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Recent advances in 2D, 3D and higher-order
topological photonics
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Abstract
Over the past decade, topology has emerged as a major branch in broad areas of physics, from atomic lattices to
condensed matter. In particular, topology has received significant attention in photonics because light waves can
serve as a platform to investigate nontrivial bulk and edge physics with the aid of carefully engineered photonic
crystals and metamaterials. Simultaneously, photonics provides enriched physics that arises from spin-1 vectorial
electromagnetic fields. Here, we review recent progress in the growing field of topological photonics in three parts.
The first part is dedicated to the basics of topological band theory and introduces various two-dimensional topological
phases. The second part reviews three-dimensional topological phases and numerous approaches to achieve them in
photonics. Last, we present recently emerging fields in topological photonics that have not yet been reviewed. This
part includes topological degeneracies in nonzero dimensions, unidirectional Maxwellian spin waves, higher-order
photonic topological phases, and stacking of photonic crystals to attain layer pseudospin. In addition to the various
approaches for realizing photonic topological phases, we also discuss the interaction between light and topological
matter and the efforts towards practical applications of topological photonics.

Introduction
Topology is a field of mathematics that studies con-

served and quantized quantities, which are known as
topological invariants. Two objects that have the same
topological invariants are defined as topologically
equivalent. For instance, imagine a sphere that transforms
via two intermediates to a torus in time (Fig. 1a–d).
Whereas the geometrical parameters continuously change
in time, a topological parameter, or a topological invar-
iant, is discretized as an integer. We consider the number
of holes on a surface as a topological invariant; it is zero
for objects A to C and unity for object D. Deformations
from A to B and from B to C preserve the topological
invariant and are called continuous because the para-
meters continuously change during the deformation.

Therefore, objects A, B, and C can be transformed into
each other by a continuous deformation, irrespective of its
strength. More generally, any two topologically equivalent
objects can be transformed into each other by an arbitrary
continuous deformation, such as stretching and com-
pression. In contrast, deformations that involve cutting,
tearing, or attachment alter topological invariants. These
deformations are called discontinuous in that a topolo-
gical invariant abruptly changes at a certain moment.
The deformation from C to D belongs to this case because
the topological invariant changes from zero to unity. The
transition between topologically distinct states is called a
topological phase transition.
The definition of topological equivalence implies that if

a physical phenomenon is characterized by a topological
invariant, then the phenomenon does not change under
any continuous deformation. This perspective is funda-
mentally different from the previous understanding that
phases of matter can be described by spontaneous sym-
metry breaking. This robust feature of topology has
spawned a new paradigm called topological order1 and
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has explained many experimental observations that could
not be described by other concepts. A good example is the
quantum Hall effect2, in which the Hall conductance of a
2D electron gas under an external magnetic field has a
quantized value with remarkable precision regardless of
the charge density and impurities in the sample. This
extraordinary behavior cannot be explained by Landau’s
local-order parameters3 but can be understood by
topological order.
Topology is becoming a universal notion throughout

physics. Starting from condensed matter physics4, the
concept of topology has been extended to various systems,
including photonics, phononics5, mechanics6, and cold
atomic gases7. In particular, the implementation of
topology in photonics has been motivated by three rea-
sons. First, photonics provides a concrete and versatile
platform for realizing and exploring topological features
because the photon wavelength is much longer than the
electron wavelength. Photons have wavelengths on the
order of hundreds of nanometers for visible light and
larger for lower frequencies, whereas electrons with 1 eV
energy have wavelengths on the order of nanometers.
Therefore, without going down to the atomic level, the
photonic band structure and its topology can be engi-
neered by appropriately artificially structuring and
arranging the unit design on a scale comparable to or

smaller than the wavelength. The booming interest in
light manipulation over the past couple of decades using
photonic crystals and metamaterials has facilitated topo-
logical photonic band engineering. Indeed, despite the
fundamental difference between fermionic and bosonic
systems, many extraordinary features that have been
predicted in condensed matter physics or high-energy
physics have been found in photonics. Second, consisting
of two vector fields, electromagnetic waves enable richer
physics compared to other classical scalar waves. For
example, electromagnetic duality can be used to emulate
electronic spin states8, and the vectorial nature of electric
fields gives rise to the definition of polarization and to
resultant properties such as chirality9. Last, adding
topology to photonics facilitates robust control of photons
on a wavelength scale. Current communication technol-
ogies use electrons as information carriers. However,
compared to electrons, photons are faster, dissipate less,
and support more channels. However, because the pro-
pagation of photons is sensitive to the surface at a scale
comparable to the wavelength, impurities and defects at
the surface easily scatter photons. Therefore, optical
communication relies on guiding based on the refractive
index, such as in optical fibers, which makes the whole
system bulky. Topology can provide a solution to this
practical problem by providing a robust way to control
photons in compact systems. The application of topology
to photonics may yield many practical applications, such
as compact waveguides with no bending loss, lasers, and
cavities.
During the past several years, there has been vast pro-

gress in topological photonics. The emerging fields of
topological photonics have been reviewed many times10–16.
A comprehensive review13 exists that covers most of the
progress in topological photonics in a broad aspect, in
addition to some reviews focused on specific topics, such
as two-dimensional (2D) topological photonics12,16,
topological nanophotonics15, active topological photo-
nics17, nonlinear topological photonics18, and topological
photonics using synthetic dimensions14. However,
approaches to three-dimensional (3D) photonic topolo-
gical phases have been considered only as a minor part of
these reviews. Additionally, following the rapid progress
in topological photonics, a review that covers the latest
achievements is in demand. Therefore, this review is
devoted to 3D topological phases and their photonic
realization and to the latest progress in this rapidly
evolving field.
In the first part, we review topological band theory and

three 2D topological phases: the quantum Hall, quantum
spin Hall, and quantum valley Hall phases. The basics of
topological band theory and some representative topolo-
gical phases have been previously reviewed4,19,20. How-
ever, they are mostly described in the context of
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Fig. 1 Illustration of geometrical and topological parameters
changing over time. When a sphere transforms to a torus by
elongation and end-to-end connection, geometrical parameters, such
as the surface-to-volume ratio, continuously change, while a
topological parameter, called a topological invariant, undergoes an
abrupt and discontinuous change. A deformation that does not alter
the topological invariant is called a continuous deformation, and a
deformation that changes the topological invariant is called a
discontinuous deformation. The transition between topologically
inequivalent states is called a topological phase transition
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condensed matter physics and are difficult to follow for
general readers in photonics who do not have a firm
background in this field. Thus, we concisely review the
basics of topological band theory and some 2D topological
phases, especially for readers who are interested in
topological photonics but are not familiar with condensed
matter physics. Before finishing this section, we briefly
cover other topological phases, such as the Floquet
topological phase and Zak phase.
Then, we cover 3D photonic topological phases and var-

ious approaches for realizing them. We aim to discuss
photonic systems with 3D topological phases and especially
focus on approaches that use photonic crystals or metama-
terials. Various symmetry breakings and material responses
to achieve topological phases are elucidated. The symmetries

referred to in this review are visualized in Table 1. Five
symmetries, time-reversal symmetry (T ), inversion sym-
metry (P), glide reflection symmetry, screw symmetry and
electromagnetic duality, are discussed. T refers to a sym-
metry under time-reversal operation21 (t→−t). P, glide
reflection symmetry and screw symmetry are spatial sym-
metries related to symmetries under spatial transforma-
tion21,22. Electromagnetic duality is associated with a
symmetry between electric and magnetic fields and is an
intrinsic property of the Maxwell equations in vacuum23.
Not only symmetries but also material responses can be
exploited to realize topological phases. Five material
responses, gyrotropic24, bianisotropic25, chiral26, hyper-
bolic27, and double hyperbolic28 responses, the constitutive
equations of which are shown in Table 2, will be covered.

Table 1 Overview of symmetries discussed in this review

Symmetries Operation

Time-reversal symmetry21 (T ) t → −t, x → x, E → E, H → −H

Inversion symmetry21 (or parity symmetry, P) x → −x, t → t, E → −E, H → H

Glide reflection symmetry22 Reflection + translation Ĝx : x; y; zð Þ ! 1=2� x; 1=2þ y; zð Þ

Screw symmetry22 Rotation + translation along the rotational axis Ŝx : x; y; zð Þ ! xþ 1=2;�y;�zð Þ

Electromagnetic duality23 E → −cB, cB → E, ε = αμ (α is a constant scalar)

The bold values indicate that the quantity is a vector

Table 2 Overview of material responses discussed in this review

Material responses Constitutive equations

Gyrotropic24 Gyroelectric D ¼
ε1 iε2 0

�iε2 ε1 0
0 0 ε3

0
@

1
AE, Gryomagnetic B ¼

μ1 iμ2 0
�iμ2 μ1 0
0 0 μ3

0
@

1
AH

Bianisotropic25 (magneto-electric coupling) D ¼ εE þ
0 iχ 0

�iχ 0 0
0 0 0

0
@

1
AH ; B ¼

0 iχ 0
�iχ 0 0
0 0 0

0
@

1
AE þ μH

Chiral26 D ¼ εE þ
iκ 0 0
0 iκ 0
0 0 iκ

0
@

1
AH ; B ¼ �

iκ 0 0
0 iκ 0
0 0 iκ

0
@

1
AE þ μH

Hyperbolic27 D ¼
εx 0 0
0 εy 0
0 0 εz

0
@

1
AE; B ¼ μH

One or two components among εx, εy, and εz have the opposite sign.

Double hyperbolic28 D ¼
εx 0 0
0 εy 0
0 0 εz

0
@

1
AE; B ¼

μx 0 0
0 μy 0
0 0 μz

0
@

1
AH

One or two components among εx, εy, and εz have the opposite sign, and one or two components among

μx, μy, and μz have the opposite sign.

The bold values indicate that the quantity is a vector
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In the last part, to follow the rapid development of
topological photonics, some recently emerging fields that
have not hitherto been discussed by previous reviews are
focused on. More specifically, this part includes six sub-
topics: stacked topological photonic crystals for layer
pseudospin, Weyl degeneracies in nonzero dimensions,
unidirectional Maxwellian spin waves, higher-order pho-
tonic topological phases, interactions between light and
topological phases and progress towards application of
topological photonics. We conclude this review by pro-
viding a perspective on this promising field.

Topological band theory
Conventional band theory in photonics has been

developed for photonic crystals29–31. Similar to electrons
propagating through a crystal, photons in a photonic
crystal experience a periodic potential, and the global
features can be delineated by the photonic band struc-
ture32. The photonic band dispersion, which has been
generally discussed in terms of the photonic band gap, has
another interesting characteristic called topology. The
topology originates from winding of eigenmodes in
momentum space and can be characterized by a topolo-
gical invariant. Apart from the band dispersion, each band
has a topological invariant that is zero for topologically
trivial cases and nonzero for topologically nontrivial cases.
Two bands are defined to be topologically equivalent if
they can be adiabatically transformed into each other33.
Therefore, two topologically equivalent insulators are
connected by a continuous deformation, along which a
band gap remains open. In contrast, a topological insu-
lator and an ordinary insulator cannot be adiabatically
transformed into each other. Instead, they can only be
interconverted if the band gap is closed and reopened33.
The band gap closing corresponds to cutting of the
photonic band dispersion in momentum space and alters
the bulk topology. This topological phase transition
ensures gapless boundary modes at the interfaces between
a topological insulator and an ordinary insulator. The
existence of these edge modes across the band gap is
consistent with the definition of topological equivalence
of bands and is closely related to the bulk topology.
Indeed, the number of gapless edge modes is equal to the
difference between the topological invariants of the two
media34,35. This so-called bulk-boundary correspon-
dence34,35 dictates that the number of lower-dimensional
modes, or boundary modes, is determined by the topology
of the bulk states. Because the existence of the gapless
boundary modes is protected by the bulk topology, these
modes provide robust characteristics insensitive to small
perturbations that do not change topology.
In this section, we discuss a few representative 2D

topological phases by classifying them according to their
topological invariants. Three topological phases—the

quantum Hall phase, quantum spin Hall phase, and
quantum valley Hall phase—are reviewed (Fig. 2a–c) and
compared to the ordinary insulating phase (Fig. 2d). A
brief and general discussion on other topological phases
then follows. Since the details of such topological pha-
ses4,19,20 and attempts in photonics to emulate them10,12,13

can be found elsewhere in the literature, we do not go into
detail but discuss important features and conditions so
that readers who are not familiar with topology can grasp
the concept and appreciate the rest of the paper.

Quantum Hall phase
The discovery of the quantum Hall phase goes back to

1980 when Klitzing, Dorda, and Pepper observed that a
2D electron gas under a perpendicular magnetic field has
a quantized Hall conductance2. This effect corresponds to
the quantum version of the conventional Hall effect, in
which electrons in a metal plate under an applied mag-
netic field are deflected by the Lorentz force. In contrast
to the Hall effect, the strong magnetic field and cryogenic
conditions in the quantum Hall state accentuate the
quantized feature of the Hall conductance. It was later
revealed that a magnetic flux is not a necessary condition
for such quantum Hall effects19. Other mechanisms, such
as magnetization and strong spin–orbit coupling in
magnetic materials that break T , can induce a similar
effect in the absence of a magnetic field19.
The signature of the quantum Hall phase is that elec-

trons are localized in the bulk but unidirectionally pro-
pagate along the boundaries (Fig. 2a, top row). The
broken T makes the propagation of edge modes chiral. In
other words, electrons propagate either counterclockwise
or clockwise. Propagation in the reverse direction is not
allowed, as implied by the fixed sign of the group velocity
(Fig. 2a, middle row). Therefore, the edge states are not
back-scattered, even in the presence of large defects. A
topological invariant of the quantum Hall phase is the
integer of the Hall conductance, which is called the Chern
number (or TKNN invariant)1,36

Cn ¼ 1
2π

Z
BZ
Fnd

2k ð1Þ

where BZ denotes the Brillouin zone, Fn ¼
∇ ´ iunðkÞj∇k junðkÞ is the Berry curvature of the n-th
band, and un is the n-th eigenstate37. An example of the
Berry curvature of a system possessing the quantum Hall
phase is shown in Fig. 2a, bottom row. The Chern number
of a medium that possesses a quantum Hall phase is
nonzero.
It has been suggested that photons in 2D photonic

crystals composed of magnetoelectric materials behave
like electrons under the quantum Hall effect38,39. The
magnetoelectric coupling breaks T , resulting in a nonzero
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Chern number across a photonic band gap. At the band
gap, chiral edge transport immune from back-scattering
was theoretically predicted39. Gyromagnetic photonic
crystals, which exhibit strong gyromagnetic anisotropy,
have been proposed as a realistic platform to manifest the
photonic analog of the quantum Hall effect40. This the-
oretical prediction was soon experimentally confirmed in
the microwave regime by showing chiral edge propagation
robust against an artificially introduced scatterer41. The
quantum Hall phase has also been demonstrated in
photonics using Floquet-like waveguide arrays42, dynamic
modulation43, magnetoplasmons44, and graphene45.

Quantum spin Hall phase
Difficulties in applying magnetic fields and the scarcity

of gyromaterials make it difficult to realize the quantum
Hall effect. Challenges in breaking T have motivated the
search for topological phases in T -invariant systems. Spin,
a fundamental characteristic of electrons, provides a
solution. According to Kramers’ theorem46, all eigenstates
of a system that possesses half-integer spin are at least

doubly degenerate under T . Because electrons with spin-
up experience different forces than electrons with spin-
down in the presence of spin–orbit coupling, the two
classes of electrons may have different topological beha-
viors despite the degenerate energy level. In other words,
electrons with spin-up may propagate along the bound-
aries counterclockwise while electrons with spin-down
propagate clockwise, or vice versa (Fig. 2b, top row). At
the band gap of a quantum spin Hall insulator, gapless
edge states for each spin exist, and the sign of the group
velocity of the edge states is locked by the spin (Fig. 2b,
middle row). This spin-momentum-locked character-
istic47,48 enables topologically protected helical edge states
that propagate without back-scattering if the spin is not
flipped.
This quantum spin Hall state can be viewed as two

copies of the quantum Hall state for each spin. The Berry
curvature of the quantum spin Hall phase is spin-
dependent. For example, the Berry curvature of elec-
trons with spin-up is positive, and that of electrons with
spin-down is negative (Fig. 2b, bottom row). Thus, the

B or M

Spin-down

Spin-up

Spin-up Spin-down

Valley K′

Valley K

a b c

Spin-down

K′
K

1

–1

0

A.U.
1

–1

0

A.U.
1

–1

0

A.U.

kx

ky

kx

ky

kx

ky

C = 0

C = –1

Cspin = ± 1

Cspin =    1

CK′ = –1/2 CK = 1/2

CK′ = 1/2 CK = –1/2

Quantum Hall phase Quantum spin Hall phase Quantum valley Hall phase d

kx

ky

C = 0

C = 0

1

–1

0

A.U.

2D topological phases

Momentum

E
ne

rg
y

E
ne

rg
y

E
ne

rg
y

E
ne

rg
y

Momentum Momentum Momentum

2D trivial phases

Ordinary insulating phase

±
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total Chern number. The Berry curvature of the spin-down mode is plotted. c Valley-dependent unidirectional propagation of edge states along the
boundary in the quantum valley Hall phase. The edge state dispersion has a valley-locked group velocity. The Berry curvature has positive and
negative hot spots at the valleys. The valley Chern number, which can be calculated by integrating the Berry curvature over half of the BZ, is nonzero.
d The ordinary insulating phase supports neither conducting edge states nor a nonzero Berry curvature. Green line: edge states in the quantum Hall
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Chern number calculated for a specific spin has a nonzero
value under T (C↑ = − C↓ ≠ 0, where C↑ is the Chern
number of spin-up electrons and C↓ is the Chern number
of spin-down electrons), although the Chern number of
the two spins cancel each other, leading to a zero Chern
number (C = C↑ + C↓ = 0). This is a relaxed condition
compared to the quantum Hall phase, considering that a
nonzero spin Chern number Cspin = (C↑ − C↓)/2 instead
of a nonzero Chern number suffices. The quantum spin
Hall phase is characterized by the Z2 invariant, which is
associated with the spin Chern number by4,49,50 Cspin(mod
2). The Z2 invariant has only two integer values: 0 for
topologically trivial cases and 1 for nontrivial cases.
At a glance, the quantum spin Hall phase seems

incompatible with photonics. Kramers’ theorem is not
applicable to photons because they do not have half-
integer spins. However, photons, even in free space, have
spin properties as a result of circular polarization9,51. The
spin-locked characteristics of boundary modes have been
studied for 2D interfaces between vacuum and a metal9,
between dielectric media, between a metal and a dielec-
tric47, and between definite and indefinite anisotropic
media52. Additionally, photons inside structured matter
can have a spin-like quantity called pseudospin by using
electromagnetic duality8 or crystalline symmetries53 to
emulate the fermionic T operator T 2

f ¼ �1. The photonic
analog of the quantum spin Hall phase has been actively
investigated using a 2D array of resonators54,55 and pho-
tonic crystals that possess crystalline symmetries53,56,57. In
the latter instance, a quantum spin Hall phase of a per-
turbed photonic crystal has an integer Cspin only in the
limit of zero-order perturbation theory58. Beyond this
limit, Cspin may depend on the strength of the perturba-
tion and cannot serve as a topological invariant.

Quantum valley Hall phase
In the previous section, we reviewed the quantum spin

Hall phase, where the spin degree of freedom guarantees
spin-polarized topological edge states. Similarly, there
exists another binary degree of freedom: a valley has
recently been identified as a candidate to yield a new
topological phase under T , the so-called quantum valley
Hall phase. A valley refers to momentum with a local
energy extremum. When a Dirac point at a valley is lifted
by symmetry breaking, the band gap may support the
quantum valley Hall phase. In a quantum valley Hall
system, electrons at different valleys (K and K′) propagate
along the boundaries in the opposite directions (Fig. 2c,
top row). The edge state dispersion of a quantum valley
Hall insulator exhibits opposite signs of the group velocity
(Fig. 2c, middle row).
Breaking of P is a prerequisite of the quantum valley

Hall phase. This condition can be easily understood by
symmetry consideration of Berry curvatures. The Berry

curvature of the n-th band satisfies Fn(k) = −Fn(−k)
under T and Fn(k) = Fn(−k) under P. Therefore, the
Berry curvature is zero in the whole BZ in a system that
preserves both T and P. However, in a system that lacks
P, the Berry curvature can have a nonzero value localized
at valleys (Fig. 2c, bottom row). The Berry curvature at the
two valleys K and K′ have opposite signs, which leads to a
total Chern number of zero. The topological invariant of
the quantum valley Hall effect is Cvalley, which can be
calculated by replacing the BZ in Eq. (1) with the half of
the BZ around the valley. Along the interfaces between
media with distinct Cvalley, this valley-momentum locking
enables edge transport robust against perturbations that
do not cause intervalley scattering59.
Despite the relatively short history compared to that of

the quantum Hall and quantum spin Hall effects, the
quantum valley Hall effect has been intensively studied.
Before finishing this section, we briefly introduce recent
work on the quantum valley Hall phase in photonics. The
quantum valley Hall effect in photonics was first proposed
in 2016 by breaking the P of triangularly arranged
dielectric rods59. Before P is broken, the photonic crystal
consists of circular rods arranged in a hexagonal lattice, in
which the spatial symmetry gives rise to a Dirac point at
valleys. Application of a P-breaking perturbation by
changing the cross-sectional shape of the rods from cir-
cles to triangles suppresses the intervalley scattering,
which lifts the Dirac point and opens a complete band
gap. The authors numerically demonstrated unidirec-
tional propagation of edge states and efficient in-coupling
and out-coupling59. The quantum valley Hall effect and
valley-dependent robust propagation have been experi-
mentally observed in microwaves using designer surface
plasmon crystals60. Studies on valley-dependent transport
were further extended to surface waves that propagate in a
specified direction determined by their spins inside a bulk
photonic crystal61. In this case, P is broken by differ-
entiating the heights of the two sublattices of the honey-
comb lattice. The quantum valley Hall effect has been
confirmed numerically by using dielectric rods in a per-
turbed kagome lattice62 and experimentally by using
coupled waveguide arrays with detuned refractive indi-
ces63, a dielectric slab with air holes with a P-breaking
shape64,65 and P-broken connected dielectrics that have
dual-band edge states66. The quantum valley Hall phase
can also be implemented in an active system. Recently,
topologically protected lasing modes were demonstrated
by combining the quantum valley Hall effect with an
electrically pumped laser67.
A photonic crystal can simultaneously possess both

valley-dependent and spin-dependent properties. A hex-
agonal array of staggered bianisotropic rods has a bulk
dispersion, for which the spin-dependent features appear
in a valley. The interaction between the valley and spin
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enables valley-selective net spin flow inside bulk photonic
crystals68. Additionally, the quantum spin and valley Hall
phases can be independently controlled in a photonic
crystal. In such a system, two perturbations, one to induce
a quantum spin Hall phase by adding bianisotropy and the
other to induce a quantum valley Hall phase by breaking
P, are present. The topological phase of the system is
determined by the relative strengths of the two pertur-
bations. By varying the strengths of the two perturbations,
a topological phase transition between the quantum spin
and valley Hall phases was demonstrated. This work
suggested a photonic system in which the topological
phase can be controlled by both the spin and valley
degrees of freedom69.

Other topological phases
In addition to the aforementioned three topological

phases, there are other topological phases that originate
from different mechanisms. One example is the Floquet
topological phase, which can be understood as a time
counterpart of the Bloch theorem. Floquet’s theorem
states that a solution of a time-periodic Hamiltonian can
be expressed by multiplying a time-periodic function by a
phase term70. This theorem has been used to study peri-
odically driven quantum systems. Interesting phenomena
occur when we examine the results of the time periodicity.
As a translational symmetry originating from a potential
periodic in space gives rise to conservation of quasi-
momentum71 (crystal momentum), a potential periodic in
time results in conservation of a quantity according to
Noether’s theorem72. This conserved quantity is a quasi-
energy and can serve as an additional dimension along
with crystal momenta. Therefore, similar to how spatially
periodic structures can possess a topological phase, a
system under periodic temporal modulation can also
support a topological phase called the Floquet topological

phase73–76. This phenomenon has also been realized in
photonics by using time-dependent index modulation77,78

and by using the propagation axis of a waveguide array to
mimic a time-like axis42,79,80.
Another topological phase is called the Zak phase, along

with its 2D version81,82. The Zak phase is obtained by
integrating the Berry connection along one wave vector
axis and can be viewed as a 1D version of the Berry phase.
The topology of the Zak phase originates in bulk polar-
ization, or a shift of the Wannier band, and can have only
two values: 0 for trivial topology and π for nontrivial
topology81. The edge modes in a 2D system that carry the
nontrivial Zak phase are floating in the band gap and not
connected to the bulk bands. Additionally, the topological
protection of the Zak phase is weak compared to the
previously mentioned topological phases82.

Three-dimensional photonic topological phases
3D gapped phase
In the previous section, the topological phases of 2D

insulators were reviewed. Such systems are generally
composed of unit cells periodically arranged along two
axes, and the resultant two crystal momenta form the 2D
BZ. The gapped 2D bulk states support gapless edge states
with topological protection. The 2D topological insulating
phases can be further extended to 3D by using a 3D
crystalline structure that consists of unit cells periodically
arranged along all three spatial directions. These 3D
gapless topological phases, also known as 3D topological
insulating phases, are attributed to the 3D band gap that
separates topologically inequivalent bands. If two 3D bulk
bands, one of which is above the band gap and the other
below it, are topologically distinct, then gapless surface
states appear inside the band gap83–85 (Fig. 3a) as 2D
gapped bulk states host gapless edge states in 2D topo-
logical phases. The edge states of 2D topological
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insulators are confined in a 2D plane, so their propaga-
tions are protected by topology only along the planar
directions. In contrast, the surface states of 3D topological
insulators are confined in all three spatial directions86. In
other words, a 3D photonic gapped phase enables photons
to propagate robustly against defects along any spatial
direction without being limited to a certain plane.
3D gapped topological phases can be realized in both

T -broken and T -invariant systems. The 3D quantum Hall
phase, which can be regarded as a 3D extended version of
the 2D quantum Hall phase, corresponds to the T -broken
case. The Chern number, the topological invariant of the
2D quantum Hall phase, is defined only in even spatial
dimensions. In 3D cases, the quantum Hall phase is
characterized by a triad of Chern numbers: C(1) ≡ (Cx

(1),
Cy

(1), Cz
(1)), where Cj

(1) is the Chern number of the 2D
momentum plane normal to the j-axis. The superscript
(1) is added to distinguish the Chern numbers from the
second Chern number87, which characterizes the quan-
tum Hall phases in four dimensions88.
The 3D quantum Hall phase has been theoretically

predicted by examining 3D electron gases under magnetic
fields89–91 and has been experimentally demonstrated
using semiconductor superlattices constructed by stack-
ing 2D quantum Hall insulators with appropriate inter-
layer coupling92. However, the 3D quantum Hall phase in
a strict sense, with surface states closed along the stacking
direction, was only recently observed93. A quantized Hall
resistivity and conductive surface states were confirmed in
ZrTe5 crystals under magnetic fields. A photonic analog
of the 3D quantum Hall phase was theoretically proposed
by using photonic crystals composed of gyroelectric
materials94. A magnetic field bias breaks T and produces
a band gap and topological surface states within the gap.
Similarly, the 3D quantum spin Hall phase can be

viewed as a generalization of the 2D quantum spin Hall
phase and corresponds to the T -invariant case. The 3D
quantum spin Hall phase is characterized by four Z2
invariants83–85 (ν0; ν1 ν2 ν3). To understand these invar-
iants, we imagine a kx − ky plane by fixing the kz of a given
3D BZ. A Z2 invariant can be defined in only two
momentum planes, kz= 0 and kz= π/a, where a is a lat-
tice constant, as they are the only T -symmetric planes. If
the Z2 invariants of the two planes are distinct, then the
Z2 invariants of the two planes defined by the other two
directions should also be different85. This change in Z2
invariants between two planes is described by the strong
topological invariant ν0; if one of the planes has Z2 = 0
and the other has Z2 = 1, then the system is topologically
nontrivial and has ν0 = 1. In contrast, if the Z2 invariants
of the two planes are the same, then the system has ν0 = 0
and is trivial. The other three invariants are weak invar-
iants, each of which corresponds to the Z2 invariant of ki
= π/a (i= {x, y, z})83.

ν0 classifies 3D quantum spin Hall insulators into weak
topological insulators (ν0 = 0) and strong topological
insulators4,33 (ν0 = 1). Weak topological insulators can be
achieved by layering 2D quantum spin Hall insulators
similar to how 3D quantum Hall insulators are formed by
stacking 2D quantum Hall insulators. For weak topolo-
gical insulators, the Z2 invariants of the two 2D planes (kz
= 0 and kz = π/a) are the same, so only an even number
of surface Dirac cones are possible4,33. On the other hand,
strong topological insulators require other mechanisms,
such as strong spin–orbit coupling, and support an odd
number of surface Dirac cones95,96. In 2011, the first
proposal of a 3D topological insulating phase in photonics
was reported97. Following the scheme of topological
crystalline insulators in an electronic system98, a tetra-
gonal lattice of uniaxial dielectric cavities in a lossless
metallic host was investigated using a coupled dipole
method. This system with T and point-group symmetry
exhibits a complete 3D band gap and gapless topological
surface states. Topological photonic systems with 3D
band gaps have also been proposed by using 3D bianiso-
tropic structures86,99,100 and a 2D crystalline structure
with a synthetic dimension78.

3D gapless phase
The 3D gapped phase is not the only type of phase

possible among 3D topological phases. Discovery of a 3D
gapless bulk dispersion that hosts nontrivial band topol-
ogy101–106 refuted the perception that topological features
necessarily require a band gap and has extended our
understanding of the topological phases. The 3D gapless
topological phase, also known as the topological semi-
metal phase, is a new topological phase of matter different
from the topological insulating phase (Fig. 3b, c). Unlike
3D gapped phases, the 3D gapless phase has no 2D
counterpart. Instead of a band gap, the 3D gapless topo-
logical phases are characterized by Weyl degeneracies,
which are degeneracies between topologically inequi-
valent bands. The main signature of 3D gapless topolo-
gical phases is a 0D Weyl degeneracy, called a Weyl point,
which is said to be type-I if the equi-frequency surface at
the Weyl frequency is point-like (Fig. 3b) and type-II
otherwise (Fig. 3c).
Aside from the different dimensionality, Weyl points are

distinct from 2D Dirac points, which are nodal points in
2D momentum space, in some other aspects. The exis-
tence of 2D Dirac points is protected by PT symmetry.
Thus, they can be easily removed if either T or P is
broken. In contrast, Weyl points exist in systems that lack
T , P, or both, so Weyl points cannot be eliminated by
breaking T or P. This can be understood in that they are
monopoles of the Berry curvature in 3D momentum
space. Each Weyl point serves as a source or drain of the
Berry curvature and carries a quantized topological
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charge. Thus, two Weyl points always come in pairs with
opposite signs of charge and can be created or eliminated
only when the Weyl point pairs are generated together or
annihilate each other101. The topological charge, often
called the chirality, of a Weyl point is a topological
invariant of 3D gapless phases and can be obtained by
integrating the Berry curvature over a small sphere
enclosing the Weyl point101.
Studies on 3D gapless phases are closely related to Weyl

physics. This physics addresses a Weyl particle, which is a
solution of the massless Dirac equation, also known as the
Weyl equation107. The existence of Weyl particles was
uncertain for a long time until they were concurrently
found in electronic103,104 and photonic108 systems by
three independent groups. These demonstrations were
remarkable achievements because no Weyl point had ever
been previously identified, while studies on Weyl particles
trace back to the early twentieth century107. Near Weyl
points, electrons (or photons in a photonic system)
behave as Weyl particles, which are relativistic particles
that have charge but no mass. Another interesting feature
of Weyl points is the existence of a Fermi arc between a
pair of Weyl points101,103,109. The Fermi arc corresponds
to topologically protected surface states resilient to
perturbations.
Analogously, photonic systems that host Weyl points

exhibit topological surface states, which are often called
photonic Fermi arcs. The photonic counterparts of these
advances in condensed matter physics have been investi-
gated over the past several years. The first achievement in
3D topological photonics was the numerical demonstra-
tion of a Weyl point using photonic crystals108. Since
then, photonic systems that possess Weyl points have
been extensively studied and realized in homogeneous
media110,111, photonic crystals112–116, and metamater-
ials109,117–119. Such Weyl systems have exhibited various
unprecedented phenomena, such as topological surface
states connecting a pair of Weyl points120, the quantum
anomalous Hall effect105, and chiral anomalies121.

Approaches to realize 3D photonic topological phases
In this section, we review 3D photonic topological sys-

tems, especially focusing on a variety of approaches to
achieve 3D topological phases and related phenomena.
For the photonic analog of a 3D topological phase, at least
one of T or P must be broken108. We review the first
demonstrations of 3D photonic topological systems that
broke either T or P, or both simultaneously. Then, we
discuss T -breaking approaches, followed by P-breaking
approaches.
The first realization of a 3D photonic topological phase

was achieved by breaking the symmetries of double gyroid
photonic crystals (Fig. 4a–d)108. An array of a single
gyroid possesses a wide and complete band gap (Fig. 4a,

red lines), whereas a double gyroid photonic crystal,
whose unit cell consists of a single gyroid and its inversion
counterpart, exhibits a gapless dispersion with a three-
fold quadratic nodal point (Fig. 4a, blue lines). The band
structure and its topology were studied by breaking
symmetries of the double gyroid photonic crystal. The
authors first introduced two P-symmetric air spheres into
the double gyroids. Under this perturbation that preserves
both T and P, the trivial nodal point is converted into a
two-fold nodal ring. However, the nodal ring is topolo-
gically trivial as a result of T and P. Weyl points appear
when either T or P is broken. Breaking P by applying the
perturbation in which only one air sphere is added
without its inversion counterpart leads to four Weyl
points (Fig. 4b). This corresponds to the minimal number
of Weyl points in T -invariant systems because a Weyl
point at k has a time-reversal pair with the same chirality
at −k under T and another Weyl pair with opposite
chirality should exist to neutralize the first pair. In con-
trast, breaking T by assuming the gyroid to be a gyro-
electric material under a biased magnetic field results in
two Weyl points aligned along the magnetic field direc-
tion (Fig. 4c). The double gyroid photonic crystal and
T -broken and P-broken structures are illustrated in Fig.
4d. Simultaneous breaking of T and P by varying their
strength has revealed a topological phase transition
between pure T -breaking and P-breaking phases. As the
amplitude of the magnetic field in a P-broken system
increases, a pair of Weyl points with the same chirality
moves parallel to the magnetic field direction. When the
T -breaking perturbation is strong enough, the Weyl pair
finally merges with a Weyl point with opposite chirality,
forming a T -dominant topological phase. Since the pro-
posal of the Weyl point, 3D photonic topological systems
have been intensively studied using various schemes, as
we will see in the following section.

By breaking the time-reversal symmetry
Realization of a 3D topological phase by breaking T

provides a concrete platform in which gapless surface
states are protected by topology regardless of the spin or
valley. Therefore, T -broken topological systems are
robust against perturbations that cause spin flipping or
valley flipping. However, despite the large number of
theoretical investigations and experimental demonstra-
tions of 2D topological phases by breaking T 41–45,122–129,
there exist few examples of 3D photonic topological sys-
tems with broken T . Therefore, in this section, we review
T -broken 3D photonic topological systems without fur-
ther classifying them. We discuss theoretical approaches
towards 3D gapped and gapless dispersions by using
T -broken photonic crystals. Then, homogeneous photo-
nic topological systems based on magnetized plasmas and
recent experimental demonstrations are reviewed. Last,
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we briefly mention 3D photonic topological phases using
Floquet’s theorem.
A photonic analog of a 3D strong topological insulator

was reported in 2016, in which the surface Dirac cone is
protected by crystalline symmetry94. The unit structure
consists of four identical gyroelectric rods with P and two
glide reflection symmetries (Fig. 4e). When there is no
perturbation, the photonic crystal possesses a four-fold
Dirac point at the boundary of the BZ; this Dirac point is
slightly different from other Dirac points in that it splits
into four singlets instead of into two doublets. Breaking of
T by applying alternating magnetizations on the gyro-
electric rods while preserving the glide reflection sym-
metries splits the 3D Dirac point and leads to a single
surface Dirac cone (Fig. 4f). The surface Dirac cone is
protected by the glide symmetries. Therefore, gapless
surface states are observed under the glide symmetries,
but the surface states are gapped when the glide sym-
metries are broken (Fig. 4g).
Breaking of T can also yield a 3D gapless dispersion by

splitting a Dirac point into a pair of Weyl points. In
comparison to the P-broken case, Weyl points in

T -broken systems have been known to support exotic
phenomena such as chiral Majorana edge states and zero
modes44,130, chiral and gravitational anomalies118,131,
giant photocurrents132, and quantum oscillation phe-
nomena133. A tetrahedral photonic crystal composed of
anisotropic gyroelectric materials has been proposed to
host Weyl points112. The tetrahedral photonic crystal with
broken P possesses a three-fold nodal point. Under a
magnetic field, the trivial nodal point is lifted, and Weyl
points and the consequential topological surface states
were numerically demonstrated112.
In these photonic crystal-based approaches108,112, judi-

ciously designed structures arranged in an adequate lat-
tice are essential. However, Weyl points can also exist in a
homogeneous medium: a magnetized plasma, which is a
free electron gas under a static magnetic field111. If the
magnetic field is strong enough that the cyclotron fre-
quency exceeds the plasma frequency, then the long-
itudinal plasma modes linearly cross the transverse helical
modes. This forms two pairs of Weyl points along the
magnetic field direction at the plasma frequency. The
Weyl points are at the transition between the type-I and
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type-II states as a result of the flat longitudinal modes at
the plasma frequency. This magnetized plasma system has
clear advantages over other photonic crystal-based sys-
tems: complicated structures are not required, and topo-
logical phases can be dynamically controlled by tuning the
amplitude and direction of the external magnetic field.
This system was recently experimentally realized by

exploiting indium antimonide (InSb), which behaves like a
magnetized plasma under a magnetic field in the terahertz
regime110. The synthetic parameter space (kx, ky, B) was
used instead of (kx, ky, kz) to facilitate the experiment
because the strength of the magnetic field acts similarly to
kz in the Hamiltonian. Therefore, to obtain the band
dispersion, the authors fabricated an InSb sample with a
metal grating to compensate for the phase mismatch (Fig.
4h) and then measured the reflection spectrum under
varying magnetic field. The InSb sample under the mag-
netic field supports linear band crossing in the terahertz
regime (Fig. 4i). The measured reflection spectrum man-
ifests a band crossing at 0.31 THz, which corresponds to a
Weyl point, and surface states (Fig. 4j). The topological
surface states were further observed under a different
measurement setup, where the beam was obliquely
injected into the tilted grating on the InSb substrate.
A 3D photonic topological phase can be realized in a

slightly different scheme using Floquet’s theorem. A
periodically driven 3D network composed of vertically
stacked 2D networks can host an ordinary insulating
phase, a topological insulating phase, or a topological
semimetal phase depending on the coupling
strength134,135. It is also possible to attain a 3D gapless
topological phase possessing Weyl points77,136 and a 3D
gapped topological phase78 in a 2D array of resonators by
dynamic modulation.

By breaking the inversion symmetry using photonic crystals
An alternative way to achieve 3D photonic topological

systems is by breaking P. In this section, we review var-
ious numerical and experimental demonstrations of
T -invariant 3D photonic topological systems realized by
using photonic crystals. The P of a photonic crystal can
be broken by designing a P-broken unit cell. This can be
realized by, for example, combining two structures that
are not P-symmetric108 or breaking the symmetry along
the vertical direction116. In addition to the double gyroid
photonic crystal with air holes, many attempts have been
made to achieve a 3D topological phase by using P-bro-
ken photonic crystals. An early study used a superlattice
of photonic crystals, in which the unit cell was composed
of three stacked layers of hexagonal patterns of dielec-
trics137. The authors changed a geometrical parameter of
each layer to break P. The resulting unit cell is composed
of three unit cells with slightly modified geometries and
has a gapless bulk dispersion possessing Weyl points.

The first experimental observation of Weyl points was
demonstrated in the microwave range by using double
gyroid photonic crystals with broken P.114 A single gyroid
photonic crystal was fabricated by drilling air holes in a
high index dielectric material (Fig. 5a) and then combin-
ing the perforated material with its P-broken counterpart.
The P-broken double gyroid photonic crystals possess
two Weyl points in the microwave regime (Fig. 5b).
Because transmission is generally proportional to the bulk
density of states, an angle-resolved transmission spectrum
was measured to probe the bulk dispersion. The measured
spectrum clearly showed a band crossing that corresponds
to a type-I Weyl point (Fig. 5c). The four Weyl points with
equal frequency in P-broken double gyroid photonic
crystals have potential practical applications, such as in
angular and frequency selectivity, invisibility cloaking and
3D imaging138.
Weyl points can also be experimentally demonstrated

by observing conical diffraction, which is a signature of
type-II Weyl systems, as implied by the conical equi-
frequency curves at the Weyl point. Weyl points have
been observed by probing conical diffraction at optical
wavelengths116. The sample consisted of two inter-
penetrating square lattices of helical waveguides with a
relative phase difference of π (Fig. 5d) and was fabricated
by femtosecond direct laser writing. Such photonic crys-
tals support type-II Weyl points (Fig. 5e). The intensity on
one side was measured during excitation of the opposite
side and showed conical diffraction at the Weyl frequency
(Fig. 5f). Topological surface states were also observed by
exciting the center of the top surface. Weyl points have
also been demonstrated using P-broken gyroid photonic
crystals coated with layered composite nanometric
materials139.
Weyl points may carry multiple topological charges

higher than unity if an additional spatial symmetry exists
that causes overlap of several Weyl points with a single
topological charge113. To find such multiple Weyl points,
the authors used a photonic crystal with a honeycomb
lattice, which is known to produce Dirac points in the 2D
BZ, and then introduced chiral interlayer coupling (Fig.
5g). Symmetry analysis showed that the double and triple
Weyl points are protected by rotational symmetries: C3

symmetry and T for double Weyl points and C6 symmetry
and T for triple Weyl points (Fig. 5h). The measured
transmission along the samples with and without defects
showed similar results, proving that the surface states are
not scattered by the defects (Fig. 5i). Soon afterward,
multiple Weyl points were theoretically demonstrated in a
simple woodpile structure of photonic crystals140.
If two Weyl points with opposite signs of chirality

merge, the resultant 3D Dirac point has a topological
charge of zero due to the annihilation and thus may exist
under both T and P. Similar to the multiple Weyl point
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cases, the additional degeneracy between two Weyl pairs
requires spatial symmetries such as point group sym-
metry141 and nonsymmorphic symmetry142. These Dirac
points are distinct from other unpaired Dirac points143 in
that they are paired as a result of the overlap of two Weyl
point pairs and carry a nontrivial Z2 topological phase.
Therefore, when the symmetry that ensures overlap of
two Weyl pairs breaks, the 3D Dirac point splits into Weyl
points144.
In a topological semimetal, the dispersion of surface

states can be mapped to helicoid Riemann surfaces (Fig.
5k)145. However, observation of the helicoidal dispersion
of topological surface states has been elusive because of
the other bulk bands at the Weyl frequency. It was
recently proposed that the helicoidal dispersion may be
observable in an ideal Weyl system in which all Weyl
points are located at the same frequency and separated
from the other bands115. To realize this ideal Weyl sys-
tem, a saddle-shaped metallic coil was designed as a unit
structure (Fig. 5j). The metallic coil lacks P while pos-
sessing D2d point group symmetry and is periodically
arranged in a tetragonal lattice. As a consequence of the
absence of other bands at the Weyl frequency, a helicoidal
dispersion of the topological surface states could be
observed by near-field scanning measurement (Fig. 5l).
The existence of the Weyl points was experimentally
verified by measuring the angle-resolved transmission.
Recently, an approach for hosting a T -breaking topo-

logical phase in a T -invariant system has been repor-
ted118. To emulate T -breaking, a spatially inhomogeneous
structure was designed to induce an artificial magnetic
field. Unit cells were designed to support Weyl points that
vary spatially in momentum space but are fixed in the
frequency axis (Fig. 5m). Starting from the design of a
metallic coil that supports four ideal Weyl points115,
adiabatic variation of two geometric parameters of the
unit structure makes the Weyl points rotate in momen-
tum space (Fig. 5n). The rotating Weyl points were con-
firmed by near-field scanning measurements. The gauge

field resulting from the rotating Weyl points makes this
T -invariant Weyl system a platform for examining a
variety of interesting features that appear under a mag-
netic field. In the presence of the gauge field, the zeroth
Landau level propagates in a chiral way, thereby gen-
erating a chiral anomaly. This chiral anomaly was
observed by placing a source on one side of the sample
and then scanning the near field of the transmitted beam.
The Fourier-transformed image of the scanned field at the
top (bottom) surface obtained while exciting the sample
on the other side dominantly showed positive (negative)
Weyl points, as shown in Fig. 5o. This result is consistent
with the theoretical prediction that the Landau levels for
Weyl points with positive (negative) chirality support a
chiral zero mode with a positive (negative) group velocity.

By breaking the inversion symmetry using metamaterials
Photonic crystals play a major role in realizing topolo-

gical photonic bands. However, there is another way to
yield topological phases by a radically different mechan-
ism. Metamaterials, which are artificially designed mate-
rials to possess extraordinary optical properties, can be
exploited to achieve topological phases. Here, the criter-
ion used to distinguish metamaterials from photonic
crystals is the validity of the effective medium approx-
imation. Photonic crystals are periodically arranged
structures in which the band dispersion is strictly deter-
mined by the periodic arrangement and its scale. In
contrast, metamaterials that work at the same frequency
generally possess much smaller dimensions and can be
regarded as homogeneous media. As some readers might
sense, the boundaries of this classification are somewhat
vague. The operating wavelength is a range, not a specific
value, and no strict criterion can be used to determine
whether the scale is comparable to or much smaller than
the wavelength. In this review, photonic topological sys-
tems for which topological phases are attributed to
effective parameters are categorized as topological
metamaterials.

Fig. 5 3D photonic topological systems based on photonic crystals. a–c Experimental observation of type-I Weyl points in a P-broken double
gyroid photonic crystal. a Schematic of a sample, and b simulated band dispersion, and c experimentally observed Weyl point based on angle-
resolved transmission measurement. a–c Reprinted/adapted with permission from AAAS114, Copyright (2015). d–f Experimental observation of type-II
Weyl points in evanescently coupled waveguides. d Schematic of the photonic crystal, e simulated band dispersion, and f experimentally confirmed
conical diffraction obtained by measuring the intensity at the output facet of the fabricated sample. Green circles: position of input waveguides.
d–f Reprinted with permission from Springer Nature: Nature Physics116, Copyright (2017). g–i Photonic crystals possessing multiple Weyl points.
g Schematic of the photonic crystal, h simulated band dispersion, and i experimentally measured transmission spectrum, showing no scattering
caused by artificially induced defects. g–i Reprinted from Springer Nature: Nature Communications113, Copyright (2016), under Creative Commons
Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/). j–l Ideal Weyl photonic crystals and helicoidal surface
dispersion. j Schematic of a unit cell, k numerically, and l experimentally obtained helicoidal surface states. j–l Reprinted/adapted with permission
from AAAS115, Copyright (2018). m–o Inhomogeneous topological semimetal designed to host rotating Weyl points and observation of a chiral zero
mode. m Schematic of a spatially varying photonic crystal, n schematic of rotating Weyl points, and o experimental demonstration of the chiral zero
mode. m–o Reprinted/adapted with permission from AAAS118, Copyright (2019)
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Whereas the properties of naturally occurring materials
are determined by the chemical constituents and their
arrangements, the optical properties of metamaterials
depend on the artificial unit structure. If the unit structure
is much smaller than the wavelength, then light in the
metamaterial behaves as if it propagates through a
homogeneous medium with effective properties. In other
words, the metamaterial can be described as a homo-
geneous medium with effective parameters even though it
is composed of spatially nonuniform structures.
Interestingly, well-tuned effective parameters of meta-

materials can induce topological phases. To understand
the underlying principle of topological phases, we exam-
ine the most general form of the constitutive equation:
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where ε̂ is the permittivity tensor, μ̂ is the permeability
tensor, and ζ̂ and ξ̂ are tensors associated with the
magnetoelectric coupling. Approaches that use metama-
terials can be categorized by the key parameters that
produce nontrivial band topology. In this section, we
review three different types of topological metamaterials,
bianisotropic metamaterials, chiral hyperbolic metama-
terials, and Dirac metamaterials, and discuss the key
mechanisms of topological phases in each metamaterial
using the effective parameters. The constitutive equations
of these material responses are summarized in Table 2.
Bianisotropic metamaterials obey electromagnetic duality
(μ̂ ¼ ηε̂ for scalar η) and have bianisotropy (off-diagonal
elements of ζ̂ ¼ ξ̂), which in combination yield a 3D
gapped phase with an even number of surface Dirac
cones. Chiral hyperbolic metamaterials simultaneously
have hyperbolic (different signs of diagonal elements of ε̂)
and chiral (diagonal elements of ζ̂ ¼ �ξ̂) properties and
support a 3D gapless phase with Weyl points. Dirac
metamaterials satisfy electromagnetic duality and have
double hyperbolicity (different signs of diagonal elements
of ε̂ and μ̂ simultaneously), which leads to a 3D gapless
phase with Dirac points.
We first review bianisotropic metamaterials. The reali-

zation of electromagnetic duality and bianisotropy to
achieve a topological insulating phase was first proposed
in a 2D system8. When μ̂ ¼ ηε̂ for scalar η, the transverse
magnetic (TM) and transverse electric (TE) modes are
degenerate due to the electromagnetic duality. To build
the photonic counterpart of the Kramers degeneracy, the
spin states can be defined as ψ ± ¼ Ez ±Hz, where Ez is the
out-of-plane electric field of the TM mode, and Hz is the
out-of-plane magnetic field of the TE mode. Then, the
two spin states are related as T ψ ± ¼ ψ�. Therefore, in a
T -invariant system, the two spin states are doubly
degenerate, analogous to Kramers partners. At high

symmetric momenta, the bulk states have a gapless dis-
persion with four-fold Dirac points. Bianisotropy, repre-
sented as ζ̂ ¼ ξ̂ ¼ iχ̂, is used to produce a band gap. The
nonzero off-diagonal components of χ̂ (χxy ¼ �χyx≠0,
with all other components χ ij ¼ 0) lift the Dirac point in
the 2D BZ and open a topological band gap characterized
by a nonzero Cspin (Fig. 6a). Bianisotropy plays the role of
strong spin–orbit coupling in electronic topological
insulators and provides a pathway to directly emulate the
Kane–Mele Hamiltonian8. Spin-polarized edge states with
topological protection have been demonstrated numeri-
cally using a metamaterial composed of a hexagonal array
of bianisotropic rods8 and experimentally using a slightly
modified design146. Bianisotropy has also stimulated stu-
dies on topologically nontrivial 2D photonic crystals,
called bianisotropic metawaveguides with relaxed design
complexity147–150.
The topological phase of the aforementioned bianiso-

tropic systems is 2D. However, bianisotropy can also
induce a 3D topological insulating phase. A 3D topological
gapped system mediated by bianisotropy hosts a full band
gap in the whole 3D BZ and topological surface states99. A
stacked layer of triangular arrays of mirror-symmetry-
broken dielectric rods (Fig. 6b) supports a conical disper-
sion of topological surface states (Fig. 6c) and back-
scattering-immune propagation of the surface modes. The
broken mirror symmetry makes the in-plane electric and
magnetic orbitals couple to each other, which leads to
opening of a band gap. The 3D bianisotropic metamaterial
is periodic along the out-of-plane direction and therefore
has a 3D BZ. The nontrivial 3D topology can be under-
stood as a weak 3D topological insulator, which can be
produced by layering arrays of 2D topological systems.
Indeed, a bianisotropic metasurface, an array of dielectric
bianisotropic unit structures as a 2D version of 3D biani-
sotropic metamaterials, has been reported to support a 2D
topological phase151. In contrast to the linear surface Dirac
cones in the triangular lattice, quadratic surface dispersions
have been demonstrated in the tetragonal lattice of a
similar unit structure100. Recently, a 3D photonic topolo-
gical system with a complete and broad band gap was
proposed by using a 3D array of metallic split-ring reso-
nators86. The authors started with a unit cell composed of
six connected split-ring resonators. This mirror-symmetric
structure possesses a 3D Dirac point formed by the overlap
of two Weyl point pairs. The introduction of bianisotropy
by breaking the symmetry along the stacking direction (Fig.
6d) lifts the Dirac point and generates a complete band gap.
A gapped bulk dispersion and a surface Dirac cone were
observed by Fourier transforming the measured field pro-
file in the bulk and at the domain wall, respectively (Fig.
6e). Robust propagation of surface states was also
demonstrated at the interfaces between metamaterials with
opposite signs of bianisotropy.
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A 3D topological phase can also be obtained by com-
bining chiral and hyperbolic properties152. Chirality is
associated with diagonal elements of ζ̂ ¼ �ξ̂ ¼ iκ̂ and
gives rise to distinct optical responses of right circularly
polarized and left circularly polarized light. Compared to
natural chiral materials, which exhibit exceedingly weak
chiral responses, chiral metamaterials are designed to
exhibit drastically enhanced chiral light–matter interac-
tions. The origin of the nontrivial topology of the chiral
hyperbolic metamaterial is illustrated in Fig. 7a. The equi-
frequency surface of an isotropic medium is spherical and
topologically trivial. In contrast, the equi-frequency sur-
face of chiral metamaterials is split into two concentric

spheres with radii corresponding to the refractive indices
of the types of two circularly polarized light. The two
types of circularly polarized light possess Cspin = ±2 due
to the spin nature9. However, a chiral metamaterial can-
not provide a photonic analog of the quantum spin Hall
phase because of the closed dispersion. A momentum gap
can be introduced by adopting hyperbolicity152. Hyper-
bolic metamaterials refer to metamaterials in which the
diagonal components of ε̂ have opposite signs. Such
materials possess equi-frequency contours of a sphere for
TE modes and a hyperboloid for TM modes. Although
hyperbolic metamaterials are topologically trivial, com-
bining chiral and hyperbolic properties provides a
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Fig. 6 3D gapped photonic topological systems based on bianisotropic metamaterials. a Schematic of a bianisotropic metamaterial. A
medium with electromagnetic duality has two-fold degenerate modes and a four-fold Dirac point. Adding bianisotropy lifts the Dirac point and
opens a gap between bands with different Cspin. b, c Schematic and dispersion of the bulk (purple) and surface (orange) states of the all-dielectric
bianisotropic metamaterial. b, c Reprinted with permission from Springer Nature: Nature Photonics99, Copyright (2016). d Schematic, and e dispersion
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momentum gap between topologically inequivalent
modes.
After the first proposal to realize topologically protected

surface states in a chiral hyperbolic metamaterial, 3D
gapless topological band dispersions and the existence of
Weyl points in such materials were reported using effec-
tive medium theory117. If we define the uniaxial axis of
hyperbolicity as the z-axis, then introducing anisotropy
(εxx ≠ εyy) or adding chirality (kxx ≠ 0 or kyy ≠ 0) into the
tangential plane lifts doubly degenerate transverse modes,
and each transverse mode forms Weyl points by crossing
the longitudinal mode. Weyl points and topological sur-
face states that connect the Weyl points were experi-
mentally observed by near-field scanning measurements
in the microwave regime109. To simultaneously obtain
chiral and hyperbolic properties, a unit cell composed of
two layers embedded in a dielectric spacer was employed;
the bottom layer was used to realize hyperbolicity, and the
top was used to realize chirality (Fig. 7b). The scanned
electric field distributions proved that the surface states
are immune from back-scattering, and the Fourier-
transformed image of the measured electric fields
showed topological surface states and Weyl points in
momentum space (Fig. 7c–e).
Recently, an array of metallic helices was proposed as a

geometrically simple photonic topological platform exhi-
biting both chiral and hyperbolic properties (Fig. 7f)119,153.
One advantage of the metallic helix is that the lowest band
has topological features. Because of the geometrical
chirality, the eigenmodes of the two lowest bands are
circularly polarized at long wavelengths. In the zero fre-
quency limit, modes that have opposite signs of Cspin

converge and form a double Weyl point at zero frequency
(Fig. 7g). Using this Weyl point at zero frequency,
broadband topological surface states with no lower limit
were demonstrated in a double-helix array119 (Fig. 7h). In
addition to Weyl points, a Weyl nodal surface, which is a

2D degeneracy between topologically inequivalent bands,
has been demonstrated in a single-helix array153. The
nodal surface originates from the two-fold screw sym-
metry and T , while the origin of the topological charge of
the nodal surface lies in the chiral and hyperbolic prop-
erties of the helices.
A similar but slightly different metamaterial that pos-

sesses topological features is a gyromagnetic hyperbolic
metamaterial154,155. Instead of chirality, the gyromagnetic
property can be combined with hyperbolicity to yield the
photonic counterpart of the quantum Hall phase by
breaking T .
The last type of topological metamaterial is Dirac

metamaterials156. Magnetoelectric coupling plays no role
here: ζ̂ ¼ ξ̂ ¼ 0̂. Instead, the topological phases of a Dirac
metamaterial lie in electromagnetic duality and double
hyperbolicity (Fig. 7i). A conventional hyperbolic medium
has different signs of diagonal components of ε̂ and
nonmagnetic responses. The eigenmodes of such a med-
ium are linearly polarized; they can be classified as TE and
TM. However, if both the ε̂ and μ̂ of the medium have
different signs of diagonal components and their ratio is
fixed (̂ε ¼ ημ̂ with scalar η > 0), then electromagnetic
duality holds, and circularly polarized light becomes the
eigenmodes. Additionally, this double hyperbolic medium
has a gap in momentum space. A pair of 3D Dirac points,
which are four-fold nodal points in 3D momentum space,
is observed at the frequency where the two tensors satisfy
the electromagnetic duality (Fig. 7j). Each Dirac point is
an overlap of two Weyl points with opposite chirality and
hence supports double topological surface states con-
nected to the Dirac points. To realize a Dirac metama-
terial, a bilayer unit cell composed of eight metallic helices
was designed (Fig. 7k). The Dirac point and spin-polarized
topological surface states were experimentally demon-
strated in the microwave regime157 (Fig. 7l). Topological
features, such as nonzero Cspin and topological surface

Fig. 7 3D gapless photonic topological systems based on metamaterials. (a–h) Topological systems based on chiral hyperbolic metamaterials.
a Schematic showing the evolution of the equi-frequency surfaces and Chern numbers of isotropic, chiral, hyperbolic, and chiral hyperbolic media.
The equi-frequency surface of an isotropic medium is spherical and topologically trivial. The lack of mirror symmetry for a chiral medium lifts the
degeneracy of the two types of circularly polarized light and splits the Chern numbers into ±2. The equi-frequency surface of a hyperbolic medium
consists of a sphere and an open hyperboloid, which have no topological phase. The combination of hyperbolicity and chirality generates
momentum gaps between topologically inequivalent branches. b–d First experimental realization of a chiral hyperbolic metamaterial. b Unit cell of
the chiral hyperbolic metamaterial. c Topological surface states and d Weyl points in momentum space obtained by Fourier transform of measured
electric fields. e Experimentally measured topological surface states with suppressed back-scattering. b–e Reprinted from Springer Nature: Nature
Communications109, Copyright (2017), under Creative Commons Attribution 4.0 International license (CC BY 4.0, https://creativecommons.org/
licenses/by/4.0/). f–h Broadband chiral hyperbolic metamaterial. f Unit cell, g simulated band structure with double Weyl points at zero frequency,
and h broadband topological surface states. g, h Adapted with permission from ref. 119, Copyright (2019) by John Wiley and Sons. (i–l) Topological
systems based on Dirac metamaterials. i Schematic of a Dirac metamaterial. A medium with electromagnetic duality has two-fold degenerate modes
with Cspin = ±2. Adding double hyperbolicity maintains the electromagnetic duality while opening the band gap. j Bulk and surface state dispersions
and light cone of a Dirac metamaterial and equi-frequency curves at (top) and below (bottom) the Dirac point. Reprinted with permission from
ref. 156, Copyright (2017) by APS. k Unit cell and l experimentally measured topological surface states of a Dirac metamaterial in real (left) and
momentum (right) space. Reprinted with permission from ref. 157, Copyright (2019) by APS
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states, have also been observed when the ratio between ε̂
and μ̂ is negative158 (η < 0).
The main advantage of topological metamaterials is that

they provide flexible and relaxed conditions in
design119,153. The topological features of photonic crystals
are attributed to Bloch eigenmodes that require transla-
tional symmetries. In contrast, topological metamaterials
rely on effective medium theory. Although topological
metamaterials have been studied under periodic
arrangements to calculate the band structure and Chern
numbers, translational symmetry is not a necessary con-
dition for effective medium theory. For example, topolo-
gical features of chiral hyperbolic
metamaterials109,117,119,152 and Dirac metamaterials156,157

have also been confirmed by using effective medium
theory and retrieved effective parameters without
assuming a periodic arrangement. Therefore, topological
phases of topological metamaterials are stable under a
disordered arrangement or changes in geometrical para-
meters as long as the effective parameter conditions are
satisfied. Topological phases also remain when the effec-
tive parameters are perturbed159.
Approaches that use metamaterials have a disadvantage

in the deep-subwavelength condition. To support topo-
logical phases at a given wavelength, topological meta-
materials should be composed of smaller structural units
compared to topological photonic crystals. This deep-
subwavelength condition may be advantageous in appli-
cations such as compact photonic devices, but the design
complexity hinders experimental demonstration and
practical realization.

Recent progress in topological photonics
In the previous section, we reviewed numerous attempts

to realize 3D topological phases in photonic systems using
photonic crystals and metamaterials. In this section, we
review and discuss recent progress in topological photo-
nics not covered in the previous sections. We start with
stacked topological photonic crystals for layer pseudospin,
which were proposed very recently. In addition to the
approaches for realizing topological systems, other recent
studies have been conducted in a broader context. For
example, Weyl degeneracies may have dimensions higher
than zero, as opposed to the zero dimension of Weyl
points. Additionally, a system possessing a 3D gapped
topological phase may support gapless 1D edge states
instead of gapless 2D surface states. We discuss the cut-
ting edge in topological photonics, especially focusing on
six areas: (1) stacked 2D photonic crystals to emulate layer
pseudospin, (2) 1D and 2D Weyl degeneracies, (3) uni-
directional Maxwellian spin waves, (4) photonic systems
with higher-order topological phases, (5) interactions of
light with topological phases, and (6) topological photo-
nics oriented to applications.

Stacked topological photonic crystals for layer pseudospin
Recently, layer pseudospin has emerged as a new degree

of freedom. The concept of layer pseudospin was origin-
ally studied in 2D materials160 and then extended to
acoustics161 and photonics. In 2019, two independent
research groups162,163 proposed the use of bilayer pho-
tonic crystals to introduce layer pseudospin.
One group used dielectric slabs with triangle-shaped air

holes arranged in a hexagonal pattern163. The layer
pseudospin mechanism (Fig. 8a) entails the dispersion of
the single slabs, each of which has a Dirac cone. When the
separation between two layers is large enough that
interlayer coupling is negligible, the dispersion of the
bilayer forms doubly degenerate Dirac cones. If interlayer
coupling is introduced between two equivalent layers,
then the degeneracy is lifted, and the two Dirac cones
move oppositely along the frequency axis. The dispersion
can be further engineered by using layers with different
geometries. When the mirror symmetry is broken while
preserving P, the bands are gapped, and two double
degeneracies form in the K valley: one above the band gap
and one below it. In such cases, fields are localized with
counterpropagating power flux in each layer, analogous to
spin-orbit coupling in electronics. On the other hand,
under a perturbation that lacks P and preserves mirror
symmetry, the bands are gapped but have no degeneracy.
Now, the eigenmodes are mixed between two layers that
have the same rotation direction of the power flux. These
two topological phases are called “layer-polarized” and
“layer-mixed” by the authors. Perturbations that simul-
taneously break mirror symmetry and P lead to either
layer-polarized or layer-mixed topological phases,
depending on the relative strengths of the two symmetry
breakings.
These two phases were also realized by stacking three

layers of patterned metal plates (Fig. 8b)162. The first and
third layers have slots shaped like ceiling fans, and a
topological phase transition occurs by rotating the pat-
terns of the layers. The layer-polarized topological states
support two edge states, each localized in each layer, but
with opposite group velocities (Fig. 8c, left). This layer-
momentum locking shows that the layer pseudospin can
be exploited to control edge transport as spin and valley
do. However, considering that the edge states localized in
two layers can be easily flipped, the layer-polarized phase
cannot provide unidirectional propagation. In contrast, in
the layer-mixed topological case, the two edge states have
the same group velocity sign, positive in the K valley and
negative in the K′ valley (Fig. 8c, right); this arrangement
is equivalent to the quantum valley Hall effect. Therefore,
the edge states can robustly propagate in the presence of
defects as long as intervalley scattering is absent. Edge
transport was experimentally demonstrated in the
microwave regime by using samples fabricated by circuit-
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board printing (Fig. 8d)162. In these experiments, layer-
polarized edge states between media possessing layer-
polarized and layer-mixed phases were also observed,
suggesting potential in a layer-selected topological
delay line.
Recently, photonic crystals composed of two com-

plementary layers were proposed to emulate quantum
spin Hall phases. If two complementary layers are placed
close to each other, then the interlayer coupling intro-
duces bianisotropy and lifts the Dirac cones (Fig. 8e).
Layer pseudospin was recently demonstrated using bilayer
photonic crystals composed of a metallic hexagonal patch
and its complementary image (Fig. 8f)164. Because of the
high symmetry, each layer possesses a gapless Dirac dis-
persion, where the TE and TMmodes are degenerate. The
two modes are flipped in the complementary layer due to
the electromagnetic duality. When the layers are close
enough such that interlayer coupling is involved, a band
gap appears (Fig. 8g). The bilayer photonic crystals host
spin-degenerate states with nonzero Cspin, similar to bia-
nisotropic metamaterials164. At the interfaces between
bilayer photonic crystals with opposite signs of bianiso-
tropy, topological edge states immune from back-
scattering were demonstrated in the microwave range
(Fig. 8h)164.

Weyl degeneracies with nonzero dimensions
3D gapless topological phase can possess not only Weyl

points but also topological degeneracies that have non-
zero dimensions in 3D momentum space. Weyl degen-
eracies include Weyl nodal lines and Weyl nodal surfaces
(Fig. 9a, b). Weyl nodal lines are 1D line degeneracies that
can manifest as rings, chains, links, and knots in 3D
momentum space165. A nodal ring is an ordinary closed
loop, while a nodal chain is composed of several nodal
rings touching each other. A nodal link and a nodal knot
involve links; several nodal rings linked together form a
nodal link, and a nodal ring linked with itself is a nodal
knot166. Photonic nodal rings have been demonstrated
using double gyroid photonic crystals108,114, a face-
centered cubic lattice of a dielectric sphere167, and 2D
photonic crystal lattices composed of two distinct
dielectric cylinders168. Experimental observation of a
nodal line has been reported using a photonic crystal with
T and two glide symmetries169. Although a nodal ring
contains topological features, such as a nonzero Berry
phase threading the ring, it is not topologically charged
and can be split into two Weyl points by breaking T .
Nodal chains composed of touching nodal rings, as
another type of nodal line, have been experimentally
observed in a metallic-mesh photonic crystal (Fig. 9c,
d)170. However, the nodal lines rely on accidental degen-
eracies and are therefore prone to be broken or removed
by perturbations that even preserve such symmetries as

structural variation. In contrast, a nodal line that arises
from an hourglass-shaped dispersion of four bands is
robust against perturbations that preserve the symme-
tries171,172. An hourglass nodal line was experimentally
observed in a photonic crystal possessing three glide
mirror symmetries and C4 symmetry (Fig. 9e, f)173.
Recently, nodal links were observed in a biaxial hyperbolic
metamaterial174.
In contrast to the increasing interest in Weyl nodal

lines, studies on Weyl nodal surfaces (Fig. 9b) are scarce
in photonics. Nodal surfaces carrying topological charge
have been presented in condensed matter physics175–177

and acoustics178,179, including a recent experimental
demonstration. Theoretical predictions suggest that
nonsymmorphic symmetries and T ensure nodal surfaces
at the BZ boundary180. Weyl nodal surfaces have been
numerically demonstrated in photonics using a topologi-
cal metamaterial possessing such symmetries153.

Unidirectional Maxwellian spin waves
Recently, a new phase of matter called a Maxwellian

phase was theoretically predicted (Fig. 10a)51,181–183.
Atomic-scale media can host photonic edge waves ana-
logous to the electronic edge states in condensed matter
systems. In the (2+ 1)-dimension, photonic edge waves
arise specifically from the Hall viscosity184, which is a
unique spatially dispersive form of the Hall conductivity.
Such edge waves can occur at the interface of a viscous
Hall medium and any arbitrary medium, even vacuum
(Fig. 10b). These topological waves completely vanish on
the edge due to the Hall viscosity and have a biexponential
decay away from the interface. The dispersion relation of
the bulk and edge shows that a unidirectional Maxwellian
spin wave closes the bulk band gap (Fig. 10c)51,181–183.
The defining property of such an edge wave is helicity
quantization, in contrast to conventional classical surface
waves, in which the helicity is a classical continuous
variable. The theoretical approach known as the
Dirac–Maxwell correspondence compares the spin-1
vector fields of light with the spin-1/2 spinor fields in
Dirac’s equation185,186. Gyrotropy, which is the high-
frequency equivalence of the DC Hall coefficient, has been
rigorously shown to behave as a mass term for pho-
tons51,181–183. Therefore, an interface between a positive
gyrotropy and a negative gyrotropy can host special spin
waves that are unidirectional (Fig. 10d). These waves are
photonic analogs of Jackiw–Rebbi waves, which are
solutions of the Dirac equation for an interface between a
positive mass and a negative mass. These are fundamen-
tally different from the surface plasmon polaritons or
magnetic edge plasmons that exist on the interface
between media with opposite signs of dielectric con-
stant45. The photonic Jackiw–Rebbi waves exponentially
decay on both sides of the interface (Fig. 10e). Here, the
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field has a maximum at the interface and does not vanish
like in a viscous Hall medium. Figure 10f shows the dis-
persion of these photonic Jackiw–Rebbi waves.

Higher-order photonic topological phase
The topological insulating phases that we have reviewed

thus far have an insulating bulk with gapless boundary
modes, which are one dimension lower than the bulk. In
other words, a d-dimensional topological system pos-
sesses (d− 1)-dimensional boundary states187. It has
recently been revealed that there exists a new type of
topological phase called a higher-order topological phase
that does not obey the traditional bulk-boundary corre-
spondence. Here, topologically nontrivial boundary
modes are more than one dimension lower than the bulk.
A d-dimensional n-th order topological insulator has

(d− 1)−, (d− 2)−, …, (d− n+ 1)-dimensional gapped
boundaries, which can be viewed as topological insulators
possessing (d− n)-dimensional gapless boundary
states188. Examples of such higher-order topological
phases include 2D systems with topological corner modes
and 3D systems with topological hinge or corner modes
(Fig. 11a). Higher-order topological insulators189–192 and
semimetals193,194, which can be obtained by stacking and
introducing appropriate interlayer coupling, have been
reported in condensed matter physics.
Higher-order topological insulating phases were soon

extended to photonics. In 2018, a second-order photonic
topological phase was demonstrated using hexagonally
arranged evanescently coupled waveguides195. The bulk
dispersion of the hexagonal lattice was engineered to
possess mid-gap edge states by viewing it as a triangular
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lattice with six hexagonal clusters and arranging them
(Fig. 11b)53. Whereas a similar structure has been known
to support an ordinary first-order topological phase, the
mid-gap leads to the existence of topological corner
modes (Fig. 11c). 0D modes confined to the corners of the
array were observed by measuring the intensity of a dif-
fracted beam at the output interfaces (Fig. 11d). Motivated
by the topological corner modes in the breathing kagome
lattice in condensed matter physics193,196, a similar
observation in the visible wavelength regime was con-
ducted using straight waveguides arranged in a breathing
kagome lattice197. Observation of the second-order pho-
tonic topological phase in this breathing kagome wave-
guide requires a simplified setup that does not require
additional waveguides to excite the zero-energy modes.
Recently, topological corner modes that originate from
long-range interactions beyond nearest-neighbor cou-
pling were observed in a kagome lattice198. The long-
range interactions were achieved by far-field radiative
coupling induced by the transverse mode.
Silicon ring resonators, which have been used to achieve

2D photonic topological phases via asymmetric phases,
can also be made to host a second-order photonic

topological phase by using a different coupling config-
uration (Fig. 11e)199. The coupling strength and its sign
were determined by vertically shifting the links between
ring resonators. The ring resonator array has a nonzero
quadrupole moment that originates from the negative
coupling and the resultant synthetic gauge field. The
negative coupling gives rise to topological corner modes
in the band gap (Fig. 11f, g).
On the other hand, 2D topological systems with second-

order topological phases that do not involve negative
coupling also exist. The 2D Su-Schrieffer-Heeger (SSH)
model has been proposed to host topological corner
modes without requiring negative coupling or a synthetic
gauge field200. The SSH model201, originally defined in
1D, is a dimerized chain, the band topology of which is
characterized by the Zak phase. The 1D SSH model is
trivial if the intracellular coupling is stronger than the
intercellular coupling and nontrivial otherwise. This fea-
ture can be straightforwardly generalized to 2D by
expanding or shrinking four clusters in a rectangular
lattice82. When the topologically nontrivial 2D SSH model
is enclosed by the trivial 2D model (Fig. 11h), the system
supports not only topological edge states but also corner
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states confined at the corners of the domain boundaries
(Fig. 11i)200. The corner modes were experimentally
observed in the microwave regime by scanning dielectric
cylinders arranged in the 2D SSH model (Fig. 11j)202,203.
Polarization-dependent switching of the topological

corner modes was suggested by using plasmonic particles
in a 2D SSH lattice under open boundaries204. A second-
order topological phase in the 2D SSH model was also
examined in a microwave circuit205. The topological
phases in the 2D SSH model are protected by a nontrivial
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Zak phase, but the quadrupole bulk moment of the model
is zero. A 2D SSH model with a nonzero quadrupole
moment was recently proposed by breaking T by means
of gyromagnetic materials206.
These higher-order photonic topological features have

also been found in non-Hermitian systems that can be
realized with optical resonators or cold atomic
gases207,208. Corner modes with topological protection
provide a new route to robustly confine light in extremely
small mode volumes. This may enable many potential
applications such as nanocavities with a high quality fac-
tor209, low-threshold lasers, and a platform to enhance
nonlinearity. To facilitate application in integrated pho-
tonics, surface-wave photonic crystals with a broad band
gap and topological corner modes were proposed210.

Interactions between light and topological phases
To date, a variety of approaches to realize photonic

topological systems have been reviewed. In this section,
we slightly shift our focus and discuss the interplay
between light and topological matter. The research dis-
cussed here puts more emphasis on determining how
photonic topological phases modify previously reported

phenomena. The behavior of Weyl particles at the inter-
faces of two Weyl semimetals has been explored, with a
special focus on their valley-dependent transverse
shift211–213 and scattering214. Similarly, the interaction
between electromagnetic waves and Weyl media has been
studied. At the interface of a Weyl medium and an
insulator, a reflected beam undergoes an anomalous shift
that maps a half-vortex in momentum space influenced by
the topological surface states215. The phase vortex of the
reflected beam was experimentally verified by using a
photonic crystal possessing synthetic Weyl points and a
Fabry–Perot interference setup (Fig. 12a–c)216. This work
suggests a way to detect the topology of Weyl media by
measuring beam trajectories.
Furthermore, nontrivial band topology can be used to

enhance optical phenomena. It has been demonstrated
that the photonic spin Hall effect can be enhanced by the
topological edge states of a zigzag array of dielectric
particles217. More directly, the nonzero Berry curvature
near the Weyl points can improve the photonic spin Hall
effect. Serving as sources and sinks of the Berry curvature,
Weyl points can drastically increase phenomena related to
the Berry curvature. Theoretical analysis using a spatially
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varying waveguide array that supports synthetic Weyl
points (Fig. 12d, e) predicted that wave packets propa-
gating near the Weyl points exhibit an enhanced photonic
spin Hall effect. Anomalous propagation, called helical
Zitterbewegung motion, was also numerically observed
along helical trajectories (Fig. 12f)218.
The peculiar behavior of photons near a Weyl point also

alters the light–matter interactions at both the classical
and quantum levels. The conical dispersion at the Weyl
frequency decouples the scattering cross-section and
wavelength and enables resonant scattering at a desired
wavelength219. It has been reported that quantum vacuum
fluctuations can be engineered by the topology of pho-
tonic bands220. When a quantum emitter is coupled to a
Weyl point at a frequency that matches the transition of
the emitter, fractional decay is predicted even when the
density states are smooth221. Furthermore, the interaction
of topological nontrivial systems with nonlinearity has
emerged as an interesting field. Topological edge states
can be used to increase nonlinear responses such as
parametric amplification220, optical isolation222, Kerr
nonlinearity223, harmonic generation enhancement223,224,
and control225.

Topological photonics towards applications
The virtue of topological photonics becomes clearer

when we examine applications. The absence of back-
scattering modes opens a new route for the implementa-
tion of topological photonics in real-world applications. In
particular, topological photonics enables dissipation-less
transport and thus efficient photonic devices for optical
communication. This trait is in contrast to applications
based on trivial systems because the energy losses in such
systems are strongly affected by device conditions such as
defects. Furthermore, whereas topologically protected
transport in electronics requires a low temperature, that in
photonics operates at room temperature and can be
implemented in practical platforms.
Some work has been devoted to developing applications

by increasing the practicability of photonic topological
systems. Recently, a photonic crystal that supports the
quantum valley Hall effect in the terahertz regime was
used to transport uncompressed video226. The topological
boundary modes of the photonic crystal transmitted
dynamic signals at high rates, even under a perturbed
domain wall. The mass data transfer with robust features
proved that photonic topological systems can serve as
compact and efficient on-chip devices for communica-
tions and data processing. Another paper proposed
ultrathin topological photonic crystals that have electrical
shielding and can be readily integrated into conventional
optical platforms227.
For practical applications, a device should give more

than one fixed response. Therefore, reconfigurable

topological systems that support topological phase tran-
sitions that can be manipulated are essential. Dynamic
control of topological phase transitions has been achieved
using liquid crystals228, a phase-change material under
temperature variation229,230 and transparent conducting
oxides under optical pumping231. A reconfigurable pho-
tonic topological system that supports selective propaga-
tion of topological edge modes under mechanical
modulation was demonstrated using a bianisotropic
photonic crystal150. A topological photonic crystal com-
posed of a patterned silicon slab also exhibited tuning of
the transmission spectrum under optical pumping232.
Some researchers have focused on the practical issues

that arise while implementing topological photonics in
applications. For example, topological boundary modes
should be well coupled with input and outgoing waves.
Broadband rerouting of topological edge states excited by
propagating plane waves and then released to free space
via leaky-wave radiation has been numerically studied by
using a magnetized plasma with a patterned plasmonic
coating233. Whereas a topological system assumes infi-
nitely periodic structures, realistic devices should have
finite dimensions. Therefore, studies on these practical
limitations, such as the size effect, have been conducted
using polariton topological insulators234.
Following the currently growing interest in machine

learning technology, the design of topological systems by
machine learning has been suggested235–240. A design
methodology, which was originally based on researchers’
intuition and trial-and-error, was developed by training
neural networks to estimate topological invariants or find
topological band gaps.

Conclusion and outlook
Despite its short history, topological photonics has been

developed surprisingly rapidly. Great success has been
achieved in both emulating topological phenomena in
photonic systems and finding new exotic features that
have no electronic counterpart. The combination of
topology and photonics is beneficial for both fields; pho-
tonics serves as a tool by which theoretical predictions of
topological phenomena can be tested, which has led to the
rapid development of topological phases of matter.
Topology has also contributed to the growth of photonics
by enabling its robust control, even through imperfect
devices, and by promoting its implementation in practical
applications. The advances in topological photonics have
enabled a variety of fascinating phenomena that have not
been realized using conventional photonics.
Topological photonics will continue to evolve in the

following years, as in the past decade. Classification of the
topological phases by their symmetries can provide
helpful guidelines for systematically understanding the
phases97,241–244. Additionally, the scope of the topological
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phases is becoming diverse, covering nonlinearity220–225,
non-Hermiticity245–249, and dimensions higher than
three250,251. The scope of topological photonics can be
further expanded by combining multidimensional syn-
thetic space and interdimensional mapping252 and by
including the terms that have been generally ignored, for
example, strong coupling of photons253–256. Along with
previous research on realizing and demonstrating photo-
nic topological systems, studies of how they interact with
classical and/or quantum objects and how they alter or
enhance the previously reported phenomena may provide
surprising insights. In addition to fundamental studies to
understand the origin of topology and attempts to realize
topological features in many different physical systems,
topological photonics has bright prospects in applications,
especially when combined with other techniques and
interdisciplinary fields.
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