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Towards automatic freeform optics design: coarse
and fine search of the three-mirror solution space
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Abstract
Design of an optical system, whether classic or novel, in the past or the present, requires significant effort from the
designer. In addition to design methods and theories, the designer’s skills and experience in optical system design are
particularly important, which may require years of practice to learn. The diversity and variety of results are limited
because of the difficulty, time, and labor costs required. In this article, we propose an automatic design method for
freeform optics that can achieve a diverse range of three-mirror designs. The optical specifications and the design
constraints are the only inputs required, and a variety of results can be obtained automatically. The output results have
various structures and various optical power distributions with high imaging qualities. By implementing the design
method, designers can not only realize an overview of the solution space of the three-mirror freeform system, but can
also focus on specific designs.

Introduction
An optical system is an assembly of optical components

that operate together to produce a desired function1.
Optical design involves determining all the data required
to describe an optical system, such as the shapes of the
optical surfaces, the positions and sizes of the optical
components, and the materials of the optical media2, so
that massive light rays emerging from multiple objects
reaches the as-designed targets perfectly. Early optical
design studies focused on subjects such as ray-tracing
methods and the theory of primary and higher-order
aberrations, where strong skills and ingenuity were
essential when performing the numerical calculations3.
The design process begins by setting up a specific type of
optical system and then finding a solution where some of
the primary or higher-order aberrations are eliminated.
The designer must then evaluate the system’s perfor-
mance, make judicious changes, and then re-evaluate the
design before making further changes; this process is
repeated until a system that meets the design require-
ments is obtained2. Considerable effort was required from

the lens designers to accomplish designs such as tele-
scopic, microscopic, and photographic under the condi-
tions available at that time.
In the 1950s, the arrival of electronic computers opened

a new era in optical design. Initially, computers were used
to perform ray tracing rapidly, calculate the aberrations
and evaluate the designed system’s performance; later,
nonlinear equations from aberration theories were solved
using computers to eliminate some of the aberrations4,5.
Nowadays, computer-aided design has become more
powerful than ever and has greatly improved the effi-
ciency and quality of optical design. After the merit
functions and boundary conditions (constraints) are set,
the coefficients for each component in the system are
then obtained by minimizing the merit functions using
optimization algorithms; this process is simply called
optimization2,6,7. Optical design through optimization is
both an art and a science, and successful designs are
believed to have to be accomplished under the guidance
of a designer7,8. Optimization requires one (or a series of)
initial solution(s) that are provided by the designer, and
the variety of the optimization results obtained is limited
by the initial solution(s)2,7. Optimization is an iterative
process that combines evaluation and modification and
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the speed and effectiveness of the process are strongly
dependent on the strategies adopted. To reduce the
blindness involved in the optimization process, designers
attempt to judge the system’s potential based on having
achieved the expected requirements during the design
process, but this judgment may be inaccurate and good
results can be lost, potentially causing much better solu-
tions to be ignored.
Since the introduction of computer-aided optical design,

and despite the increasing degree of automation, design
without human interaction is generally considered to be
impossible. An initial solution must be provided and the
optimization must then be performed by designers2,6–10.
However, we may imagine that optical design in the future
will have the following three characteristics: (1) Human
operators will not participate in the design process and will
not need to make decisions during the design. Only primary
knowledge about optical design is required and the designer
will only need to provide the system specifications and
constraints. (2) All output results will satisfy the specifica-
tions and constraints given, and the imaging quality merits
meet the given requirements. A variety of optical systems of
different types will be obtained to provide an overview of
the solution space of the optical system under the given
specifications and constraints. (3) The main job of the
designer will be to browse the output results, consider
factors such as manufacturing and system structure com-
prehensively and select the preferred design.
An optical freeform surface is an optical surface that lacks

rotational symmetry11. Freeform surfaces not only improve
the overall performance of optical systems12–14 but also
bring novel functions to these systems15,16. With advance-
ments in optical processing and testing17–19, freeform sur-
faces are feasible in practical application. Freeform surfaces
bring more degrees of freedom to optical systems and
increase the dimensions of the aberration equations. There
are three main ways to find an initial solution for a freeform
system: an existing design, aberration theories20,21, and
direct design methods22–26. In recent years, some proce-
dures in the freeform system design process have been
automated. Examples include improving the system’s ima-
ging quality to achieve diffraction-limited performance27,
varying the system structure28, determining initial solutions
for four-mirror systems29, and exploring the solution space
for freeform system design30.
In this work, towards realizing automatic optical design,

we propose a result-diversified automatic design method
for freeform optics. It is used to explore the solution space
of three-mirror freeform systems and design imaging
systems working in the visible (VIS) band and the long-
wavelength infrared (LWIR) band. The designer must
only provide the optical system specifications, such as the
focal length, entrance pupil diameter, and full field-of-
view angle, and input them to the computer. Through an

automatic computer-based calculation process without
human interaction, a variety of results that meet the
design requirements are obtained that have various opti-
cal power (OP) distributions and various structures.
The proposed design method is composed of five

phases, which is summarized as follows: (1) Construct a
series of coaxial spherical systems with various OP
distributions {P}: P1, P2, …, Pm, …, PM. (2) For every
coaxial spherical system in {P}, e.g., Pm, find out a
series of unobscured systems that meet the given
constraints ~C

� �
m:

~Cm;1; ~Cm;2; ¼ ; ~Cm;t ; ¼ ; ~Cm;Tm . (3)
Based on the unobscured off-axis systems contained in
~C

� �
m, construct freeform systems and correct the OP

of the entire system. Obtain freeform systems ~F
� �

m:
~Fm;1;~Fm;2; ¼ ;~Fm;t ; ¼ ;~Fm;Tm

: (4) For every freeform
system in the set ~F

� �
m, improve the system imaging

quality to its highest value by calculating the shape of
each optical surface and finding the optimal tilt angle
for the image plane. (5) Calculate the system imaging
quality metric (or other evaluation metrics) and output
the systems that meet the given requirements.
Following the procedures above, a program was devel-

oped using MATLAB and was finally deployed on a
cluster system, the High-Performance Computation
(HPC) platform of Tsinghua University. We had access to
50 computing nodes in the cluster system, each of which
was a symmetrical multi-processing server composed of
two six-core processors (2.93 GHz). In this work, only the
metrics required to evaluate the system imaging quality
were calculated using commercial software; the rest of the
work, including ray tracing and calculation of the free-
form surface shape was completed independently using
the method proposed in this work.

Results
Example 1
The first example is a three-mirror freeform imaging

system working in the LWIR band (8–14 μm). The full
field-of-view angle is 8° × 6°. The focal length is 50 mm.
The entrance pupil diameter is 27.78 mm. The F-number
is 1.8. The primary system wavelength is 10 μm. After the
computation is complete, 11 × 11 field points are sampled
over the 8° × 6° field and the average of the root-mean-
square values of the wavefront error (AVGWFE RMS) are
calculated, which are used as the metric to evaluate the
system performance. Systems with the AVG WFE RMS
no greater than 0.075λ, where λ is the primary wave-
length, are considered good results that meet the imaging
quality requirements. These systems could be considered
diffraction-limited or near-diffraction-limited. The com-
puting task is completed in approximately 41.8 h without
human interaction. A total of 127 freeform systems that
satisfy the design requirements are obtained and the
average time to obtain one system is 19.7 min.
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In this work, the computing task for the design of a
three-mirror freeform system consists of multiple inde-
pendent computing jobs, each of which corresponds to
the calculation of a freeform system ~Fm;t that has the
structure of ~Cm;t with the OP distribution of Pm. The
curve of the number of running jobs over the running
time for design example 1 is shown in Fig. 1. The hor-
izontal axis represents the running time (units: h), and the
vertical axis represents the number of running jobs. By
integrating the number of running jobs with respect to the
running time and then distributing the integration result
over 600 cores, a time of 6.33 h can be obtained, which
can be used as a metric to evaluate the computing time.
This shows that the actual computing time could be
greatly reduced if an appropriate computing job man-
agement strategy is used or sufficient cores are occupied.
Figure 1 shows some of the design results on the same

scale. Systems L3-1, L61-1, and L75-1 have similar
structures and volumes but different OP distributions, as
do systems L14-1, L35-1, and L87-2, which have more
compact structures and smaller volumes. Systems L17-5,
L73-2, and L18-1 have structures that are not commonly
seen and are the most compact among the output results.
Systems L137-3 and L142-2 have spherically-shaped
envelopes. The primary mirror and the secondary mir-
ror are convex in the systems in the final row (L331-3,
L306-7, and L303-6; L254-2, L306-2, and L307-2), which
leads to large system volumes. System L162-4 has a
structure that has rarely been seen before. All the output
results for design example 1 are presented in Fig. S1 and
the imaging quality metrics are listed in Table S1.
The computation described above can be considered to

be a coarse search of the solution space for the optical
system. Next, an additional localized design can be carried
out to obtain more design results, which is a fine search of

the localized area of the solution space. The center of the
fine search can either be systems that are diffraction-
limited or have relatively high imaging qualities. For
example, using system L73-2 in example 1 as the center, a
smaller OP distribution range is determined, while the
type of the structure is fixed and other computing spe-
cifications are maintained. The computing task is
deployed on a computing workstation that has two
18-core processors (2.30 GHz). In a computation time of
39.13 h, a total of 59 freeform systems are obtained and
the average time to obtain one system is 39.8 min, the
structures of which are various. A portion of the output
results is shown in Fig. 2, and all the output results are
presented in Fig. S2 and the detailed imaging quality
metrics are listed in Table S2.

Example 2
The second example is a freeform imaging system

working in the VIS band (420–680 nm). The object dis-
tance is infinite and the full field-of-view angle is 4° × 4°.
The focal length is 450 mm. The entrance pupil diameter
is 50 mm. The F-number is 9. The primary system
wavelength is 587.6 nm. After 35.3 h of computation
without human interaction, a total of 59 freeform systems
are obtained and the average time to obtain one system is
35.9 min. The curve of the number of running jobs versus
the running time is shown in Fig. 3. The theoretical
computing time metric is 11.7 h for design example 2.
Figure 3 shows some of the output results on the same

scale. Systems V9-4, V39-3, and V11-3 have the three
typical structures contained among the output results.
Systems V10-1, V142-2, and V258-1 all have the same
structure but have different volumes. Systems V773-4,
V911-3, and V912-3 have similar structures but have
different image plane positions. Systems V26-6, V27-5,
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Fig. 1 Curve of the number of running jobs versus the running time and part of the output results of design example 1. The number marked
alongside the system layout is the AVG WFE RMS of the system with the unit of λ= 10 μm
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and V452-3 have structures that are rarely seen and the
volume of system V452-3 is relatively small. Systems V989-
4 and V1006-3 both contain small tertiary mirrors with
short back working lengths. In system V1014-4, the pri-
mary mirror and the tertiary mirror are located close
together and can be fabricated on the same substrate. In
system V144-5, the structure could be folded by placing
planar mirrors in the middle of the light path to allow the
structure to be more compact. Systems V789-3, V347-1,
and V240-1 have smaller volumes and compact structures.
V240-1 is possibly the best design among all the output
results. All the output results are presented in Fig. S3 and
the imaging quality metrics are listed in Table S3.
At present, the majority of the computing time is spent

in Phase 4 for all the design examples. When the program
is deployed on the HPC cluster system, the time typically
spent by each phase is as follows. Phase 1 and Phase 3
generally spend seconds of calculation, because Phase 1
calculates the surface curvature radii and surface dis-
tances targeting at the focal length and Phase 3 only
involves the calculation of freeform shape of three mir-
rors. Phase 2 takes hours of calculation to perform an

exhaustive search of possible unobscured systems,
depending on the number of computing jobs and
searching density. In Phase 5, it takes minutes of calcu-
lation by CODE V to evaluate the imaging qualities of the
systems and output the good design results. Therefore,
the bottleneck of the time consumption is in Phase 4.

Discussion
The proposed design method has the following new

features. It only needs system specifications as the only
input, and does not need any initial design as the starting
point. It can automatically distribute the OP among the
mirrors in the system and automatically search for various
structure forms of three-mirror system. It can provide a
variety of high-quality system designs simultaneously by a
coarse search on the solution space and can also focus on
specific designs by a fine search on the localized solution
space. Lastly, the grid search by this method is scalable
and suitable for parallel computing acceleration. Opti-
mization will only improve the system that is given to it
and this system largely influences the optimization result.
Local or global optimization algorithms starting with
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number marked alongside the system layout is the AVG WFE RMS of the system with the unit of λ= 10 μm
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systems, for example, where only the first-order proper-
ties are fulfilled, will easily end up with unexpected results
if no human interaction is involved. The automated
design framework27 must require a planar system as the
starting point, but can directly obtain a diffraction-limited
system automatically. By contrast, the proposed method
only requires the system specifications, and a variety of
systems with different OP distributions and structures
can be obtained by the coarse and fine search of the
solution space.
The proposed design method provides new procedures

of designing three-mirror freeform imaging system.
Rather than spend time finding initial solutions and
performing optimizations, the designer only needs to
determine the optical specifications and constraints, and
then input them into the computer and wait for the
results to be outputted. The majority of the designer’s
work will involve browsing through and analysing the
multiple optical systems that are obtained and selecting
the appropriate system as the final design. By using the
automatic design method, we are more confident when
selecting the system that meets our requirements most
closely. For example, most of the systems have structures
similar to L3-1 in Fig. 1 or V9-4 in Fig. 3, indicating that
this type of structure is beneficial for achieving high
imaging qualities under the given specifications. In
design example 1, more than half of the systems have a
convex primary mirror, which also leads to a large sys-
tem volume. It is easy to find out which systems have
smaller volumes than other designs, e.g., system L18-1 in
design example 1 and system V240-1 in design example
2. Since various designs can be achieved and we can
compare them with each other, the results of the pro-
posed design method deliver information that other
design methods cannot provide.
In an optical system, there are multiple coefficients that

can be used as optimization variables, but these coeffi-
cients and the optical properties of the optical systems are
not connected directly. Rather than use a grid search on
these coefficients, the design method searches the struc-
ture of the system and the optical properties of individual
components. The solution space of the three-mirror
freeform system is discretized, and an optical system with
a specific OP distribution and a specific structure is
regarded as a grid point within the solution space. Each
grid point represents an initial design for next phases and
corresponds to a final freeform system which meets or
does not meet the given quality requirement. Due to the
high degree-of-freedom of freeform surfaces, the effective
calculation of surface shapes, and the high-precision fit-
ting method that considers the imaging requirements,
systems with specific OP distributions and structure
forms can achieve high imaging quality. As a result, a
variety of design results with various OP distributions and

various structures can be obtained, which represents a
map of the solution space. Based on this solution map, the
designers gain an overview of the solutions of three-
mirror freeform system, which will be beneficial for
selection of satisfactory results.
The amount of computation required is determined by

(1) the dimensions of the variables of the solution space
and (2) the number of OP distributions and structures.
The first factor is determined by the number of compo-
nents in the system, which is fixed in this work, and the
second factor is determined by the range and density of
the curvature radii of the surfaces and the surface dis-
tances. The amount of calculation increases exponen-
tially as the number of components, the range, or the
density of the coefficients increases. Thereby, the number
of output results will be increased and the diversity of the
results will be improved. However, because computing
jobs are independent of each other, the running time
could be reduced using parallel computation. Thus, the
method is scalable, which means that it is applicable to
large scale problems that contain vast numbers of com-
puting jobs. As long as sufficient computing resources are
provided, the proposed method remains feasible for
design systems with larger numbers of optical surfaces
and varied aperture stop positions, and the diversity and
number of the output results could be increased. The
current total computing time spent by the proposed
method is long, but various design results are obtained
and each design takes much less time on average. In
addition, the whole design process by the proposed
method does not need human involvement and thus
human efforts would be saved by high-performance
computer. For conventional design methods such as
optimization, it will take days or months to complete
hundreds of high-imaging optical systems with various
structure forms and OP distributions.
When a greater variety of good results is required, one

simple but effective option is to increase the density of the
grid points. For example, in this work, Phase 2 performs
an exhaustive search of the possible structure forms of the
three-mirror system, but some possible structures are not
shown up in the output result of the design example. By
increasing the density and number of OP distributions
and structures, more possible structures will emerge if
they exist. However, there are numerous optical system
solutions that meet the given design specifications and
requirements and it is impossible to find out every solu-
tion. Furthermore, high density of searching grid points
will result in a huge amount of computation, which is
unnecessary because some of the good results are similar
to each other in terms of OP distribution and structure
and only appropriate grid point density is required for the
different areas in the solution space. In order to balance
the diversity of the output results with the amount of
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computation required in the design method, we can
initially implement the design method using low-density
grid points to obtain a series of results that are distributed
widely over the solution space, which represents a coarse
search of the solution space. Then, one can select several
satisfactory designs from the output result of the coarse
search and implement the design method using high-
density grid points in a localized solution space to find
more designs near the satisfactory designs above, which
represents a fine search of the solution space.
The design results obtained by the coarse search can

sometimes directly meet the design requirements, some-
times not, but in either case, a fine search can always be
performed to find satisfactory solutions. For example, by
using the proposed method, we design a system that has a
field-of-view of 4° × 4°, a focal length of 600 mm and an
entrance pupil of 200mm, reference to the design
reported in ref. 21. In the coarse search, systems with
various OP distributions and structures are obtained, but
no system has the AVG WFE RMS smaller than 0.075λ.
However, a variety of designs that have relatively high
imaging quality are obtained (see Fig. S4 and Table S4),
with the AVG WFE RMS reaching down to 0.11λ. Taking
one design as the center, the fine search is conducted and
systems that meet the imaging quality standard are
eventually obtained (see Fig. S5 and Table S5). The spe-
cific parameters used for the designs above are shown in
Table S6.
In future development, several promising works related

to the result-diversified automatic design method could
be performed. Considering the manufacturability of
freeform systems, the freeform departure and tolerances
of every mirror and sensitivity of alignment in the system
could be evaluated at different phases in the design pro-
cess, and systems benefiting to fabrication and assembly
can be obtained and selected. In addition to three-mirror
freeform systems, the proposed method is feasible for
other types of systems, because the calculating of surface
shape is based on Fermat’s principle and the law of
refraction and reflection, according to the object-image
relationship of the system. After modifying the methods
used in each phase, the method is feasible to design sys-
tems that have more or less than three surfaces, different
aperture stop locations, or having lenses. The methods
used in Phases 1 and 2 can be replaced with other
advanced methods that are more effective in solving for
first-order solutions and various unobscured structures.
In Phases 3 and 4, methods other than the point-by-point
method can be implemented to construct the freeform
systems and improve their imaging qualities, as long as
good imaging quality can be achieved automatically. To
guarantee higher rates for derivation of good results in
shorter computation times, it is worthwhile to study how
to use aberration theory to direct determination of the OP

distribution, the structure, and the aperture stop position.
By deploying the result-diversified method on a suffi-
ciently powerful computing system and modifying the
program, massive design results with high imaging quality
can be obtained in a few hours, which will be meaningful
to both the engineering and research fields.

Materials and methods
The coordinates and sign conventions are defined first.

We initially define the global coordinates O-XYZ, as
shown in Fig. 4a for a coaxial system and Fig. 4b for an off-
axis system. The number of optical surfaces in the system
is N. These optical surfaces are denoted by S1, S2, …, Si, …,
SN. The system contains another two special surfaces, S0
and SI, where S0 is a virtual surface located in the front of
the optical system and SI is the image plane surface. Let
the light rays in the central field (0°) travel along the
direction of the unit axial vector OZ. These light rays
emerge from S0 and reach SI. As in the coaxial system
shown in Fig. 4a, the system is rotationally symmetrical
about the optical axis OZ. The center of the sphere with
surface Si is located on the optical axis and denoted by Oi

(not marked in the figure). Si intersects the optical axis at
the vertex point Vi, as indicated in the figure. The radius of
curvature of Si is denoted by ri. When the vector ViOi and
the unit axial vector OZ are oriented in the same direction,
the sign of ri is positive; otherwise, its sign is negative. The
distance between surfaces Si and Si+1 is denoted by di,
which is equal to the vector length |ViVi+1|. When the
vector and the unit axial vector OZ are oriented in the
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Fig. 4 Coordinates and sign conventions in (a) coaxial and (b) off-axis
optical systems
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same direction, the sign of di is positive; otherwise, its sign
is negative. In the off-axis system shown in Fig. 4b, in
which there is no axis of rotational symmetry for the
system, local coordinates must be set up at every optical
surface and the surface shapes are described using these
local coordinates. The chief ray (denoted by CR) of the
central field is set as the reference in the off-axis systems.
The point of incidence of the CR of the central field on
surface Si is denoted by Vi. Local coordinates Vi-XYZ are
defined for surface Si, with the origin point being Vi. The
direction of the unit axial vector ViZ lies parallel to the
direction of the normal vector at point Vi on surface Si.
The unit axial vector ViY lies parallel to the surface O-YZ
and lies perpendicular to the vector ViZ. The unit axial
vector ViX is oriented in the same direction as the unit
axial vector OX. Specifically, the CR of the central field
intersects surface S0 at point V0 and intersects surface Si at
VI. Unless otherwise stated, in the coordinates VI-XYZ, the
unit axial vector VIZ lies perpendicular to the image plane;
the unit axial vector VIY is oriented parallel to the surface
O-YZ and perpendicular to VIZ; and the unit axial vector
ViX is oriented in the same direction as the unit axial
vector OX.
The flow chart of the key procedures of the proposed

design method is shown in Fig. 5 and the detailed phases
of this method are described as follows.

Phase 1
Solve for a series of coaxial spherical systems with

various OP distributions. Using the matrix approach for

first-order optics, the reflection matrix Ri for reflection of
the light ray at surface Si is:

Ri ¼
1 ni � ni�1ð Þ=ri
0 1

� �
ð1Þ

where ni represents the refractive index of the medium
between Si and Si+1. The transfer matrix Di of a light ray
propagating from Si to Si+1 is:

Di ¼
1 0

�di=ni 1

� �
ð2Þ

The system matrix for the complete system T is:

T ¼ RNDN�1RN�1 ¼R2D1R1 ¼
B A

D C

� �
ð3Þ

where A, B, C, and D are functions of ri, di, and ni.
Therefore, the image focal length of the optical system
can be obtained using A(ri, di, ni) and is

f 0 ¼ nN
A ri; di; nið Þ ð4Þ

Because f ′ is given, Eq. (4) represents the equation that
the spherical curvature radii ri (i= 1, 2, …, N) and surface
distances di (i= 1, 2, …, N−1) must satisfy. In a reflection
system, the condition ni=−ni−1 applies; therefore, all the
refractive indexes are canceled by each other. Eq. (4) has

Input the system specifications

Based on the system specifications, use matrix
optics to solve for a series of coaxial spherical

systems with various optical power distributions
{P }: P1, P2, ... , Pm, ... , PM

Based on {C }m, correct the optical power of
entire systems and construct freeform systems

Based on {C }m, solve for unobscured
compact systems Evaluate the performance of the freeform

systems obtained automatically

Output systems that meet the
imaging quality requirements

Based on {P }, tilt and reposition every optical
surface to obtain a series of off-axis systems

Find out all the unobscured systems in {C }m,

Use a point-by-point
iteration method to

improve the imaging
qualities of the

systems in the one-
dimensional search

process

For each system in

Phase 4Phase 1

Phase 2

Phase 3

Phase 5

{F } m, implement a
one-dimensional
search method to

solve for the optimal
tilt angle of the
image plane.

A series of freeform systems that have different
imaging qualities are obtained, which have

various structures and OP distributions.

{C }m: Cm,1, Cm,2, ... , Cm,s, ... , Cm,sm

{C }m: Cm,1, Cm,2, ... , Cm,r , ... , Cm,Rm

{C }m: Cm,1, Cm,2, ... , Cm,t, ... , Cm,Tm

{F }m: Fm,1, Fm,2, ... , Fm,t, ... , Fm,Tm
~ ~ ~ ~ ~

~ ~ ~ ~ ~

~

~

– – – – –

–

Fig. 5 Flow chart of the key procedures of the proposed automatic design method
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an infinite number of solutions and thus it is impossible to
discuss all solutions to Eq. (4). Given that there are
manufacturability limits in practice, some solutions to
Eq. (4) should be disregarded and constraints should be
set to narrow the solution space; this will be discussed in
the following part.
In Eq. (4), there is a total of 2N−1 parameters for the

radii of curvature and mirror distances, which are r1, r2,
…, rN, and d1, d2, …, dN−1. As long as 2N−2 parameters
out of the 2N−1 parameters are given, it is possible to
solve for the last remaining parameter. After the 2N−1
parameters are obtained, an additional parameter dN can
be determined using first order optics (not shown in
Eq. (4)), where dN represents the distance between the last
optical surface and the image plane. Therefore, there are a
total of 2N parameters that describe the coaxial system.
The 2N parameters are placed together in a row vector
P= [r1, r2, …, rN−1, rN, d1, d2, …, dN−1, dN], which is used
to represent a coaxial spherical system with a specific OP
distribution. In this work, we assume that the given 2N−2
parameters are r1, r2, …, rN−1, rN, d1, d2, …, dN−2.
Sequences of the radii of curvature ri (i= 1, 2, …, N) are
given as rmin, rmin+Δr, rmin+2Δr, …, rmax, with the range
[rmin, rmax] and with interval Δr. Sequences of mirror
distances di (i= 1, 2, …, N−2) are given as dmin, dmin+Δd,
dmin+2Δd, …, dmax, with the range [dmin, dmax] and the
interval Δd. For every combination of ri (i= 1, 2, …, N)
and di (i= 1, 2, …, N−2), the corresponding dN−1 can be
solved using Eq. (4) and dN can then be obtained using
first-order optics. Following the procedure described
above, with a series of 2N parameters obtained, a series of
coaxial spherical systems with focal length f ′ and various
OP distributions are obtained and denoted by P1, P2, …,
Pm, …, PM; the set of these distributions is denoted by the
symbol {P}.
As stated above, constraints are required to limit the

range of values of some coefficients in the vector Pm. By
changing the range of the radius of curvature ri (i= 1, 2,
…, N), the values of the radii of curvature and the
positive/negative state of the OP of that optical surface
can be controlled. In this work, the range for ri is
[−1000, 1000] (the units are millimeters hereinafter,
unless otherwise stated). For the range of di, three
aspects must be considered. First, the values should not
be too large to avoid large system volumes. Second, the
values should not be too small or it may be impossible
to ensure that the system is unobscured in the sub-
sequent phases. Third, the differences between two
arbitrary mirror distances should not be too large to
guarantee system compactness. Because the overall
optical system size is usually comparable to the
entrance pupil size, we use the entrance pupil diameter
(EPD) as the unit length to describe the range of mirror
distances, e.g., EPD≤|d1|≤4 × EPD. When determining

the interval values Δr and Δd, we must consider the
balance between the computation time and the number
of output results. If the values of Δr and Δd are too
high, there will be fewer output results; however, values
that are too small will increase the number of output
results but will also consume more computation time.

Phase 2
For each coaxial spherical system Pm obtained in the

previous step, tilt and reposition every surface in the sys-
tem to obtain a series of noncoaxial systems while main-
taining the direction of incidence of the CR of the central
field in the object space. The systems obtained have var-
ious structures and can be considered to be field-biased, or
off-axis, or a combination of the two. As shown in Fig. 6,
where the three-mirror system is used as an example to
explain the principle and the notation when solving for
noncoaxial systems, the system corresponds to a coaxial
system with a specific OP distribution P= [r1, r2, r3, d1, d2,
d3]. Every mirror is tilted and repositioned by following the
principle described below: the distances between the ori-
ginal points of the local coordinates are equal to the sur-
face distances, which means that |V1V2|= d1, |V2V3|= d2,
and |V3VI|= d3; at the same time, every mirror is tilted by
a specific angle around the unit axial vector ViX in each
local coordinate system.
For convenience of description, we use a vector C to

represent the system structure. Noting that the path of the
CR of the central field is a fold line that can be used to
describe the system structure, we define C as a vector that
contains the following two types of information: (1) the
lengths of each segment of the fold line, which represents
the absolute value of the surface distances |di|; and (2) the
angles between every adjacent pair of segments of the fold
line. As shown in Fig. 6, the vector Vi−1Vi rotates by an
angle θi (i= 1, 2,…, N) to coincide with the vector ViVi+1.
Therefore, θi represents the deflection angle of the CR of
the central field at each mirror, which should have the
range −360° < θi < 0° or 0° < θi < 360°. For clarity of
description, the sign convention for θi is given as follows:

S1, r1S0

S2, r2 S3, r3

SI

S1, r1S0

S2, r2rr S3, r3rr

SIS

|d0| V1

1

V3

3

|d3|
VI

|d2|

|d1|

V2

2

V0

C = [ 1, 2, 3]

Fig. 6 Notation to describe the structure of a three-mirror system
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if the vector Vi−1Vi rotates clockwise to coincide with the
vector ViVi+1, θi is negative; otherwise, θi is positive.
Thus, as shown in Fig. 6, θ1 < 0, θ2 > 0, and θ3 < 0. The
vector C can now be written as C = [θ1, |d1|, θ2, |d2|,… θi,
|di|, …, θN, |dN|]. For systems with the same OP dis-
tribution, the mirror distances are the same for the dif-
ferent structures; therefore, only the angles in the vector C
are maintained, which make it look like C= [θ1, θ2, … θi,
…, θN]. Specifically, the structure of the coaxial system is
denoted by a symbol with a subscript of 0, i.e., C0= [θ10,
θ20, θ30]= [−180, 180, −180].
In vector C, when the values of the angles (θ1, θ2, … θi, …,

θN) change continuously, the corresponding system structure
also varies and may be obscured or unobscured. However, it
is only when the angles vary within a specific range that the
system remains unobscured. Because the system may contain
different unobscured structure types, there may be multiple
ranges within which θi can change in vector C. In other
words, the range of θi in C is not continuous to guarantee
that the system is unobscured. To find as many unobscured
structures as possible, as many systems with different struc-
tures as possible can be listed, regardless of whether they are
obscured or not, and the obscured systems can then be
filtered out.
As stated above, there are angle ranges of −360° < θi < 0°

or 0° < θi < 360°. If two structures C and C′ satisfy C=−C′,
then the two structures are identical. Therefore, in the case
of repeated consideration of the same structure, the range
for θ1 should be within (−180°, 0°), while the ranges of θi
(i= 2, 3, …, N) should be within (−360°, 0°). In this work,
the range of θ1 is given by (−180°, −120°]; the range for θ2
is [120°, 240°]; and the range for θ3 is [−240°, − 120°]. For
the angle interval Δθ, the diversity of the structures of the
output results must be considered and balanced with the
computation time. By following the above steps, with
respect to the system with the OP distribution Pm, a series
of spherical systems Cm;1;Cm;2; ¼ ;Cm;s; ¼ ;Cm;Sm are
obtained, where the set of these systems is denoted by {C}m
with a total number of elements Sm. Next, all the unobs-
cured systems in each set {C}m are found and denoted by
Cm;1;Cm;2; ¼ ;Cm;r ; ¼ ;Cm;Rm

; the set of these systems is
denoted by C

� �
m with a total number of elements Rm.

When a variety of unobscured systems with various OP
distributions and various structures has been obtained, we
can proceed directly to the next step and construct the
freeform systems.
In this phase, filters could be implemented on the sys-

tem structure or the volume limit because the system
structure and the OP distribution will only change slightly
in the coming phases. The systems in set C

� �
m can be

classified into several categories based on the geometry of
the system structure; in each category, the value of θi in
vector C is varied. By defining the new vector
ΔCm;r ¼ Cm;r � C0 ¼ Δθ1;Δθ2; ¼Δθi; ¼ ;ΔθN½ �, where

C0 represents the coaxial system structure, the geometry
of the system structure is classified using the positive/
negative sign of Δθi in the vector ΔCm;r . For each category
of the system structure geometry, the absolute value of Δθi
can be regarded as a metric to evaluate the system com-
pactness. A smaller absolute value of Δθi represents a
system with high compactness. In this work, for each
category of the system structure geometry in the set
C

� �
m, we obtain systems with compact structures by

minimizing the absolute value of Δθi in the vector ΔCm;r .
The systems obtained are denoted by
~Cm;1;~Cm;2; ¼ ;~Cm;t ; ¼ ;~Cm;Tm

and the set of these sys-
tems is denoted by ~C

� �
m with a total number of elements

Tm. In this phase, the system volume can be evaluated by
calculating the volume of the space occupied by the light
bundle and systems with volumes that exceed the limit
can be removed from the set ~C

� �
m.

Phase 3
Construct freeform systems based on the systems in the

set ~C
� �

m. After the process to eliminate the obscured
structures in phase 2, the OP of the entire system has been
changed. In this phase, the freeform shapes for every optical
surface are calculated by following the object-image rela-
tionship of the system, so that the OP of the entire system is
corrected while the OP of each mirror is changed only
slightly. Correction of the OP of the entire system should
follow these principles: first, it must be realized auto-
matically; second, the system structure must remain
unchanged after the correction; third, the change in the OP
of each mirror is small. Any method that satisfies these
three rules can be implemented in this phase.
In this work, we use the point-by-point construction

method for freeform systems26 to correct the OP of the
entire system. The point-by-point construction method
calculates freeform surface shapes based on feature light
rays and feature data points. Feature light rays are defined
at every field position and are located at different posi-
tions over the entrance pupil. Feature data points are
defined as the intersection points of the feature light rays
with the optical surfaces and contain the information of
the point coordinates and the normal direction on the
optical surface. Because the field-of-view angle for each
feature light ray is known, and based on the object-image
relationship that the system provides perfect imaging,
corresponding image point coordinates (target image
point coordinates) can be obtained on the image plane.
When calculating the shape of the surface Si, intersection
point coordinates on surface Si−1 and the propagation
direction towards Si are obtained for all feature light rays
by real ray tracing. Starting from a given initial feature
data point on surface Si, the next feature light ray is then
determined. Based on the coordinates and the normals of
the feature data points that have already been calculated,
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the corresponding feature data point’s coordinates are
obtained via the nearest-ray algorithm26. Next, when the
ideal image point coordinates and the corresponding
feature data point coordinates on Si are known, the
direction in which the feature light ray leaves Si can be
resolved using Fermat’s principle; then, by knowing both
the direction of incidence and direction of departure of
the feature light ray on Si, the normal directions of the
corresponding feature data points can be obtained based
on the law of reflection. The procedures above are repe-
ated until the coordinates and normals of all feature data
points are solved. Finally, the mathematical expressions
for the freeform surface Si are obtained via a fitting
method that considers both the coordinates and the
normals of all feature data points31. In this work, XY
polynomials with up to sixth order terms are used to
describe the shape of the freeform surfaces. The results in
the design examples show that the precision of this fitting
method is high enough to achieve high imaging quality of
diffraction-limited or near-diffraction-limited. Following
the procedures above, the shapes of the freeform surfaces
in the system are all calculated in a given order (e.g.,
tertiary-secondary-primary mirrors) and the construction
of the freeform system is completed.
By implementing the method described above, the fol-

lowing series of freeform systems is obtained:
~Fm;1; ~Fm;2; ¼ ; ~Fm;t ; ¼ ; ~Fm;Tm

, corresponding to the
systems ~Cm;1; ~Cm;2; ¼ ; ~Cm;t ; ¼ ; ~Cm;Tm

. The set of free-
form systems obtained is denoted by ~F

� �
m.

Phase 4
Improve the imaging quality of the freeform system. By

following the phases above, a series of unobscured free-
form systems ~F

� �
m with various OP distributions and

structures has been obtained, but the system imaging
qualities still require improvement. The method used in
this phase must satisfy the three principles stated in Phase
3. In this work, we use a point-by-point iteration method
to improve the imaging quality of the freeform systems26.
The point-by-point iteration method is the same as the

construction method from the perspective that the shape
of each optical surface is resolved by following the object-
image relationship, which is also based on the feature light
rays and feature data points. The difference is that, during
the iteration process, the feature data point coordinates
on Si are obtained and retained by tracing the feature light
rays incident on Si, while the surface normals are newly
solved. When the traced data point coordinates and newly
solved normal directions are known, a new freeform
surface can be obtained by fitting.
In the point-by-point iteration method, an iteration

round consists of calculation of the shapes of all optical
surfaces in the system in a given order. Multiple iteration
rounds can be performed until the imaging quality reaches

the required value or it stops improving. In this work, the
root-mean-square (RMS) values of the distances between
the actual imaging points and the target imaging points are
calculated at different field points and the average value of
these distances (denoted by σ) is used as the metric to
evaluate the imaging quality of the result of each round of
iteration. As the iteration proceeds, the value of σ
decreases and then gradually converges. When σ is smaller
than a specified threshold σitr, the iteration process is
terminated. The rate at which this value decreases
after each round of iteration, τ, is defined as
τ= |σ′−σ|/σ, where σ′ and σ are used to evaluate the
imaging qualities of the results of the previous and current
rounds of iterations, respectively. When τ decreases below
a specific threshold τitr, the iteration process is terminated.
After an inspection of all available degrees-of-freedom

for design of the freeform systems, we found that the tilt
angle of the image plane has not been considered yet;
therefore, the optimal tilt angle of the image plane must
be determined to achieve the best possible imaging quality
for the optical system. In this work, a one-dimensional
search process is implemented. The image plane tilt angle
is defined by the angle between the Y axis of the local
coordinates and the Y axis of the global coordinates and
denoted by β. In particular, when the CR of the central
field is perpendicular to the image plane, the image plane
tilt angle is denoted by β0. In a round of one-dimensional
searching, a series of freeform systems with different
image plane tilt angles is iterated to improve the system
imaging quality until the iteration stops. In the first round
of one-dimensional searching, the image plane tilt angles
are given by a sequence varying within the range [β0−βr,
β0+βr] with the interval Δβ. In the subsequent round of
one-dimensional searching, the image plane tilt angles are
given by a sequence varying within the range [βopt−βr,
βopt+βr] with the interval Δβ, where βopt is the image
plane tilt angle of the system with the best imaging quality
from the previous round of searching. As multiple rounds
of one-dimensional searching are performed, the system’s
imaging quality improves and the imaging quality metric σ
converges. When σ is smaller than the specified threshold
σsrh, the search process is terminated. When the
improvement rate τ= (σ′−σ)/σ is lower than the specified
threshold τsrh, the search process is terminated. σ′ and σ
above are the imaging quality metrics for the results of the
previous and current rounds of searching, respectively.

Phase 5
By following the steps above, a series of freeform sys-

tems with various structures and various OP distributions
is obtained. For each freeform system obtained, the ima-
ging quality metrics are calculated, including the spot
diameter of the imaging points, the modulation transfer
function, and the RMS WFE over the field. In this work,
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systems where the AVG RMS WFE is lower than 0.075λ
are eventually presented to the designers as the output
results. The designers can then analyse the systems
obtained and select their preferred designs. The specific
parameters used for the design example 1 and 2 are
shown in Table S7. The framework for the automatic
design method is shown in Fig. S6.
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