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Abstract
Ellipsometry is a powerful method for determining both the optical constants and thickness of thin films. For decades,
solutions to ill-posed inverse ellipsometric problems require substantial human–expert intervention and have become
essentially human-in-the-loop trial-and-error processes that are not only tedious and time-consuming but also limit
the applicability of ellipsometry. Here, we demonstrate a machine learning based approach for solving ellipsometric
problems in an unambiguous and fully automatic manner while showing superior performance. The proposed
approach is experimentally validated by using a broad range of films covering categories of metals, semiconductors,
and dielectrics. This method is compatible with existing ellipsometers and paves the way for realizing the automatic,
rapid, high-throughput optical characterization of films.

Introduction
Ellipsometry is a contactless, nondestructive, widely

used optical technique for measuring the optical con-
stants (refractive index n and extinction coefficient κ) of
materials1. It is self-evident that optical constants provide
the fundamental basis for designing and manufacturing
optical devices ranging from cell phone cameras to
sophisticated photonic integrated circuits2–4. Further-
more, it is widely recognized that the optical constants,
acting as “fingerprints” of the materials, provide a means
to inspect the macroscopic and microscopic properties of
the substances, such as electronic structures5–7, doping
concentration8,9, and surface properties10. Such success
was demonstrated by Drude more than 100 years ago
when monitoring the formation of a contaminant layer on
a freshly cleaved crystal11. Currently, ellipsometers have
prevailed in both scientific labs and industrial companies.
Any improvements in ellipsometry would benefit the
broad fields of science and technology.
Ellipsometry is a process of inferring (n, κ) by a set of

measured ellipsometric angles (Ψ, Δ), which relates to the

amplitude ratio and phase difference between the com-
plex reflection coefficients of parallel (p) and perpendi-
cular (s) polarizations, respectively (as indicated in Fig. 1).
Mathematically, such a procedure belongs to the category
of an “inverse problem”, which aims to derive the “causes”
from the “results”12–15. For the inverse ellipsometric
problem, especially when samples consist of one or more
films on a substrate, analytical solutions generally do not
exist, and “regression data fitting” techniques have been
developed that iteratively find a set of optical parameters
that best fit the observations.
As the inverse ellipsometric problem is usually ill-

posed16–18, the existing fitting techniques still rely on
certain forms of trial-and-error learning. In conventional
fitting techniques, human–expert intervention is indis-
pensably required to provide a good initial “guess” for the
target sample properties to achieve fitting convergence.
Traditionally, various dispersion equations have been
developed and adopted to describe the materials and
generate the initial values for fitting, such as the Cauchy
and Sellmeier models19,20, the Forouhi–Bloomer21,22 and
Tauc–Lorentzian equations23, or the Drude-Lorentz
model24,25. Users must be highly experienced with these
optical models to make proper choices. In particular, it is
often required to combine multiple dispersion models to
precisely describe a sample, which leads to too many
correlated fitting parameters and makes the initial gues-
sing even more difficult. Without a good initial solution to
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start with, the traditional fitting methods can hardly
converge to the correct solution, and the process will have
to start over again. The overall process inevitably becomes
tedious and extremely time-consuming. Furthermore, for
films with unknown thickness d, two equations from Ψ
and Δ are generally no longer sufficient to uniquely
recover the three unknowns of (n, κ, d) simultaneously,
and a single pair of (Ψ, Δ) may lead to multiple solutions
of (n, κ, d) (see Fig. S1 in supplementary information)26,27.
Fortunately, it has been proven that by supplementing (Ψ,
Δ) data with auxiliary measurement information from
transmission (reflection) measurements28,29, interference
enhancement30, or ambient changing31, etc., the above
mathematical ambiguity can be eliminated, and a unique
solution of (n, κ, d) can be produced27. However, the
simultaneous analysis of the complemented ellipsometric
measurements remains challenging, as the additional
information amplifies the weakness of the traditional
techniques and makes the fitting too complicated to be
practical.
Inventing a new ellipsometric analysis technique

working in a “single-click” manner without the need for
human (expert) intervention while showing superior
analysis performance to traditional techniques would be a
major step towards intelligent and fully automatic ellip-
sometry for in situ and automatic material measurements
and diagnostics. For instance, an artificial neural network
(ANN) has been adopted as a data pre-processor to guess
an initial (n, κ, d) value for the subsequent regression

fitting process32. This method was shown to be very fast.
However, because it only allows one single trial without
“closed-loop” feedback and auto-adjustment, the method
shows a risk of fitting failure caused by a “bad” initial
guess from the ANN.
Recently, artificial intelligence, particularly deep learn-

ing33, has achieved unprecedented performance in a
variety of tasks, including visual recognition34–36, natural
language processing37, machine translation38, etc. It has
also been successfully applied to solve challenging pro-
blems in physics39,40, chemistry41,42, and biology43. In
these applications, deep neural networks excel in model-
ing a real-world physical or chemical process and are
flexible to function as building blocks of a framework to
solve challenging problems in unconventional ways.
Typical examples include the inverse design of nano-
photonic particles44, enhancing the sensing ability with a
learned integrated sensing protocol45, identifying the dif-
ferent phases of matter46, searching for exotic particles in
high-energy physics47, solving inverse problems in com-
putational imaging48, and acting as a new calculation tool
to solve sophisticated quantum problems49.
In this paper, we propose a machine learning based

approach to solve the ellipsometric problem by deep
neural network-driven iterative learning (denominated as
“SUNDIAL”). We supplement the ellipsometric mea-
surements with intensity-based transmission T and
reflection R spectroscopies to enrich the data and reduce
the illness (ambiguity) of the inverse problems. Using
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Fig. 1 Principle of R, T assisted ellipsometry. a In ellipsometry, light Ei is obliquely incident onto a thin film with unknown (n, κ, d), which is on a
substrate with known optical constants. Multiple beam interference occurs in the film, as shown in the inset. The orthogonal polarization
components (Ep and Es) have unequal reflection coefficients rp and rs, leading to elliptically polarized reflection Er. p and s refer to polarizations with
electric fields parallel and normal to the plane of incidence, respectively. b The ellipsometric angles Ψ and Δ are defined by, tan Ψ eiΔ= rp/rs, as
denoted by F. The total transmittance T and reflectance R are calculated by averaging the contributions from the p- and s-polarizations, denoted by
G. The physical process from (n, κ, d) to (Ψ, Δ, R, T) has been well studied and can be modeled accurately as functions F and G. On the other hand,
the inverse, i.e., analytically inferring (n, κ, d) from (Ψ, Δ, R, T), is generally impossible, and iterative fitting techniques have therefore been developed to
numerically search a set of (n, κ, d) that best fits the experimental data. Solid lines denote experimentally measured (Ψ, Δ, R, T), dashed lines present
results recovered by the tentative (n, κ, d) solution
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SUNDIAL, the (Ψ, Δ) and (R, T) spectra are analyzed
simultaneously, and unique solution sets (n, κ, d) for films
are successfully obtained. We further experimentally
validate our SUNDIAL method by using a broad range of
material films covering the categories of metals, semi-
conductors, and dielectrics. Our approach is compatible
with the present configuration of ellipsometers and can be
used directly in existing commercially available products.
This novel fully automatic approach based on machine
learning paves the way for realizing automatic, rapid,
high-throughput optical characterization of films and can
be greatly beneficial for real-time quality monitoring in
repeatable high-precision film manufacturing.

Results
Solving the inverse ellipsometric problem relies on a

thorough understanding of the forward physical pro-
cesses. The principle of ellipsometry is based on deci-
phering the material properties from the changes in the
light polarization reflected at oblique angles. The physical
description for the forward process in ellipsometry was
well developed approximately two centuries ago when
Malus discovered the “doubly refractive” like behaviors for
light obliquely impinged onto a material50. The mathe-
matical description of such anisotropic behaviors was
accomplished afterward by Fresnel using a group of
equations known now as “Fresnel’s formulae”51. After
that, Airy further proposed multiple-beam interference
formulae to calculate the reflection (r) and transmission
(t) coefficients of film-covered surfaces52. Thus, the (Ψ, Δ)
and (R, T) from the samples can be analytically and
uniquely determined for a known group of (n, κ, d) from
the films as follows:

F : tanΨeiΔ ¼ rp n; κ; dð Þ
rs n; κ; dð Þ

G : T ¼ 1
2 tp

�� ��2þ tsj j2
� �

; R ¼ 1
2 rp

�� ��2þ rsj j2
� �

8<
: ð1Þ

On the other hand, the analytical solution of the inverse
process, i.e., the direct translation of the data (Ψ, Δ) and
(R, T) back to (n, κ, d), is impossible for films (indicated in
Fig. 1b) due to the transcendental nature of Airy’s for-
mulae. Thus, the ellipsometric problem becomes ill-posed
and very challenging to solve16–18.
Mathematically, SUNDIAL aims to solve the following

optimization problem:

n�; κ�; d�ð Þ ¼ arg minn; κ; d γkF n; κ; dð Þ � Ψ; Δð Þjj2½
þ 1� γð Þ Gk n; κ; dð Þ � R; Tð Þjj2�

ð2Þ
where �k k2 denotes the Euclidean norm between F(n, κ, d)
and (Ψ, Δ) in the ellipsometric angle space, as well
as between G(n, κ, d) and (R, T) in the intensity

spectroscopic data space. γ∈[0,1] is chosen to balance
the weights of (Ψ, Δ) and (R, T) in the optimization
process, and we choose 0.5 here to equilibrate the
contributions from the two terms.
Solving Eq. (2) needs a sophisticated optimization

toolkit that conceptually includes mechanisms for candi-
date solution generation, criteria for solution evaluation,
and an iterative refinement method. Following this recipe
and powered by machine learning, we present below the
SUNDIAL approach, which is based on deep neural net-
work brimming with domain/ellipsometric knowledge
learned from both offline and online training and is able
to solve Eq. (2) efficiently. Specifically, this method takes
(Ψ, Δ, R, T) as the input and automatically outputs a
unique (n, κ, d) solution. SUNDIAL admits a novel
iterative optimization framework with deep neural net-
works as the core building blocks. This approach consists
of two neural modules, namely, inverse and forward
modules (encircled by rectangles in Fig. 2, details of input/
output refer to Table I in supplementary information),
which are joined together in a loop manner. Conceptually,
after proper training, the inverse module performs
γF�1 þ 1� γð ÞG�1 and generates candidate solutions
(n(t), κ(t), d(t)). The forward module is trained to be sur-
rogates for the forward functions F and G and serves as a
criterion for evaluating candidate solutions. Both modules
are implemented as carefully designed convolutional
neural networks with stacked residual U-modules.
To acquire domain/ellipsometric knowledge, SUNDIAL

is first trained offline on a large amount of simulated data,
which may significantly deviate from the real-world ellip-
sometric data. The simulated dataset includes 6240 pairs of
(Ψ, Δ, R, T) and (n, κ, d) created analytically using the
forward modeling functions of F and G based on (n, κ) of
200 different materials from the Palik and Sopra data-
bases53,54, and the d is varied between 10 and 300 nm with a
step of 10 nm for each material (5 nm step is further
adopted for lossy materials for d below 100 nm, such as
gold and silver). To bridge the gap between training on the
simulated data and inferring on the real-world data, we
propose a novel iterative inference strategy based on sto-
chastic gradient descent, as indicated by the loops enclosed
by gray and yellow arrows in Fig. 2. Unlike the conventional
inference of computing outputs by a single forward pass on
neural networks, which is doomed to fail in our case, the
proposed strategy allows neural modules to continue to
adapt online on real-world data until a satisfactory solution
is obtained. Specifically, given a set of real-world data (Ψ(0),
Δ(0), R(0), T(0)), the inverse module computes an initial
solution of (n(0), κ(0), d(0)). We immediately train the for-
ward module to approximate F and G well within a small
neighborhood of (n(0), κ(0), d(0)) and compute how well the
solution (n(0), κ(0), d(0)) can reconstruct the ellipsometric
data (Ψ(0), Δ(0), R(0), T(0)). The error/residual is then
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back-propagated through both modules, and the trainable
weights in the inverse module are updated. The updated
inverse module will generate a better solution (n(1), κ(1),
d(1)). This procedure repeats until (n(t), κ(t), d(t)) recon-
structs (Ψ(0), Δ(0), R(0), T(0)) sufficiently well.
We demonstrate the performance of SUNDIAL in

experiments using a series of thin films covering

categories of metals, dielectrics, and semiconductors. All
the films are prepared on fused quartz substrates by
thermal evaporation, sputtering, or plasma-enhanced
chemical vapor deposition (PECVD) techniques (see
methods). Figure 3 exemplifies the results of gold (Au),
titanium dioxide (TiO2), and silicon (Si) films. The empty
circles in Fig. 3a, b indicate the measured (Ψ, Δ, R, T) data.
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By feeding these experimental data into SUNDIAL, the
dispersions of (n, κ) and the thickness d are computed and
outputted automatically, as shown in Fig. 3c. We calculate
the (Ψ, Δ, R, T) curves (solid lines in Fig. 3a, b) following
the F and G functions based on the derived (n, κ, d),
which overlap well with the experimental results. The
results of more materials are given in Fig. S3 of the sup-
plementary information, all of which show good agree-
ment between the calculated and measured (Ψ, Δ, R, T)
data and validate our SUNDIAL approach.
To quantitatively compare the performance of our

SUNDIAL method with the traditional fitting technique
(commercial EP4Model software as an example, Fig. S2),
the residual (δ) and root mean squared error (RMSE)31

values are computed. δ is defined as the difference
between the forward model (F and G) calculated and the
experimentally measured curves: δS ¼ Scal � Sexp, where S
is Ψ, Δ, R, or T. The RMSE is calculated as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 Scali � Sexpi

� �2
N

s
ð3Þ

where N is the number of wavelength points included in
each spectrum. Smaller δ and RMSE values indicate better
matches between the model generated and the experi-
mental data and thus better solutions. The EP4Model
software only fits ellipsometric data (Ψ, Δ), while (R, T)
data act as complements to reduce the fit ambiguity and
choose the most suitable (n, κ, d) solution branch. The
resulting model-generated Ψ and Δ curves agree well with
the experimental curves, as demonstrated by the near-
zero δΨ and δΔ values in Fig. 4a and Fig. S4; however, the
δR and δT curves show significant deviation from zero. On
the other hand, SUNDIAL is capable of fitting (Ψ, Δ) and

(R, T) simultaneously, leading to near-zero δ values for all
four curves, as shown by the solid lines in Fig. 4a and
Fig. S4. Figure 4b gives the RMSE of (Ψ, Δ), and (R, T) for
different materials by SUNDIAL and the traditional fitting
technique. The RMSE could be influenced by the value of
γ, as illustrated in Fig. 4c. It can be seen that this is a
typical scenario of two-objective optimization55. If γ is set
to 1, then only (Ψ, Δ) takes effect, while if we set γ= 0,
then (R, T) dominates the optimization process. For other
γ values, both the contributions from (Ψ, Δ) and (R, T) are
considered. In this study, we choose 0.5 to equilibrate the
contributions of the two terms. The SUNDIAL results
(solid dots and encircled by a solid ellipse) are much
closer to the origin than the traditional technique (empty
diamonds and encircled by a dashed ellipse), which means
that the SUNDIAL optimizes both (Ψ, Δ) and (R, T) and
balances them well. In terms of fitting all four spectra,
SUNDIAL significantly outperforms the traditional tech-
nique. Furthermore, it is worth mentioning that on a few
materials, SUNDIAL has a slightly larger RMSE on (Ψ, Δ)
and a significantly smaller RMSE on (R, T) than the
traditional technique. This result occurs due to the
inconsistency of the sampling positions for (Ψ, Δ) and
(R, T), for example, and the optimal solution of (n, κ, d)
can only be achieved when all four spectra are optimized
and well balanced. To eliminate such inconsistency, one
may have to update the ellipsometers to realize the in situ
comprehensive (Ψ, Δ, R, T) measurements.

Discussion
In conclusion, we have proposed a machine learning

based approach for solving ill-posed ellipsometric pro-
blems in an unambiguous and fully automatic manner.
Benefitting from the deep neural networks’ superiority of
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achieving excellent performance and flexibility as building
blocks to solve unconventional tasks, the proposed
approach can learn human/ellipsometric knowledge to
guide the inverse optimization process and therefore
avoid the need for human–expert intervention; therefore,
it is more convenient to use. Furthermore, thanks to the
simultaneous analysis of additional data (R, T) along with
the traditional ellipsometric data (Ψ, Δ), SUNDIAL is able
to mitigate the problem of (n, κ, d) ambiguity that tradi-
tional fitting techniques suffer from. Such a machine
learning powered method is compatible with existing
ellipsometers and paves the way for realizing the auto-
matic, rapid, high-throughput optical characterization of
the films. This approach is beneficial for real-time in situ
quality monitoring for the high-precision repeatable fab-
rication of layered structures. Our SUNDIAL approach, as
a versatile machine learning framework for solving ill-
posed inverse problems, can also be extended to other
optical measurement techniques.

Materials and methods
Data preparation
Our film samples included 15 different materials,

namely, Al, Au, Co, Cr, Fe, Mo, Sc, W, MgO, Si3N4,
Ta2O5, TiN, TiO2, Si, and Ge2Sb2Te5 (GST). These
samples were fabricated on fused quartz substrates by
different techniques: Al, Au, Cr, and GST by sputtering;
Co, Fe, Mo, Sc, W, MgO, Ta2O5, TiN, TiO2, and Si by
thermal evaporation; and Si3N4 by PECVD. The ellipso-
metric Ψ and Δ data were measured in the visible to near-
infrared spectral range using a commercial spectroscopic
ellipsometer (Imaging Ellipsometer EP4, Accurion Inc.,
Goettingen, Germany), and the incident angle θ was fixed
at 50°. The reflection and transmission spectra under
normal incidence were measured by a spectrometer
(Spectrophotometer U-4100, Hitachi Ltd., Tokyo, Japan).
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