1. b Band structure with kz= 0, nodal ring
is shown in red. c Nodal link in momentum space, in-plane nodal chain is shown in blue and the red circle is a nodal ring. Green circles indicate the
π1 homotopy loops in the C2T - invariant plane. d The projected polarization states of the 2nd band at the C2T - invariant plane, the red dots are cut-
positions of the nodal ring, blue dot is the in-plane nodal chain point at the Γ point. Green circles indicate π1 loops encircling different degeneracy
nodes as in c. e The breaking of chain point with an in-plane plasmonic resonance, where a new nodal ring (blue) emerges on the kz= 0 plane. The
nodal ring connects the two nodal line branches as a consequence of the −1 non-Abelian charge accumulated along the green loop. f The breaking
of chain point with z direction plasmon resonance. No new nodal structure shows up since the green loop still encircles two nodal lines and the −1
charge remains conserved
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of eigenvectors defines a frame which rotates as the k-
point goes along the green-colored loop. Such an eigen-
vector frame rotation can be described using generalized
quaternion charges nГ (Г indicating the π1 loop), which
extend the notion of quaternion charges to system with
more than three bands and account for the multi-band
topology54,55. Degeneracy between the jth and (j+ 1)th
bands can be characterized as the non-Abelian charge of
nГ= gj (see Supplementary information 5 for definition).
In particular, frame rotation angles of 0 and 2π are dis-
tinguished by nГ=+1 and −1, with −1 being the non-
trivial case. The non-Abelian topological charge of −1 is
uniquely interesting as it describes a topological character
of multiple bands that cannot be described using the
Berry phase quantization of individual bands. Since
the non-Abelian topological charges are closely related to
the rotation of the eigen polarization states, we show the
projected polarization states (E+45˚, Ez) of the 2nd band
on the C2T - invariant plane in Fig. 2d, which illustrate the
polarization rotation around the chain point (blue dot) as
well as the nodal ring intersections in the C2T - invariant
plane (red dots). As shown in Fig. 2d, a winding phase of
2π is found for the larger green loop encircling the chain
point (blue dot). Such a winding pattern is akin to the
order-parameter field in the vicinity of a 2π disclination
line defect in biaxial nematic liquid crystals60,61, which
can be characterized by a quaternion charge of −1 that
describes 3D rotations. The 2π winding phase here indi-
cates the generalized quaternion charge of nГ=−1, a
generalization to higher dimension as we are considering
5 bands together (see detail of non-Abelian charges cal-
culation in supplementary information 5). The non-trivial
topological charge of nГ=−1 forbids the annihilation or
breaking of the encircled nodal chain branches and plays
an essential role in protecting the global nodal link
structure in momentum space. The winding phase around
the nodal ring intersection (red dots encircled by the
small green circle in Fig. 2d) is found to be π, which
corresponds to the generalized quaternion charge of nГ=
±g2 that gives a characterization of a degeneracy node
between the 2nd and 3rd bands.
The notion of non-Abelian charges can elegantly

explain or predict admissible transitions of the nodal link
as system parameter changes. The in-plane chain point at
Γ is stable against perturbations that do not introduce a
cut-off frequency which gaps the Γ point. In order to
demonstrate the transition rule of the nodal link, we
introduce plasmon resonances to the bi-anisotropic
model, which gap the Γ point, pushing the nodal lines
away from zero frequency. Two configurations of artificial
plasmon resonances are considered for illustration pur-
pose, one with resonance directions aligned with x and y
axes, and the other along the z direction. In both cases,
two mirror symmetries are maintained so as to protect the

nodal lines. In Fig. 2e, we show the nodal structures in
momentum space with in-plane artificial resonances
along the x and y directions. The artificial resonances
introduce non-zero energy (or mass) to the Hamiltonian
at the Γ point. The chain point is now broken, however, in
contrary to the two-band model in Fig. 1b, the nodal lines
encircled by the green loop in Fig. 2e cannot just dis-
appear, as a consequence of the conservation of −1 gen-
eralized quaternion charge. A new nodal ring (blue) has to
emerge so as to conserve the charge of −1 and connects
the two nodal line branches. In a different configuration,
artificial resonance is introduced along the kz direction in
Fig. 2f. The chain point is also broken by the resonance,
but in contrary to the previous case, the nodal chain here
is allowed to break along kz direction, and no new nodal
structures are required to emerge. The transition
mechanism can be understood from the schematic in Fig.
2f, where we can find that the two separated nodal line
branches are still encircled by the green circle, and the −1
non-Abelian charge remains conserved. In addition, the
protection by non-Abelian charges when plasmon reso-
nance is introduced can again be explained by the rotation
of eigen polarization states on the C2T - invariant plane
(as in the case of Fig. 2d), and detail discussions are shown
in supplementary information 6.
Next, we demonstrate the proposed model experimen-

tally in the microwave regime with a class of metallic
metamaterials which exhibits topological line nodes58,62,63.
A non-centrosymmetric meta-structure design is shown in
Fig. 3a, where two planar split-ring triangular resonators
are placed on the z= 0 mirror plane. Another mirror plane
can be found along the diagonal direction as indicated by
red dashed line. In the long wavelength limit, the meta-
structure exhibits bi-anisotropic couplings as described by
the effective medium parameters shown above. The driv-
ing electric fields induce currents running along x and y
directions, and the “split-ring” configuration results in a
magnetic moment along the z direction as schematically
shown in Fig. 3a. In a reciprocal manner, the out of plane
magnetic component Hz of incoming electromagnetic
wave will induce in-plane polarizations of Px and Py
accordingly (supplementary information 1–2). The reso-
nating units are arrayed periodically as shown in Fig. 3b.
They collectively contribute to the bi-anisotropic response
of the metamaterials.
By utilizing the CST microwave studio numerical

package, photonic band dispersions of the metamaterial
structure in Fig. 3a are calculated and shown in Fig. 3c. A
degeneracy point is found along M′ - A direction (blue
dot) embedded in the diagonal mirror plane, which ori-
ginates from the in-plane nodal chain. Additional
degeneracy points of a nodal ring can be found along
Γ - X/M′ directions (e.g., red dot) at kz= 0 plane. The
linear band dispersions at these marked degenerate points
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can be further examined along kx,y and kz directions, as
shown in Fig. 3d, e (blue and red dots), respectively.
The nodal lines in momentum space formed by the

intersections of the lowest three bands of the meta-
structure are shown in Fig. 3f, where the in-plane nodal
chain (blue) and nodal ring (red) are found on two per-
pendicular mirror planes. The in-plane nodal chain is
protected by the intrinsic symmetry at Г point and
extends to Brillouin zone boundaries. The nodal chain
threads through the nodal ring and a nodal link con-
structed by three adjacent bands is thus formed. The
projections of the nodal lines on the kx− ky plane (orange)
and ky− kz plane (green) are also shown in Fig. 3f.
We then fabricate the sample (80 stacked PCB layers

along the z direction; 100 × 10 unit cells in the xy plane)
and experimentally characterize these nodal lines. An
experimental configuration is shown in Fig. 4a, where the
side surface (xz plane) is configured for raster-scanning
with a near-field probe antenna (red antenna). A point
source (blue antenna) is placed at the corner of the sample
and the field distribution on the side surface is to be
measured. The measured field distributions can be sub-
sequently Fourier transformed to obtain the projected

band information in momentum space. The calculated in-
plane nodal chain corresponding to the experimental
configuration is shown in the space of [kx, kz, ω] in Fig. 4b,
which projects onto the kx–kz plane as the purple curve.
The equi-frequency contours (EFCs) intersect with the
blue curves as four cyan points of bands degeneracies, as
will be experimentally measured later. The in-plane nodal
chain is also shown in 3D momentum space of Fig. 4c as
blue lines.
In Fig. 4d, e, we show respectively the calculated and

experimentally measured band spectra along the lines Γ -
X - A - Γ defined in Fig. 4b. A touching point of projected
bands, marked with a blue dot, is observed along X - A as
shown in Fig. 4e. The measured position agrees with the
calculated band touching point marked as the blue dot in
Fig. 4d. This particular touching point of band projection
is the cut position of in-plane nodal chain at the Brillouin
zone boundary (X - A) as illustrated in Fig. 4b. Surface
modes can also be found for the side surface configuration,
which are indicated with the orange curve in Fig. 4d and
white dotted curve in Fig. 4e. Meanwhile, indications of
the nodal ring degeneracies can also be found in the
projected band spectra on side surface. The nodal ring is
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Fig. 3 Realistic bi-anisotropic metamaterials with in-plane nodal chain and nodal link. a Schematic of the bi-anisotropic metamaterial. Split-
ring resonators are arranged on the σz mirror plane. The resonators also possess another mirror symmetry of σ-45˚ as indicated by red dashed line.
Side length of the resonator is lx,y= 3.3 mm, and resonance gap is g= 0.5 mm. b The units are repeated to form 3D metamaterials, with lattice
constants px= 4.5 mm, py= 4.5 mm and pz= 2 mm. The Brillouin zone of the metamaterials is shown to the right. c Numerically calculated band
structures, with degenerate points from in-plane nodal chain and nodal ring marked as blue and red dots, respectively. d, e Linear band dispersions
along kx,y/kz directions around the blue / red dot marked in c. f Nodal link in 3D momentum space corresponding to metamaterial shown in b, and
projections of the nodal link onto the ky−kz (green) and kx−ky (orange) planes
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located at the kz= 0 plane and projected onto the Γ - X
line of Fig. 4b for the side surface configuration. In the Γ -
X part of Fig. 4d, e, longitudinal flat band projections are
indicated with red dashed lines, and the transverse mode
for kz= ky= 0 (also the light cone for substrate) is plot as
red solid line. The degeneracy point between them is
indicated as red dot, which is the nodal ring degeneracy
projection along Γ - X. We further show the mapped EFCs
in Fig. 4f with respect to several frequencies from f=
12.05 GHz to f= 12.3 GHz. At each frequency, the
boundaries of projected bands from the calculations are

shown as white dots. Blue dots are the EFCs-cut nodal
points explained in Fig. 4b and shown together in Fig. 4c as
cyan dots. At a higher frequency of f= 12.8 GHz, the EFCs
of surface mode is measured and indicated with white
dashed lines in the last panel of Fig. 4f (more discussions of
surface states in supplementary information 7).
In a different experimental configuration, we measured

the top surface (xy plane) field distributions of the layered
metamaterials in Fig. 5a. We used a sample containing
100 × 100 unit cells in the xy plane and 10 layers in the z
direction. The surface Brillouin zone is shown in Fig. 5b,
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dispersion, and its projection onto the kx− kz plane as the in-plane nodal chain (purple curves). Cyan dots show the degenerate points on one
particular equi-frequency plane. Red triangle shows the path for the band spectra shown in d, e. c In-plane nodal chain in momentum space, blue
lines are calculated results and cyan dots are from measurement results of f. d, e Calculated and experimentally mapped band spectra along Γ - X - A
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frequencies. Calculated EFCs are marked with white dots. Blue dots indicate the nodal points at the corresponding frequencies. Green rings are the
EFCs of light cone for air

Wang et al. Light: Science & Applications           (2021) 10:83 Page 6 of 9



with the blue line indicating the projected in-plane nodal
chain and the red circle marking the nodal ring. The
projected band dispersion along the z direction is shown
in Fig. 5c, where the projected bulk bands have degen-
eracies at M and M

0
points around f= 12.5 GHz (indi-

cated with blue dots). These degeneracies at M=M
0

originate from the in-plane nodal chain as explained and
marked in Fig. 5b. We note that the projected bulk bands
along Γ - M

0
possess no energy gap around 12.5 GHz in

contrast to the bands along Γ - M, which is a result of the

in-plane nodal chain projection long −45˚ diagonal
direction (blue line in Fig. 5b). Additional degeneracy
positions of projected bands can be seen along Γ - M=M

0

as red dots. These crossings are between the longitude
modes (nearly flat bands) and transverse modes (close to
light cone in red), which marks the nodal ring degen-
eracies. Surface modes are found above the bulk bands, as
indicated with red lines.
By tuning the source antenna position along the z

direction, the bulk and surface states can be selectively
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Fig. 5 Experimental measurements of nodal lines and surface modes at the top surface. a Schematic of the experimental measurement
configuration on the top surface (xy plane). The source and probe antennas are colored in blue and red, respectively. b Surface Brillouin zone of the
top surface. Blue line indicates the projection of in-plane nodal chain and red circle is the nodal ring projection. c Calculated projected band spectra
for the top surface. Surface modes are indicated with red color. Blue (Red) dots indicate the degenerate points on the in-plane nodal chain (nodal
ring), as also illustrated in b. Substrate light cone is shown as red solid lines (εb ≈ 1.8). It should be noted that the slight difference of effective
permittivity from above measurement is due to the sample compactness in two configurations. d, e Measured bulk bands and surface states on the
top surface, respectively. Degeneracy positions of nodal chain (ring) are indicated with white dots in d. Substrate light cones are shown as white solid
lines. f Measured and calculated (white lines) EFCs of surface states at the frequencies of f= [13.9, 14.1, 14.2, 14.3] GHz. EFCs for substrate light cone
are shown as white circles
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excited as demanded. During the measurement of bulk
bands, a thin layer of dielectric is used to cover the top of
the layered metamaterials, and the modified boundary
condition eliminates the high frequency surface modes.
We show the measured bulk bands in Fig. 5d. The
degeneracies at M and M

0
points are experimentally

observed for the in-plane nodal chain and indicated with
white dots. The crossings between transverse and long-
itude modes are also observed and marked with white
dots near the light cone (white straight lines), which can
be identified as the nodal ring projection in Fig. 5b.
Removing the dielectric layer covering the top, the surface
modes can be observed. The measured surface state bands
are shown in Fig. 5e, and surface modes are found at
higher frequencies as in good accordance with the cal-
culated results of Fig. 5c. We also show the EFCs of
surface modes with respect to different frequencies in Fig.
5f, where calculated (white lines) and measured results
can also be found with good accordance.

Discussion
The photonic in-plane nodal chain realized in our sys-

tem is protected by mirror symmetry and electromagnetic
intrinsic degeneracy at zero frequency. The latter is robust
as long as no plasmon resonance is introduced to gap the
Γ point, such as introducing metallic wires in metama-
terials. The nodal link constructed between three con-
secutive bands can be characterized with non-Abelian
topological charges, which provide extra protections to
the nodal structure at the C2T - invariant plane as illu-
strated in Fig. 2e, f.
The in-plane nodal chain (even the nodal link) should

widely exist in photonic systems, and the bi-anisotropic
metamaterials studied here serve as a clean and simple
model with the necessary and sufficient symmetry con-
ditions to manifest the in-plane nodal chain and nodal
link (supplementary information 8, 9). Breaking the mir-
ror symmetry would transform the nodal lines into Weyl
points (supplementary information 10). Our metamaterial
system thus provides a platform for studying topological
phase transitions. The novel structure of linked in-plane
nodal chain and nodal ring in our demonstrated system
could also find applications in designing novel functioning
photonic devices.

Materials and methods
Simulations are carried out with CST microwave studio

and Comsol Multiphysics. The sample is fabricated with
Printed Circuit Board techniques. For top surface mea-
surement, a 10-layer sample with 100 × 100 unit cells was
fabricated, the whole sample size is 45 cm by 45 cm by
4 cm. For the side surface measurement, 80 × 100 unit
cells are configurated, and the thickness of sample is
4.5 cm (10 unit cells). The experimental measurements

are conducted with microwave near field scanning system,
where a vector network analyzer (VNA) is used to connect
both the source and probe antennas. The field informa-
tion is Fourier transformed to achieve the projected bands
and EFCs.
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