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Abstract
Nonreciprocity is important in both optical information processing and topological photonics studies. Conventional
principles for realizing nonreciprocity rely on magnetic fields, spatiotemporal modulation, or nonlinearity. Here we
propose a generic principle for generating nonreciprocity by taking advantage of energy loss, which is usually
regarded as harmful. The loss in a resonance mode induces a phase lag, which is independent of the energy
transmission direction. When multichannel lossy resonance modes are combined, the resulting interference gives rise
to nonreciprocity, with different coupling strengths for the forward and backward directions, and unidirectional
energy transmission. This study opens a new avenue for the design of nonreciprocal devices without stringent
requirements.

Introduction
Optical nonreciprocity, which prohibits a light field

from returning along its original path after passing
through an optical system in one direction, implying the
breaking of the Lorentz reciprocity theorem, is crucially
important for both fundamental studies and applied sci-
ences1–3. For example, nonreciprocal devices, such as
optical isolators1, optical circulators4, and directional
amplifiers5, play important roles in optical communica-
tion and optical information processing. Moreover, the
topological properties exhibited by nonreciprocal devices
make them promising platforms for studying topological
photonics6,7 and chiral quantum optics8. To date, a
number of approaches have been suggested for generating
nonreciprocity, including the use of parity-time (PT)-
symmetric nonlinear cavities9,10, spinning resonators11,12,
optomechanical interactions13–20, cavity magnonic inter-
actions21, effective gauge fields22,23, and the thermal
motion of hot atoms24,25. Despite these achievements, the
basic principles for realizing optical nonreciprocity
remain limited as a result of the time-reversal symmetry

and linear nature of Maxwell’s equations. The existing
approaches can be grouped into three categories with the
following requirements1–3: (i) magnetic-field-induced
breaking of time-reversal symmetry26–29, (ii) spatio-
temporal modulation of system permittivity30–36, and (iii)
nonlinearity37,38. However, these principles either
encounter difficulties in integration39, require stringent
experimental conditions40, or have limited performance38.
Therefore, it is crucial to break the Lorentz reciprocity
theorem by going beyond these approaches.
Here we devise a new principle for realizing optical

nonreciprocity by making use of loss. Although it is
obvious that loss breaks time-reversal symmetry, it is
generally believed that loss cannot lead to optical non-
reciprocity as a result of restricted time-reversal sym-
metry2,3, in which the field amplitudes are reduced while
the field ratios are conserved. However, we show that loss
under multiple channels with interference gives rise to
optical nonreciprocity. The basic principle is that the
phase lag induced by loss, which is independent of the
energy propagation direction, results in different inter-
ference outcomes for the forward and backward direc-
tions. In our scheme, neither a magnetic field, the
spatiotemporal modulation of permittivity nor non-
linearity is required. On the contrary, the resource we take
advantage of is simply energy loss, which is regarded as
harmful and undesirable in most studies. This is also
different from PT-symmetric schemes in which the
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nonreciprocity originates from nonlinear gain with
saturation. Our scheme is universal for a variety of phy-
sical systems, such as optical cavities and waveguides.
This study paves the way for the observation of non-
reciprocity and corresponding device design in lossy sys-
tems without stringent conditions, and provides
opportunities for studying chiral and topological proper-
ties in systems with lossy coupling.

Results
As illustrated in Fig. 1a, we consider a generic system in

which an array of main resonance modes am (m= 1, 2, …
M) are linked by a series of connecting modes cðnÞm ðn ¼
1; 2; :::NÞ with decay rates κðnÞm . This model can be
implemented in a variety of systems, such as optical
cavities41, superconducting circuits42, mechanical reso-
nators43, and atomic ensembles44. In the frame rotating at
the input laser frequency ω1, the system Hamiltonian is
given by (�h ¼ 1)

H ¼ � PM

m¼1
Δmaymam �

PM�1

m¼1

PN

n¼1
Δ nð Þ
m c nð Þy

m c nð Þ
m

þ PM�1

m¼1

PN

n¼1
ðg nð Þ

L;ma
y
m þ g nð Þ

R;ma
y
mþ1Þc nð Þ

m þ H:c:

ð1Þ
where Δm � ωl � ωm and ΔðnÞm � ωl � ωðnÞm represent the
detunings, with ωm (ωðnÞm ) being the resonance frequency
of mode am (cðnÞm ) and gðnÞL;m (gðnÞR;m) being the coupling
coefficient between am (am+1) and cðnÞm . Here, the indices
of the main (connecting) modes are denoted by subscripts
(superscripts in parentheses) to avoid confusion.
In the above model, N connecting modes are required

to realize N-channel coupling between am and am+1. As
sketched in Fig. 1b, this multichannel coupling can also be
realized by using only one connecting mode cm with
synthetic frequency dimensions, where N pairs of cou-
pling detunings δðnÞL=R;m play the role of N coupling chan-
nels. In this case, the system Hamiltonian is expressed as

H ¼ �
XM

m¼1
Δma

y
mam �

XM�1

m¼1
Δc
mc
y
mcm þ

XM�1

m¼1

XN

n¼1
gðnÞL;me

iδðnÞL;mtaym
�h

þgðnÞR;me
iδðnÞR;mtaymþ1Þcm þ H :c:�

where Δc
m � ωl � ωc

m is the detuning of the connecting
mode cm. By expressing the connecting mode as

cm ¼
PN

n¼1
ðcðnÞL;me

�iδðnÞL;mt þ cðnÞR;me
�iδðnÞR;mtÞ, where the cðnÞL=R;m are

the components corresponding to the coupling detunings

δðnÞL=R;m, this Hamiltonian can ultimately be reduced to Eq.

(1) under the rotating-wave approximation (see the
Supplementary Information for details).

When the detunings ΔðnÞm or decay rates κðnÞm of the
connecting modes are much larger than the coupling

rates (jΔðnÞm þ iκðnÞm =2j � jgðnÞL=R;mj), the connecting modes

cðnÞm can be adiabatically eliminated45,46, leading to an
effective non-Hermitian Hamiltonian Heff ¼ H0

eff þ H int
eff

(see the Supplementary Information for details). Here,

H0
eff ¼ �

PM

m¼1
ðΔm þ iγm=2þΩmÞaymam is the free-energy

term, with γm being the intrinsic linewidth of mode am

and Ωm ¼ �
PN

n¼1 gðnÞL;m

���
���
2
= ΔðnÞm þ iκðnÞm =2
� �

þ gðnÞR;m�1
���

���
2

�

= ΔðnÞm�1 þ iκðnÞm�1=2
� �

� being the resonance shift and

broadening; H int
eff is the interaction term, given by

H int
eff ¼

PM�1

m¼1
ðhmþ1;maymþ1am þ hm;mþ1aymamþ1Þ

hmþ1;m ¼
PN

n¼1
G nð Þ

m e�iϕ
nð Þ
m �iθ nð Þ

m

hm;mþ1 ¼
PN

n¼1
G nð Þ

m eiϕ
nð Þ
m �iθ nð Þ

m

ð2Þ

where hm+1,m (hm,m+1) is the effective coupling coeffi-
cient for the forward (backward) direction between am
and am+1. It is seen that the total effective coupling
coefficient is a sum of the effective coupling coefficients
for each coupling channel. For the n-th channel, the
amplitude of the effective coupling coefficient is

GðnÞm � gðnÞL;mg
ðnÞ
R;m

���
���=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðnÞ2m þ κðnÞ2m =4

q
, whereas the phase

factors include two components: ϕðnÞm and θðnÞm . The first

component, ϕðnÞm � arg gðnÞL;mg
ðnÞ�
R;m

� �
, refers to the coherent

coupling phase, which changes its sign when the coupling
direction is reversed as a result of energy conservation.

The second component, θðnÞm � argðΔðnÞm þ iκðnÞm =2Þ, repre-
sents the phase lag induced by loss (the loss phase). It is
noteworthy that this loss phase is determined only by the
loss-detuning ratio, not by the coupling direction, as the
losses play the same role for both the forward and
backward couplings.
In the absence of losses, i.e., when κðnÞm ¼ 0 and thus

θðnÞm ¼ 0, hm,m+1 and hm+1,m are complex conjugates, and
H int

eff is Hermitian. In the presence of losses, the phase lag

θðnÞm yields a non-Hermitian H int
eff with hm;mþ1≠h�mþ1;m.

When only one loss channel exists (N= 1), the effective
coupling amplitudes for the forward and backward cou-
plings are still the same, i.e., hm;mþ1

�� �� ¼ hmþ1;m
�� ��, meaning

that a nonreciprocal energy flow does not exist. This is
consistent with the conclusion in the previous litera-
ture2,3, in which lossy systems are regarded as reciprocal
in terms of restricted time-reversal symmetry. However,
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when more than one channel exists, the interference
between different channels ultimately leads to unequal
effective coupling amplitudes for the forward and back-
ward couplings, i.e., hm;mþ1

�� ��≠ hmþ1;m
�� �� for N ≥ 2. As

depicted in Fig. 1c, the existence of the loss phase ensures
that the interference properties are different for the for-
ward and backward couplings. By tuning the phases, the
forward coupling can be made to experience constructive
interference, whereas the backward coupling will undergo
destructive interference, leading to a nonzero forward
coupling strength but a backward coupling strength of
zero. This asymmetric coupling leads to an asymmetric
scattering matrix (see the Supplementary Information for
details), which indicates that the Lorentz reciprocity is
broken1. Thus, nonreciprocity can be realized in a lossy
system with multichannel interference. It is noteworthy
that neither a magnetic field, the spatiotemporal mod-
ulation of permittivity, nor nonlinearity is required, and
the nonreciprocity originates purely from the losses,
which break the time-reversal symmetry.

Without loss of generality, in the following, we con-
sider a two-channel situation (N= 2). To realize com-
plete nonreciprocity, the amplitudes of the coupling
coefficients for the two channels should be the same,

i.e., Gð1Þm ¼ Gð2Þm (denoted by G in the following), so that
complete destructive interference can be achieved. In
this case, the forward and backward coupling coeffi-
cients are given by

h$ ¼ 2Ge�iϕ�iθcos
Δϕ±Δθ

2
ð3Þ

where h! (h ) is short for hmþ1;m (hm;mþ1), Δϕ ¼ ϕð2Þm �
ϕð1Þm is the difference between the coherent coupling
phases for the two channels, Δθ ¼ θð2Þm � θð1Þm is the loss
phase difference, and ϕ ¼ ðϕð1Þm þ ϕð2Þm Þ=2 and θ ¼ ðθð1Þm þ
θð2Þm Þ=2 are the corresponding average phases. Here, the
subscripts “m” for the m-th main mode are omitted for
convenience, as we mainly focus on the M= 2 case. It is
clearly revealed that the phase difference leads to distinct
interference patterns for the forward and backward
couplings. The conditions for unidirectional nonrecipro-
cal coupling are given by

Δϕ� Δθ ¼ π þ 2kπ

Δϕ≠pπ;Δθ≠qπ
ð4Þ

where k, p, and q are integers. Here, “−” corresponds to
unidirectional forward coupling with h!j j≠0 and
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Fig. 1 Schematic description of the scheme. a Sketch of a system with an array of main resonance modes am connected via a series of connecting

modes cðnÞm . The loss of cðnÞm is represented by the decay rate κðnÞm . The coupling coefficient between am (am+1) and cðnÞm is denoted by gðnÞL;m (gðnÞR;m).

b Sketch of a multichannel coupled system with synthetic frequency dimensions. Only one connecting mode cm is used to connect am and am+1,

whereas the coupling between am (am+1) and cm has a series of detunings δðnÞL;m (δðnÞR;m). c Illustration of multichannel interference for realizing

nonreciprocity. For the first (second) coupling channel, the coherent coupling phase is ϕð1Þm (ϕð2Þm ) for the forward coupling and �ϕð1Þm (�ϕð2Þm ) for the

backward coupling, whereas the loss phases are θð1Þm (θð2Þm ) for both the forward and backward couplings. By tuning the phases, constructive
(destructive) interference can be achieved for the forward (backward) coupling. Thus, the forward coupling survives while the backward coupling
vanishes
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h j j ¼ 0, whereas “+” corresponds to unidirectional
backward coupling with h!j j ¼ 0 and h j j≠0.
In Fig. 2a, we plot the amplitudes of the forward and

backward couplings h$j j as functions of Δϕ for various
loss phase differences Δθ. When Δθ= 0 or π, the curves
of h$j j coincide and thus, nonreciprocity is not achiev-
able. However, for other values of Δθ, the difference
between jh!j and jh j becomes significant. The curves of
jh$j have the same lineshape, but the positions are shifted
to the left (right) by Δθ, showing that nonreciprocity can
be realized. As depicted in Fig. 2b, the nonreciprocity ratio
jh!j=jh j reaches a maximum/minimum when
Δϕ ¼ ± ðΔθ � πÞ, in agreement with Eq. (4). For example,

Δθ= π/2 and Δϕ ¼ �π=2 (π/2) lead to unidirectional
forward (backward) coupling (third row of Fig. 2). The
nonreciprocal properties can also be illustrated by the
trajectories in the parameter space expanded by h→ and
h←, as shown in Fig. 2c. The loss phase difference Δθ
exactly matches the relative phase lag between h→ and h←,
where Δθ= 0 and π correspond to linear trajectories
without nonreciprocity and Δθ= π/2 corresponds to a
circular trajectory with the most prominent non-
reciprocity, whereas for other values, the trajectories are
ellipses with modest nonreciprocity.
Under the unidirectional forward coupling condition

with Δϕ ¼ Δθ þ π þ 2kπ, the amplitude of the forward
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coupling coefficient is given by

h!j j ¼ 2G sinΔθj j ð5Þ

As illustrated in Fig. 3a, the loss phase difference Δθ
strongly determines the unidirectional coupling strength.
The best performance is achievable for Δθ= π/2, with the
corresponding maximum being jh!jmax ¼ 2G. It is note-
worthy that the unidirectional coupling strength can
remain large over a broad range of Δθ, with the full width
at half maximum being 2π/3 (shaded region). By expres-
sing Δθ in terms of the detunings and losses for the two
coupling channels (Fig. 3b), we obtain
tanΔθ ¼ 2 Δð1Þκð2Þ � Δð2Þκð1Þ

� �
= 4Δð1ÞΔð2Þ þ κð1Þκð2Þ
� �

.
Thus, the optimal condition can be re-expressed as

Δð1Þ

κð1Þ
Δð2Þ

κð2Þ
¼ � 1

4
ð6Þ

whereas the condition for vanishing nonreciprocity is
Δð1Þκð2Þ ¼ Δð2Þκð1Þ. The contour map of jh!j as a function
of Δð1Þ=κð1Þ and Δð2Þ=κð2Þ is plotted in Fig. 3c, and typical
curves for jh!j as a function of Δð2Þ=κð2Þ with a fixed
Δð1Þ=κð1Þ are plotted in Fig. 3d. These figures show that
the parameter ranges for achieving a large jh!j are very
broad. For a pure lossy system, two detunings with

opposite signs are preferred, i.e., in one channel, the
connecting mode is red detuned, whereas in the other
channel the connecting mode should be blue detuned.
The nonreciprocity can also be reflected in the eigen-

values and eigenmodes of the system. In Fig. 4, we plot the
real and imaginary parts of the energy eigenvalues and the
expansion coefficients of the eigenmodes (defined as
ej ¼ αjam þ βjamþ1, j= 1, 2) as functions of Δϕ for
Δθ= π/2 (corresponding to the third row in Fig. 2). For
the reciprocal cases (Δϕ= 0, ±π), the eigenvalues are split
to the maximum extent, whereas the eigenmodes are
equally weighted superpositions of am and am+1. As the
nonreciprocity ratio increases, for instance, Δϕ varies from
0 to ±π/2, the eigenvalue splitting becomes smaller, and
the eigenmodes tend to be more localized in one of the
main modes. For the completely nonreciprocal points, Δϕ
= ±π/2, the eigenvalues become degenerate, accompanied
by the coalescence of the eigenmodes, which are the fea-
tures of exceptional points47. This is because the uni-
directional nonreciprocal coupling causes one of the
modes to be unstable and only one mode survives. For
instance, Δϕ=−π/2 corresponds to a unidirectional for-
ward coupling, meaning that the energy irreversibly flows
from am to am+1 and, thus, only am+1 survives as the
eigenmode (jβjj ¼ 1). It is worth noting that the results
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obtained by diagonalizing the effective Hamiltonian (2) with
adiabatic elimination are consistent with those obtained
from the original Hamiltonian (1), as shown in Fig. 4.
A unidirectional nonreciprocal coupling directly gives

rise to unidirectional energy transmission between the
main resonance modes. In Fig. 5, we plot the typical
results of unidirectional energy transmission for two (M
= 2) and three (M= 3) main modes in the case of a for-
ward unidirectional coupling (jh!j≠0 and jh j ¼ 0). It is
revealed that forward transmission is allowed (Fig. 5a, c),
whereas backward transmission is forbidden. The residual
backward transmission, which originates from the
imperfect adiabatic elimination of the connecting modes,
is only 10−4 for M= 2 and 10�8 for M= 3 (Fig. 5b, d).
The results calculated from the effective Hamiltonian (2)
with adiabatic elimination (curves) agree well with those
obtained from the original Hamiltonian (1) (dots).

Discussion
Breaking Lorentz reciprocity is a very challenging task

due to the time-reversal symmetry and linear nature of
Maxwell’s equations, and at present, only three routes
towards realizing nonreciprocity have been discovered,
using a magnetic field, spatiotemporal modulation, or
nonlinearity. Although loss breaks the time-reversal
symmetry according to the traditional definition of time
reversal, it is commonly believed that in classical elec-
trodynamics, only restricted time reversal is valid. In this
framework, lossy materials remain lossy under time-
reversal transformation and restricted time-reversal
symmetry still holds, which implies reciprocity2,3. Here

we demonstrate that nonreciprocity can be achieved by
making use of loss combined with multichannel inter-
ference. Due to the interference with different loss angles,
the field ratios do not remain conserved under time-
reversal transformation.
Although PT-symmetric systems also make use of los-

ses9,10,48, it is clear that the nonreciprocity reported in
previous PT-symmetric cavity schemes originates from
the nonlinear gain saturation effect, i.e., the basic principle
used to generate nonreciprocity is nonlinearity9,10. In our
scheme, we focus on a pure lossy and linear system, in
which neither gain nor nonlinearity is required and the
fundamental aspect giving rise to nonlinearity is loss. It is
noteworthy that loss is ubiquitous, whereas gain and
nonlinearity are not common in optical systems. In
addition, we clarify that the above results represent non-
reciprocity but not simply asymmetrical power transmis-
sion, as the input and output channels both contain a
single mode and the scattering matrix is asymmetric (see
the Supplementary Information for details), indicating the
breaking of Lorentz reciprocity. This can also be verified
when we consider the implementation of our scheme by
means of an experimentally feasible setup in which single-
mode standing-wave photonic crystal cavities are con-
nected by waveguides49,50 (see also the Supplementary
Information for more details). The forward (backward)
energy transmission coefficient can be defined as

T! � aoutmþ1=a
in
m

	 
�� ��2 T � aoutm =ainmþ1
	 
�� ��2

� �
, which is

equal to the modular square of the off-diagonal element
Smþ1;m (Sm;mþ1) of the scattering matrix and proportional
to the modular square of the forward (backward) coupling
coefficient h→ (h←). Once the forward and backward
coupling strengths are tuned to be unequal, the asym-
metric scattering matrix leads to asymmetric forward and
backward transmission coefficients, yielding non-
reciprocity. Moreover, the unidirectional forward (back-
ward) energy transmission coefficient can be maximized
to 68.6% by optimizing the system parameters (the
detailed derivations can be found in the Supplementary
Information), corresponding to a 1.6 dB insertion loss.

In summary, we present the principle of loss-induced
nonreciprocity, which is completely different from the
existing principles relying on a magnetic field, spatio-
temporal modulation, or nonlinearity. We design a
coupled-mode model with a series of resonance modes
interacting with each other via lossy connecting modes. A
lossy mode possesses a phase lag induced by energy loss,
which does not depend on the energy transmission direc-
tion. The interference between different coupling channels
with different loss phases results in different coupling
strengths for the forward and backward directions, yielding
nonreciprocity. This property can be exactly tuned by
matching the coherent coupling phases and loss phases,

100a b

c d
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a1 a2 a3 a1 a2 a3

a2 a1 a2
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Fig. 5 Unidirectional energy transmission. a, b Time evolution of
the energy in the first main mode a1 (blue) and the second main
mode a2 (red) for energy initially stored in the leftmost mode (a) and
the rightmost mode (b). c, d Time evolution of the energy in a1 (blue),
a2 (red), and a3 (black) for energy initially stored in the leftmost mode
(c) and the rightmost mode (d). The curves are calculated from the
effective Hamiltonian (2) and the dots are obtained from the original
Hamiltonian (1). The insets illustrate the energy flow direction. The
parameters are the same as in Fig. 4, with Δϕ ¼ �π=2
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which depend on the ratio between the detuning and
energy decay rate of the resonance modes. Our model is
universal and can be applied to a variety of systems that can
be described by resonance modes, such as optical cavities
and waveguides, mechanical resonators, and super-
conducting circuits. Our work provides new opportunities
for designing nonreciprocal optical devices and exploring
topological properties such as the non-Hermitian skin
effect51 without requiring a magnetic field, spatiotemporal
modulation, nonlinearity, or other stringent conditions,
and it may also inspire the further exploration of methods
of turning harmful effects into resources.
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