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Abstract
The precise engineering of materials and surfaces has been at the heart of some of the recent advances in optics and
photonics. These advances related to the engineering of materials with new functionalities have also opened up
exciting avenues for designing trainable surfaces that can perform computation and machine-learning tasks through
light–matter interactions and diffraction. Here, we analyze the information-processing capacity of coherent optical
networks formed by diffractive surfaces that are trained to perform an all-optical computational task between a given
input and output field-of-view. We show that the dimensionality of the all-optical solution space covering the
complex-valued transformations between the input and output fields-of-view is linearly proportional to the number of
diffractive surfaces within the optical network, up to a limit that is dictated by the extent of the input and output
fields-of-view. Deeper diffractive networks that are composed of larger numbers of trainable surfaces can cover a
higher-dimensional subspace of the complex-valued linear transformations between a larger input field-of-view and a
larger output field-of-view and exhibit depth advantages in terms of their statistical inference, learning, and
generalization capabilities for different image classification tasks when compared with a single trainable diffractive
surface. These analyses and conclusions are broadly applicable to various forms of diffractive surfaces, including, e.g.,
plasmonic and/or dielectric-based metasurfaces and flat optics, which can be used to form all-optical processors.

Introduction
The ever-growing area of engineered materials has

empowered the design of novel components and devices
that can interact with and harness electromagnetic waves
in unprecedented and unique ways, offering various new
functionalities1–14. Owing to the precise control of mate-
rial structure and properties, as well as the associated
light–matter interaction at different scales, these engi-
neered material systems, including, e.g., plasmonics,
metamaterials/metasurfaces, and flat optics, have led to
fundamentally new capabilities in the imaging and sensing
fields, among others15–24. Optical computing and infor-
mation processing constitute yet another area that has

harnessed engineered light–matter interactions to perform
computational tasks using wave optics and the propaga-
tion of light through specially devised materials25–38.
These approaches and many others highlight the emerging
uses of trained materials and surfaces as the workhorse of
optical computation.
Here, we investigate the information-processing capa-

city of trainable diffractive surfaces to shed light on their
computational power and limits. An all-optical diffractive
network is physically formed by a number of diffractive
layers/surfaces and the free-space propagation between
them (see Fig. 1a). Individual transmission and/or reflec-
tion coefficients (i.e., neurons) of diffractive surfaces are
adjusted or trained to perform a desired input–output
transformation task as the light diffracts through these
layers. Trained with deep-learning-based error back-
propagation methods, these diffractive networks have
been shown to perform machine-learning tasks such as
image classification and deterministic optical tasks,
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including, e.g., wavelength demultiplexing, pulse shaping,
and imaging38–44.
The forward model of a diffractive optical network can

be mathematically formulated as a complex-valued matrix

operator that multiplies an input field vector to create an
output field vector at the detector plane/aperture. This
operator is designed/trained using, e.g., deep learning to
transform a set of complex fields (forming, e.g., the input
data classes) at the input aperture of the optical network
into another set of corresponding fields at the output
aperture (forming, e.g., the data classification signals) and
is physically created through the interaction of the input
light with the designed diffractive surfaces as well as free-
space propagation within the network (Fig. 1a).
In this paper, we investigate the dimensionality of the

all-optical solution space that is covered by a diffractive
network design as a function of the number of diffractive
surfaces, the number of neurons per surface, and the size
of the input and output fields-of-view (FOVs). With our
theoretical and numerical analysis, we show that the
dimensionality of the transformation solution space that
can be accessed through the task-specific design of a
diffractive network is linearly proportional to the number
of diffractive surfaces, up to a limit that is governed by the
extent of the input and output FOVs. Stated differently,
adding new diffractive surfaces into a given network
design increases the dimensionality of the solution space
that can be all-optically processed by the diffractive net-
work, until it reaches the linear transformation capacity
dictated by the input and output apertures (Fig. 1a).
Beyond this limit, the addition of new trainable diffractive
surfaces into the optical network can cover a higher-
dimensional solution space over larger input and output
FOVs, extending the space-bandwidth product of the all-
optical processor.
Our theoretical analysis further reveals that, in addition

to increasing the number of diffractive surfaces within a
network, another strategy to increase the all-optical pro-
cessing capacity of a diffractive network is to increase the
number of trainable neurons per diffractive surface.
However, our numerical analysis involving different image
classification tasks demonstrates that this strategy of
creating a higher-numerical-aperture (NA) optical net-
work for all-optical processing of the input information is
not as effective as increasing the number of diffractive
surfaces in terms of the blind inference and generalization
performance of the network. Overall, our theoretical and
numerical analyses support each other, revealing that
deeper diffractive networks with larger numbers of
trainable diffractive surfaces exhibit depth advantages in
terms of their statistical inference and learning capabilities
compared with a single trainable diffractive surface.
The presented analyses and conclusions are generally

applicable to the design and investigation of various
coherent all-optical processors formed by diffractive
surfaces, such as, e.g., metamaterials, plasmonic or
dielectric-based metasurfaces, and flat-optics-based
designer surfaces that can form information-processing
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Fig. 1 Schematic of a multisurface diffractive network. a
Schematic of a diffractive optical network that connects an input field-
of-view (aperture) composed of Ni points to a desired region-of-
interest at the output plane/aperture covering No points, through
K-diffractive surfaces with N neurons per surface, sampled at a period
of λ/2n, where λ and n represent the illumination wavelength and the
refractive index of the medium between the surfaces, respectively.
Without loss of generality, n= 1 was assumed in this paper. b The
communication between two successive diffractive surfaces occurs
through propagating waves when the axial separation (d) between
these layers is larger than λ. Even if the diffractive surface has deeply
subwavelength structures, as in the case of, e.g., metasurfaces, with a
much smaller sampling period compared to λ/2 and many more
degrees of freedom (M) compared to N, the information-processing
capability of a diffractive surface within a network is limited to
propagating modes since d ≥ λ; this limits the effective number of
neurons per layer to N, even for a surface with M >> N. H and H* refer
to the forward- and backward-wave propagation, respectively
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networks to execute a desired computational task between
an input and output aperture.

Results
Theoretical analysis of the information-processing capacity
of diffractive surfaces
Let the x and y vectors represent the sampled optical

fields (including the phase and amplitude information) at
the input and output apertures, respectively. We assume
that the sizes of x and y are Ni × 1 and No × 1, defined by
the input and output FOVs, respectively (see Fig. 1a);
these two quantities, Ni and No, are simply proportional to
the space-bandwidth product of the input and the output
fields at the input and output apertures of the diffractive
network, respectively. Outside the input FOV defined by
Ni, the rest of the points within the input plane do not
transmit light or any information to the diffractive net-
work, i.e., they are assumed to be blocked by, for example,
an aperture. In a diffractive optical network composed of
transmissive and/or reflective surfaces that rely on linear
optical materials, these vectors are related to each other
by Ax= y, where A represents the combined effects of the
free-space wave propagation and the transmission
through (or reflection off of) the diffractive surfaces,
where the size of A is No ×Ni. The matrix A can be
considered the mathematical operator that represents
the all-optical processing of the information carried by
the input complex field (within the input FOV/aperture),
delivering the processing results to the desired
output FOV.
Here, we prove that an optical network having a larger

number of diffractive surfaces or trainable neurons can
generate a richer set for the transformation matrix A up to
a certain limit within the set of all complex-valued
matrices with size No ×Ni. Therefore, this section analy-
tically investigates the all-optical information-processing
capacity of diffractive networks composed of diffractive
surfaces. The input field is assumed to be monochromatic,
spatially and temporally coherent with an arbitrary
polarization state, and the diffractive surfaces are assumed
to be linear, without any coupling to other states of
polarization, which is ignored.
Let Hd be an N ×N matrix, which represents the

Rayleigh–Sommerfeld diffraction between two fields
specified over parallel planes that are axially separated by
a distance d. Since Hd is created from the free-space
propagation convolution kernel, it is a Toeplitz matrix.
Throughout the paper, without loss of generality, we
assume that Ni=No=NFOV, N ≥NFOV and that the dif-
fractive surfaces are separated by free space, i.e., the
refractive index surrounding the diffractive layers is taken
as n= 1. We also assume that the optical fields include
only the propagating modes, i.e., traveling waves; stated
differently, the evanescent modes along the propagation

direction are not included in our model since d ≥ λ
(Fig. 1b). With this assumption, we choose the sampling
period of the discretized complex fields to be λ/2, where λ is
the wavelength of the monochromatic input field.
Accordingly, the eigenvalues of Hd are in the form ejkzd for
0 ≤ kz ≤ ko, where ko is the wavenumber of the optical field45.
Furthermore, let Tk be an NLk ×NLk matrix, which

represents the kth diffractive surface/layer in the network
model, where NLk is the number of neurons in the cor-
responding diffractive surface; for a diffractive network
composed of K surfaces, without loss of generality, we
assume min(NL1, NL2, …, NLK) ≥NFOV. Based on these
definitions, the elements of Tk are nonzero only along its
main diagonal entries. These diagonal entries represent
the complex-valued transmittance (or reflectance) values
(i.e., the optical neurons) of the associated diffractive
surface, with a sampling period of λ/2. Furthermore, each
diffractive surface defined by a given transmittance matrix
is assumed to be surrounded by a blocking layer within
the same plane to avoid any optical communication
between the layers without passing through an inter-
mediate diffractive surface. This formalism embraces any
form of diffractive surface, including, e.g., plasmonic or
dielectric-based metasurfaces. Even if the diffractive sur-
face has deeply subwavelength structures, with a much
smaller sampling period compared to λ/2 and many
more degrees of freedom (M) compared to NLk, the
information-processing capability of a diffractive surface
within a network is limited to propagating modes since
d ≥ λ, which restricts the effective number of neurons per
layer to NLk (Fig. 1b). In other words, since we assume
that only propagating modes can reach the subsequent
diffractive surfaces within the optical diffractive network,
the sampling period (and hence, the neuron size) of λ/2 is
sufficient to represent these propagating modes in air46.
According to Shannon’s sampling theorem, since the
spatial frequency band of the propagating modes in air is
restricted to the (−1/λ, 1/λ) interval, a neuron size that is
smaller than λ/2 leads to oversampling and overutilization
of the optical neurons of a given diffractive surface. On
the other hand, if one aims to control and engineer the
evanescent modes, then a denser sampling period on each
diffractive surface is needed, which might be useful to
build diffractive networks that have d � λ. In this near-
field diffractive network, the enormously rich degrees of
freedom enabled by various metasurface designs with
M � NLk can be utilized to provide full and independent
control of the phase and amplitude coefficients of each
individual neuron of a diffractive surface.
The underlying physical process of how light is modu-

lated by an optical neuron may vary in different diffractive
surface designs. In a dielectric-material-based transmis-
sive design, for example, phase modulation can be
achieved by slowing down the light inside the material,
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where the thickness of an optical neuron determines the
amount of phase shift that the light beam undergoes.
Alternatively, liquid-crystal-based spatial light modulators
or flat-optics-based metasurfaces can also be employed as
part of a diffractive network to generate the desired phase
and/or amplitude modulation on the transmitted or
reflected light9,47.
Starting from “Analysis of a single diffractive surface”, we

investigate the physical properties of A, generated by differ-
ent numbers of diffractive surfaces and trainable neurons. In
this analysis, without loss of generality, each diffractive sur-
face is assumed to be transmissive, following the schematics
shown in Fig. 1a, and its extension to reflective surfaces is
straightforward and does not change our conclusions. Finally,
multiple (back-and-forth) reflections within a diffractive
network composed of different layers are ignored in our
analysis, as these are much weaker processes compared to
the forward-propagating modes.

Analysis of a single diffractive surface
The input–output relationship for a single diffractive

surface that is placed between an input and an output
FOV (Fig. 1a) can be written as

y ¼ H 0
d2
T1H

0
d1
x ¼ A1x ð1Þ

where d1 ≥ λ and d2 ≥ λ represent the axial distance between
the input plane and the diffractive surface, and the axial
distance between the diffractive surface and the output
plane, respectively. Here we also assume that d1 ≠ d2; the
Supplementary Information, Section S5 discusses the special
case of d1= d2. Since there is only one diffractive surface in
the network, we denote the transmittance matrix as T1, the
size of which is NL1 ×NL1, where L1 represents the diffractive
surface. Here, H 0

d1
is an NL1 ×NFOV matrix that is generated

from the NL1 ×NL1 propagation matrix Hd1 by deleting the
appropriately chosen NL1−NFOV-many columns. The posi-
tions of the deleted columns correspond to the zero-
transmission values at the input plane that lie outside the
input FOV or aperture defined by Ni=NFOV (Fig. 1a), i.e.,
not included in x. Similarly,H 0

d2
is anNFOV ×NL1 matrix that

is generated from the NL1 ×NL1 propagation matrix Hd2 by
deleting the appropriately chosen NL1−NFOV-many rows,
which correspond to the locations outside the output FOV or
aperture defined by No=NFOV in Fig. 1a; this means that the
output field is calculated only within the desired output
aperture. As a result, H 0

d1
and H 0

d2
have a rank of NFOV.

To investigate the information-processing capacity of
A1 based on a single diffractive surface, we vectorize
this matrix in the column order and denote it as vec
(A1)= a1

48. Next, we show that the set of possible a1
vectors forms a min NL1;N2

FOV

� �
-dimensional subset of

the N2
FOV-dimensional complex-valued vector space.

The vector, a1, can be written as

vec A1ð Þ ¼ a1 ¼ vec H 0
d2
T1H 0

d1

� �
¼ H 0T

d1
�H 0

d2

� �
vec T1ð Þ

¼ H 0T
d1

�H 0
d2

� �
t1

ð2Þ

where the superscript T and ⊗ denote the transpose
operation and Kronecker product, respectively48. Here,
the size of H 0T

d1
�H 0

d2
is N2

FOV ´N2
L1, and it is a full-rank

matrix with rank N2
FOV. In Eq. (2), vec(T1)= t1 has at most

NL1 controllable/adjustable complex-valued entries,
which physically represent the neurons of the diffractive
surface, and the rest of its entries are all zero. These
transmission coefficients lead to a linear combination of
NL1-many vectors of H 0T

d1
�H 0

d2
, where d1 ≠ d2 ≠ 0. If

NL1 � N2
FOV, these vectors subject to the linear combina-

tion are linearly independent (see the Supplementary
Information Section S4.1 and Supplementary Fig. S1).
Hence, the set of the resulting a1 vectors generated by
Eq. (2) forms an NL1-dimensional subspace of the
N2

FOV-dimensional complex-valued vector space. On the
other hand, the vectors in the linear combination start to
become dependent on each other in the case of
NL1 >N2

FOV and therefore, the dimensionality of the set
of possible vector fields is limited to N2

FOV (also see
Supplementary Fig. S1).
This analysis demonstrates that the set of complex field

transformation vectors that can be generated by a single
diffractive surface that connects a given input and output
FOV constitutes a min NL1;N2

FOV

� �
-dimensional subspace

of the N2
FOV-dimensional complex-valued vector space.

These results are based on our earlier assumption that
d1 ≥ λ, d2 ≥ λ, and d1 ≠ d2. For the special case of d1=
d2 ≥ λ, the upper limit of the dimensionality of the solu-
tion space that can be generated by a single diffractive
surface (K= 1) is reduced from N2

FOV to ðN2
FOV þ

NFOVÞ=2 due to the combinatorial symmetries that exist
in the optical path for d1= d2 (see the Supplementary
Information, Section S5).

Analysis of an optical network formed by two diffractive
surfaces
Here, we consider an optical network with two different

(trainable) diffractive surfaces (K= 2), where the
input–output relation can be written as:

y ¼ H 0
d3
T2Hd2T1H

0
d1
x ¼ A2x ð3Þ

Nx ¼ max NL1;NL2ð Þ determines the sizes of the matri-
ces in Eq. (3), where NL1 and NL2 represent the number of
neurons in the first and second diffractive surfaces,
respectively; d1, d2, and d3 represent the axial distances
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between the diffractive surfaces (see Fig. 1a). Accordingly,
the sizes of H 0

d1
, Hd2 , and H 0

d3
become Nx ×NFOV, Nx ×

Nx, and NFOV ×Nx, respectively. Since we have already
assumed that min NL1;NL2ð Þ � NFOV, H 0

d1
, and H 0

d3
can be

generated from the corresponding Nx ×Nx propagation
matrices by deleting the appropriate columns and rows, as
described in “Analysis of a single diffractive surface”.
Because Hd2 has a size of Nx ×Nx, there is no need to
delete any rows or columns from the associated propa-
gation matrix. Although both T1 and T2 have a size of
Nx ×Nx, the one corresponding to the diffractive surface
that contains the smaller number of neurons has some
zero values along its main diagonal indices. The number
of these zeros is Nx �min NL1;NL2ð Þ.
Similar to the analysis reported in “Analysis of a single

diffractive surface,” the vectorization of A2 reveals

vec A2ð Þ ¼ a2 ¼ vec H 0
d3
T2Hd2T1H 0

d1

� �
¼ H 0T

d1
�H 0

d3

� �
vec T2Hd2T1ð Þ

¼ H 0T
d1

�H 0
d3

� �
TT

1 � T2
� �

vec Hd2ð Þ

¼ H 0T
d1

�H 0
d3

� �
T1 � T2ð Þvec Hd2ð Þ

¼ H 0T
d1

�H 0
d3

� �
T1 � T2ð Þhd2

¼ H 0T
d1

�H 0
d3

� �
Ĥd2diag T1 � T2ð Þ

¼ H 0T
d1

�H 0
d3

� �
Ĥd2t12

ð4Þ

where Ĥd2 is an N2
x ´N

2
x matrix that has nonzero entries

only along its main diagonal locations. These entries
are generated from vec Hd2ð Þ ¼ hd2 such that
Ĥd2 ½i; i� ¼ hd2 ½i�. Since the diag(·) operator forms a vector
from the main diagonal entries of its input matrix, the
vector t12 ¼ diag T1 � T2ð Þ is generated such that
t12½i� ¼ T1 � T2ð Þ½i; i�. The equality T1 � T2ð Þhd2 ¼
Ĥd2t12 stems from the fact that the nonzero elements of
T1⊗ T2 are located only along its main diagonal entries.
In Eq. (4), H 0T

d1
�H 0

d3
has rank N2

FOV. Since all the
diagonal elements of Ĥd2 are nonzero, it has rank N

2
x . As a

result, HT
d1

�Hd3

� �
Ĥd2 is a full-rank matrix with rank

N2
FOV. In addition, the nonzero elements of t12 take the

form tij= t1,it2,j, where t1,i and t2,j are the trainable/
adjustable complex transmittance values of the ith neuron
of the 1st diffractive surface and the jth neuron of the 2nd
diffractive surface, respectively, for i∈ {1, 2,…,NL1} and
j∈ {1, 2,…, NL2}. Then, the set of possible a2 vectors
(Eq. (4)) can be written as

a2 ¼
X
i;j

tijhij ð5Þ
where hij is the corresponding column vector of
ðH 0T

d1
�H 0

d3
ÞĤd2 .

Equation (5) is in the form of a complex-valued linear
combination of NL1NL2-many complex-valued vectors,
hij. Since we assume min(NL1, NL2) ≥NFOV, these vec-
tors necessarily form a linearly dependent set of vectors
and this restricts the dimensionality of the vector space
to N2

FOV. Moreover, due to the coupling of the complex-
valued transmittance values of the two diffractive sur-
faces (tij= t1,it2,j) in Eq. (5), the dimensionality of the
resulting set of a2 vectors can even go below N2

FOV,
despite NL1NL2 � N2

FOV. In fact, in “Materials and
methods,” we show that the set of a2 vectors can
form an NL1+NL2− 1-dimensional subspace of the
N2

FOV-dimensional complex-valued vector space and can
be written as

a2 ¼
XNL1þNL2�1

k¼1

ckbk ð6Þ

where bk represents length-N2
FOV linearly independent

vectors and ck represents complex-valued coefficients,
generated through the coupling of the transmittance
values of the two independent diffractive surfaces. The
relationship between Eqs. (5) and (6) is also presented as a
pseudocode in Table 1; see also Supplementary Tables
S1–S3 and Supplementary Fig. S2.
These analyses reveal that by using a diffractive optical

network composed of two different trainable diffractive
surfaces (with neurons NL1, NL2), it is possible to generate
an all-optical solution that spans an NL1+NL2− 1-
dimensional subspace of the N2

FOV-dimensional complex-
valued vector space. As a special case, if we assume
N ¼ NL1 ¼ NL2 ¼ Ni ¼ No ¼ NFOV, the resulting set of
complex-valued linear transformation vectors forms a
2N− 1-dimensional subspace of an N2-dimensional vec-
tor field. The Supplementary Information (Section S1 and
Table S1) also provides a coefficient and basis vector
generation algorithm, independently reaching the same
conclusion that this special case forms a 2N− 1-dimen-
sional subspace of an N2-dimensional vector field. The
upper limit of the solution space dimensionality that can
be achieved by a two-layered diffractive network is N2

FOV,
which is dictated by the input and output FOVs between
which the diffractive network is positioned.
In summary, these analyses show that the dimen-

sionality of the all-optical solution space covered by
two trainable diffractive surfaces (K= 2) positioned
between a given set of input–output FOV is given by
min N2

FOV;NL1 þNL2 � 1
� �

. Different from K= 1 archi-
tecture, which revealed a restricted solution space when
d1= d2 (see the Supplementary Information, Section
S5), diffractive optical networks with K= 2 do not
exhibit a similar restriction related to the axial distances
d1, d2, and d3 (see Supplementary Fig. S2).
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Analysis of an optical network formed by three or more
diffractive surfaces
Next, we consider an optical network formed by

more than two diffractive surfaces, with neurons of
(NL1;NL2; ¼ NLK ) for each layer, where K is the number
of diffractive surfaces and NLk represents the number of
neurons in the kth layer. In the previous section, we
showed that a two-layered network with (NL1, NL2) neu-
rons has the same solution space dimensionality as that of
a single-layered, larger diffractive network having NL1+
NL2− 1 individual neurons. If we assume that a third
diffractive surface (NL3) is added to this single-layer net-
work with NL1+NL2− 1 neurons, this becomes equiva-
lent to a two-layered network with (NL1 þ NL2 � 1;NL3)
neurons. Based on “Analysis of an optical network formed
by two diffractive surfaces”, the dimensionality of the all-
optical solution space covered by this diffractive network
positioned between a set of input–output FOVs is given
by min N2

FOV;NL1 þ NL2 þ NL3 � 2
� �

; also see Supple-
mentary Fig. S3 and Supplementary Information Section
S4.3. For the special case of NL1 ¼ NL2 ¼ NL3 ¼
Ni ¼ No ¼ N , Supplementary Information Section S2 and
Table S2 independently illustrate that the resulting vector

field is indeed a 3N− 2-dimensional subspace of an
N2-dimensional vector field.
The above arguments can be extended to a network

that has K-diffractive surfaces. That is, for a multisurface
diffractive network with a neuron distribution of
ðNL1;NL2; ¼ ;NLK Þ, the dimensionality of the solution
space (see Fig. 2) created by this diffractive network is
given by

min N2
FOV;

XK
k¼1

NLk

" #
� K � 1ð Þ

 !
ð7Þ

which forms a subspace of an N2
FOV-dimensional vector

space that covers all the complex-valued linear transfor-
mations between the input and output FOVs.
The upper bound on the dimensionality of the solution

space, i.e., the N2
FOV term in Eq. (7), is heuristically

imposed by the number of possible ray interactions
between the input and output FOVs. That is, if we con-
sider the diffractive optical network as a black box
(Fig. 1a), its operation can be intuitively understood as
controlling the phase and/or amplitude of the light rays
that are collected from the input, to be guided to the
output, following a lateral grid of λ/2 at the input/output
FOVs, determined by the diffraction limit of light. The
second term in Eq. (7), on the other hand, reflects the
total space-bandwidth product of K-successive diffractive
surfaces, one following another. To intuitively understand
the (K− 1) subtraction term in Eq. (7), one can hypo-
thetically consider the simple case of NLk=NFOV= 1
for all K-diffractive layers; in this case,
½PK

k¼1 NLk � � K � 1ð Þ ¼ 1, which simply indicates that K-
successive diffractive surfaces (each with NLk= 1) are
equivalent, as physically expected, to a single controllable
diffractive surface with NL= 1.
Without loss of generality, if we assume N=Nk for all

the diffractive surfaces, then the dimensionality of the
linear transformation solution space created by this dif-
fractive network will be KN− (K− 1), provided that
KN � ðK � 1Þ � N2

FOV. The Supplementary Information
(Section S3 and Table S3) also provides the same con-
clusion. This means that for a fixed design choice of N
neurons per diffractive surface (determined by, e.g., the
limitations of the fabrication methods or other practical
considerations), adding new diffractive surfaces to the
same diffractive network linearly increases the dimen-
sionality of the solution space that can be all-optically
processed by the diffractive network between the input/
output FOVs. As we further increase K such that
KN � ðK � 1Þ � N2

FOV, the diffractive network reaches its
linear transformation capacity, and adding more layers or
more neurons to the network does not further contribute
to its processing power for the desired input–output
FOVs (see Fig. 2). However, these deeper diffractive

Table 1 Coefficient (ck) and basis vector (bk) generation
algorithm pseudocode for an optical network that has two
diffractive surfaces

1 Randomly choose t1,i from the set C1,1 and t2,j from the set C2,1, and

assign desired values to the chosen t1,i and t2,j

2 c1b1 ¼ t1;it2;jhij

3 k= 2

4 Randomly choose T1 or T2 if C1;k ≠ ; and C2;k ≠ ;
Choose T1 if C1;k ≠ ; and C2;k ¼ ;
Choose T2 if C1;k ¼ ; and C2;k ≠ ;

5 If T1 is chosen in Step 4:

6 Randomly choose t1,i from the set C1,k, and assign a desired value to

the chosen t1,i

7 ckbk ¼ t1;i
P

t2;j=2C2;k
t2;jhij

� �
8 else:

9 Randomly choose t2,j from the set C2,k, and assign a desired value to

the chosen t2,j

10 ckbk ¼ t2;j
P

t1;i=2C1;k
t1;ihij

� �
11 k= k+ 1

12 If C1;k ≠ ; or C2;k ≠ ;:
13 Return to Step 4

14 else:

15 Exit

See the theoretical analysis and Eq. (6) of the main text. See also Supplementary
Tables S1–S3
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networks that have larger numbers of diffractive surfaces
(i.e., KN � ðK � 1Þ � N2

FOV) can cover a solution space
with a dimensionality of KN− (K− 1) over larger input
and output FOVs. Stated differently, for any given choice
of N neurons per diffractive surface, deeper diffractive
networks that are composed of multiple surfaces can
cover a KN− (K− 1)-dimensional subspace of all the
complex-valued linear transformations between a larger
input FOV (N 0

i >Ni) and/or a larger output FOV
(N 0

o >No), as long as KN � ðK � 1Þ � N 0
iN

0
o. The conclu-

sions of this analysis are also summarized in Fig. 2.
In addition to increasing K (the number of diffractive

surfaces within an optical network), an alternative
strategy to increase the all-optical processing cap-
abilities of a diffractive network is to increase N, the
number of neurons per diffractive surface/layer.
However, as we numerically demonstrate in the next
section, this strategy is not as effective as increasing the

number of diffractive surfaces since deep-learning-
based design tools are relatively inefficient in utilizing
all the degrees of freedom provided by a diffractive
surface with N>>No;Ni. This is partially related to the
fact that high-NA optical systems are generally more
difficult to optimize and design. Moreover, if we con-
sider a single-layer diffractive network design with a
large Nmax (which defines the maximum surface area
that can be fabricated and engineered with the desired
transmission coefficients), even for this Nmax design,
the addition of new diffractive surfaces with Nmax at
each surface linearly increases the dimensionality of
the solution space created by the diffractive network,
covering linear transformations over larger input and
output FOVs, as discussed earlier. These reflect some
of the important depth advantages of diffractive optical
networks that are formed by multiple diffractive sur-
faces. The next section further expands on this using a
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Fig. 2 Dimensionality (D) of the all-optical solution space covered by multilayer diffractive networks. a The behavior of the dimensionality of
the all-optical solution space as the number of layers increases for two different diffractive surface designs with N= N1 and N= N2 neurons per
surface, where N2 > N1. The smallest number of diffractive surfaces, [Ks], satisfying the condition KSN− (KS− 1) ≥ Ni × No determines the ideal depth of
the network for a given N, Ni, and NO. For the sake of simplicity, we assumed Ni= No= NFOV− i, where four different input/output fields-of-view are
illustrated in the plot, i.e., NFOV�4 >NFOV�3 >NFOV�2 >NFOV�1. [Ks] refers to the ceiling function, defining the number of diffractive surfaces within an
optical network design. b The distribution of the dimensionality of the all-optical solution space as a function of N and K for four different fields-of-
view, NFOV− i, and the corresponding turning points, Si, which are shown in a. For K = 1, d1 ≠ d2 is assumed. Also see Supplementary Figs. S1–S3 for
some examples of K= 1, 2, and 3
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numerical analysis of diffractive optical networks that
are designed for image classification.

Numerical analysis of diffractive networks
The previous section showed that the dimensionality of

the all-optical solution space covered by K-diffractive
surfaces, forming an optical network positioned between
an input and output FOV, is determined by
minðN2

FOV; ½
PK

k¼1 NLk � � K � 1ð ÞÞ. However, this mathe-
matical analysis does not shed light on the selection or
optimization of the complex transmittance (or reflec-
tance) values of each neuron of a diffractive network that
is assigned for a given computational task. Here, we
numerically investigate the function approximation power
of multiple diffractive surfaces in the (N, K) space using
image classification as a computational goal for the design
of each diffractive network. Since NFOV and N are large
numbers in practice, an iterative optimization procedure
based on error back-propagation and deep learning with a
desired loss function was used to design diffractive net-
works and compare their performances as a function
of (N, K).
For the first image classification task that was used as a

test bed, we formed nine different image data classes,
where the input FOV (aperture) was randomly divided
into nine different groups of pixels, each group defining
one image class (Fig. 3a). Images of a given data class can
have pixels only within the corresponding group, emitting
light at arbitrary intensities toward the diffractive net-
work. The computational task of each diffractive network
is to blindly classify the input images from one of these
nine different classes using only nine large-area detectors
at the output FOV (Fig. 3b), where the classification
decision is made based on the maximum of the optical
signal collected by these nine detectors, each assigned to
one particular image class. For deep-learning-based
training of each diffractive network for this image classi-
fication task, we employed a cross-entropy loss function
(see “Materials and methods”).
Before we report the results of our analysis using a more

standard image classification dataset such as CIFAR-1049,
we initially selected this image classification problem
defined in Fig. 3 as it provides a well-defined linear
transformation between the input and output FOVs. It
also has various implications for designing new imaging
systems with unique functionalities that cannot be cov-
ered by standard lens design principles.
Based on the diffractive network configuration and the

image classification problem depicted in Fig. 3, we com-
pared the training and blind-testing accuracies provided
by different diffractive networks composed of 1, 2, and 3
diffractive surfaces (each surface having N= 40K= 200 ×
200 neurons) under different training and testing condi-
tions (see Figs. 4 and 5). Our analysis also included the

performance of a wider single-layer diffractive network
with N= 122.5K > 3 × 40K neurons. For the training of
these diffractive systems, we created two different training
image sets (Tr1 and Tr2) to test the learning capabilities
of different network architectures. In the first case, the
training samples were selected such that approximately
1% of the point sources defining each image data class
were simultaneously on and emitting light at various
power levels. For this training set, 200K images were
created, forming Tr1. In the second case, the training
image dataset was constructed to include only a single
point source (per image) located at different coordinates
representing different data classes inside the input FOV,
providing us with a total of 6.4K training images (which
formed Tr2). For the quantification of the blind-testing
accuracies of the trained diffractive models, three different
test image datasets (never used during the training) were
created, with each dataset containing 100K images. These
three distinct test datasets (named Te1, Te50, and Te90)
contain image samples that take contributions from 1%
(Te1), 50% (Te50), and 90% (Te90) of the points defining
each image data class (see Fig. 3).
Figure 4 illustrates the blind classification accuracies

achieved by the different diffractive network models that
we trained. We see that as the number of diffractive
surfaces in the network increases, the testing accuracies
achieved by the final diffractive design improve sig-
nificantly, meaning that the linear transformation space
covered by the diffractive network expands with the
addition of new trainable diffractive surfaces, in line with
our former theoretical analysis. For instance, while a dif-
fractive image classification network with a single phase-
only (complex) modulation surface can achieve 24.48%
(27.00%) for the test image set Te1, the three-layer ver-
sions of the same architectures attain 85.2% (100.00%)
blind-testing accuracies, respectively (see Fig. 4a, b).
Figure 5 shows the phase-only diffractive layers com-
prising the 1- and 3-layer diffractive optical networks that
are compared in Fig. 4a; Fig. 5 also reports some
exemplary test images selected from Te1 and Te50, along
with the corresponding intensity distributions at the
output planes of the diffractive networks. The comparison
between two- and three-layer diffractive systems also
indicates a similar conclusion for the test image set, Te1.
However, as we increase the number of point sources
contributing to the test images, e.g., for the case of Te90,
the blind-testing classification accuracies of both the two-
and three-layer networks saturate at nearly 100%, indi-
cating that the solution space of the two-layer network
already covers the optical transformation required to
address this relatively easier image classification problem
set by Te90.
A direct comparison between the classification

accuracies reported in Fig. 4a–d further reveals that the
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Fig. 3 Spatially encoded image classification dataset. a Nine image data classes are shown (presented in different colors), defined inside the input
field-of-view (80λ × 80λ). Each λ × λ area inside the field-of-view is randomly assigned to one image data class. An image belongs to a given data class
if and only if all of its nonzero entries belong to the pixels that are assigned to that particular data class. b The layout of the nine class detectors
positioned at the output plane. Each detector has an active area of 25λ × 25λ, and for a given input image, the decision on class assignment is made
based on the maximum optical signal among these nine detectors. c Side view of the schematic of the diffractive network layers, as well as the input
and output fields-of-view. d Example images for nine different data classes. Three samples for each image data class are illustrated here, randomly
drawn from the three test datasets (Te1, Te50, and Te90) that were used to quantify the blind inference accuracies of our diffractive network models
(see Fig. 4)
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phase-only modulation constraint relatively limits the
approximation power of the diffractive network since it
places a restriction on the coefficients of the basis vectors,
hij. For example, when a two-layer, phase-only diffractive
network is trained with Tr1 and blindly tested with
the images of Te1, the training and testing accuracies are
obtained as 78.72% and 78.44%, respectively. On the other
hand, if the diffractive surfaces of the same network
architectures have independent control of the transmis-
sion amplitude and phase value of each neuron of a given
surface, the same training (Tr1) and testing (Te1) accuracy
values increase to 97.68% and 97.39%, respectively.
As discussed in our earlier theoretical analysis, an alter-

native strategy to increase the all-optical processing cap-
abilities of a diffractive network is to increase N, the number
of neurons per diffractive surface. We also numerically
investigated this scenario by training and testing another
diffractive image classifier with a single surface that contains
122.5K neurons, i.e., it has more trainable neurons than the
3-layer diffractive designs reported in Fig. 4. As demonstrated
in Fig. 4, although the performance of this larger/wider dif-
fractive surface surpassed that of the previous, narrower/
smaller 1-layer designs with 40K trainable neurons, its blind-
testing accuracy could not match the classification accuracies
achieved by a 2-layer (2 × 40K neurons) network in both the
phase-only and complex modulation cases. Despite using

more trainable neurons than the 2- and 3-layer diffractive
designs, the blind inference and generalization performance
of this larger/wider diffractive surface is worse than that of
the multisurface diffractive designs. In fact, if we were to
further increase the number of neurons in this single dif-
fractive surface (further increasing the effective NA of the
diffractive network), the inference performance gain due to
these additional neurons that are farther away from the
optical axis will asymptotically go to zero since the corre-
sponding k vectors of these neurons carry a limited amount
of optical power for the desired transformations targeted
between the input and output FOVs.
Another very important observation that one can make in

Fig. 4c, d is that the performance improvements due to the
increasing number of diffractive surfaces are much more
pronounced for more challenging (i.e., limited) training
image datasets, such as Tr2. With a significantly smaller
number of training images (6.4K images in Tr2 as opposed
to 200K images in Tr1), multisurface diffractive networks
trained with Tr2 successfully generalized to different test
image datasets (Te1, Te50, and Te90) and efficiently learned
the image classification problem at hand, whereas the
single-surface diffractive networks (including the one with
122.5K trainable neurons per layer) almost entirely failed to
generalize; see, e.g., Fig. 4c, d, the blind-testing accuracy
values for the diffractive models trained with Tr2.
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Fig. 4 Training and testing accuracy results for the diffractive surfaces that perform image classification (Fig. 3). a The training and testing
classification accuracies achieved by optical network designs composed of diffractive surfaces that control only the phase of the incoming waves; the
training image set is Tr1 (200K images). b The training and testing classification accuracies achieved by optical network designs composed of
diffractive surfaces that can control both the phase and amplitude of the incoming waves; the training image set is Tr1. c, d Same as in
a, b, respectively, except that the training image set is Tr2 (6.4K images). N= 40K neurons, and mN= 122.5K neurons, i.e., m > 3
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Next, we applied our analysis to a widely used, standard
image classification dataset and investigated the perfor-
mance of diffractive image classification networks com-
prising one, three, and five diffractive surfaces using the
CIFAR-10 image dataset49. Unlike the previous image
classification dataset (Fig. 3), the samples of CIFAR-10
contain images of physical objects, e.g., airplanes, birds,

cats, and dogs, and CIFAR-10 has been widely used for
quantifying the approximation power associated with
various deep neural network architectures. Here, we
assume that the CIFAR-10 images are encoded in the
phase channel of the input FOV that is illuminated with a
uniform plane wave. For deep-learning-based training of
the diffractive classification networks, we adopted two
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Fig. 5 One- and three-layer phase-only diffractive network designs and their input–output-intensity profiles. a The phase profile of a single
diffractive surface trained with Tr1. b Same as in a, except that there are three diffractive surfaces trained in the network design. c The output-intensity
distributions for the 1- and 3-layer diffractive networks shown in a and b, respectively, for different input images, which were randomly selected from
Te1 and Te50. A red (green) frame around the output-intensity distribution indicates incorrect (correct) optical inference by the corresponding
network. N= 40K.
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different loss functions. The first loss function is based on
the mean-squared error (MSE), which essentially for-
mulates the design of the all-optical object classification
system as an image transformation/projection problem,
and the second one is based on the cross-entropy loss,
which is commonly used to solve the multiclass separa-
tion problems in the deep-learning literature (refer to
“Materials and methods” for details).
The results of our analysis are summarized in Fig. 6a, b,

which report the average blind inference accuracies along
with the corresponding standard deviations observed over
the testing of three different diffractive network models
trained independently to classify the CIFAR-10 test ima-
ges using phase-only and complex-valued diffractive sur-
faces, respectively. The 1-, 3-, and 5-layer phase-only
(complex-valued) diffractive network architectures can
attain blind classification accuracies of 40.55∓ 0.10%
(41.52∓ 0.09%), 44.47∓ 0.14% (45.88∓ 0.28%), and
45.53∓ 0.30% (46.84∓ 0.46%), respectively, when they are
trained based on the cross-entropy loss detailed in
“Materials and methods”. On the other hand, with the use

of the MSE loss, these classification accuracies are
reduced to 16.25 ∓ 0.48% (14.92∓ 0.26%), 29.08∓ 0.14%
(33.52∓ 0.40%), and 33.67 ∓ 0.57% (34.69∓ 0.11%),
respectively. In agreement with the conclusions of our
previous results and the presented theoretical analysis, the
blind-testing accuracies achieved by the all-optical dif-
fractive classifiers improve with increasing the number of
diffractive layers, K, independent of the loss function used
and the modulation constraints imposed on the trained
surfaces (see Fig. 6).
Different from electronic neural networks, however,

diffractive networks are physical machine-learning plat-
forms with their own optical hardware; hence, practical
design merits such as the signal-to-noise ratio (SNR) and
the contrast-to-noise ratio (CNR) should also be con-
sidered, as these features can be critical for the success of
these networks in various applications. Therefore, in
addition to the blind-testing accuracies, the performance
evaluation and comparison of these all-optical diffractive
classification systems involve two additional metrics that
are analogous to the SNR and CNR. The first is the
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Fig. 6 Comparison of the 1-, 3-, and 5-layer diffractive networks trained for CIFAR-10 image classification using the MSE and cross-entropy
loss functions. a Results for diffractive surfaces that modulate only the phase information of the incoming wave. b Results for diffractive surfaces that
modulate both the phase and amplitude information of the incoming wave. The increase in the dimensionality of the all-optical solution space with
additional diffractive surfaces of a network brings significant advantages in terms of generalization, blind-testing accuracy, classification efficiency,
and optical signal contrast. The classification efficiency denotes the ratio of the optical power detected by the correct class detector with respect to
the total detected optical power by all the class detectors at the output plane. Optical signal contrast refers to the normalized difference between the
optical signals measured by the ground-truth (correct) detector and its strongest competitor detector at the output plane
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classification efficiency, which we define as the ratio of the
optical signal collected by the target, ground-truth class
detector, Igt, with respect to the total power collected by
all class detectors located at the output plane. The second
performance metric refers to the normalized difference
between the optical signals measured by the ground-
truth/correct detector, Igt, and its strongest competitor,
Isc, i.e., ðIgt � IscÞ=Igt ; this optical signal contrast metric is,
in general, important since the relative level of detection
noise with respect to this difference is critical for trans-
lating the accuracies achieved by the numerical forward
models to the performance of the physically fabricated
diffractive networks. Figure 6 reveals that the improve-
ments observed in the blind-testing accuracies as a
function of the number of diffractive surfaces also apply to
these two important diffractive network performance
metrics, resulting from the increased dimensionality of
the all-optical solution space of the diffractive network
with increasing K. For instance, the diffractive network
models presented in Fig. 6b, trained with the cross-
entropy (or MSE) loss function, provide classification
efficiencies of 13.72∓ 0.03% (13.98∓ 0.12%), 15.10∓
0.08% (31.74∓ 0.41%), and 15.46∓ 0.08% (34.43∓ 0.28%)
using complex-valued 1, 3, and 5 layers, respectively.
Furthermore, the optical signal contrast attained by the
same diffractive network designs can be calculated as
10.83∓ 0.17% (9.25∓ 0.13%), 13.92∓ 0.28% (35.23∓
1.02%), and 14.88∓ 0.28% (38.67∓ 0.13%), respectively.
Similar improvements are also observed for the phase-
only diffractive optical network models that are reported
in Fig. 6a. These results indicate that the increased
dimensionality of the solution space with increasing K
improves the inference capacity as well as the robustness
of the diffractive network models by enhancing their
optical efficiency and signal contrast.
Apart from the results and analyses reported in this sec-

tion, the depth advantage of diffractive networks has been
empirically shown in the literature for some other applica-
tions and datasets, such as, e.g., image classification38,40 and
optical spectral filter design42.

Discussion
In a diffractive optical design problem, it is not

guaranteed that the diffractive surface profiles will
converge to the optimum solution for a given (N, K)
configuration. Furthermore, for most applications of
interest, such as image classification, the optimum
transformation matrix that the diffractive surfaces need
to approximate is unknown; for example, what defines
all the images of cats versus dogs (such as in the
CIFAR-10 image dataset) is not known analytically to
create a target transformation. Nonetheless, it can be
argued that as the dimensionality of the all-optical
solution space, and thus the approximation power of

the diffractive surfaces, increases, the probability of
converging to a solution satisfying the desired design
criteria also increases. In other words, even if the
optimization of the diffractive surfaces becomes trap-
ped in a local minimum, which is practically always the
case, there is a greater chance that this state will be
closer to the globally optimal solution(s) for deeper
diffractive networks with multiple trainable surfaces.
Although not considered in our analysis thus far, an

interesting future direction to investigate is the case where
the axial distance between two successive diffractive sur-
faces is made much smaller than the wavelength of light,
i.e., d≪ λ. In this case, all the evanescent waves and the
surface modes of each diffractive layer will need to be
carefully taken into account to analyze the all-optical
processing capabilities of the resulting diffractive network.
This would significantly increase the space-bandwidth
product of the optical processor as the effective neuron
size per diffractive surface/layer can be deeply sub-
wavelength if the near-field is taken into account. Fur-
thermore, due to the presence of near-field coupling
between diffractive surfaces/layers, the effective transmis-
sion or reflection coefficient of each neuron of a surface
will no longer be an independent parameter, as it will
depend on the configuration/design of the other surfaces. If
all of these near-field-related coupling effects are carefully
taken into consideration during the design of a diffractive
optical network with d≪ λ, it can significantly enrich the
solution space of multilayer coherent optical processors,
assuming that the surface fabrication resolution and the
SNR as well as the dynamic range at the detector plane are
all sufficient. Despite the theoretical richness of near-field-
based diffractive optical networks, the design and imple-
mentation of these systems bring substantial challenges in
terms of their 3D fabrication and alignment, as well as the
accuracy of the computational modeling of the associated
physics within the diffractive network, including multiple
reflections and boundary conditions. While various elec-
tromagnetic wave solvers can handle the numerical analysis
of near-field diffractive systems, practical aspects of a fab-
ricated near-field diffractive neural network will present
various sources of imperfections and errors that might
force the physical forward model to significantly deviate
from the numerical simulations.
In summary, we presented a theoretical and numerical

analysis of the information-processing capacity and function
approximation power of diffractive surfaces that can com-
pute a given task using temporally and spatially coherent
light. In our analysis, we assumed that the polarization state
of the propagating light is preserved by the optical modula-
tion on the diffractive surfaces, and that the axial distance
between successive layers is kept large enough to ensure that
the near-field coupling and related effects can be ignored in
the optical forward model. Based on these assumptions, our
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analysis shows that the dimensionality of the all-optical
solution space provided by multilayer diffractive networks
expands linearly as a function of the number of trainable
surfaces, K, until it reaches the limit defined by the target
input and output FOVs, i.e., minðN2

FOV; ½
PK

k¼1 NLk ��
K � 1ð ÞÞ, as depicted in Eq. (7) and Fig. 2. To numerically
validate these conclusions, we adopted a deep-learning-based
training strategy to design diffractive image classification
systems for two distinct datasets (Figs. 3–6) and investigated
their performance in terms of blind inference accuracy,
learning and generalization performance, classification effi-
ciency, and optical signal contrast, confirming the depth
advantages provided by multiple diffractive surfaces com-
pared to a single diffractive layer.
These results and conclusions, along with the underlying

analyses, broadly cover various types of diffractive surfaces,
including, e.g., metamaterials/metasurfaces, nanoantenna
arrays, plasmonics, and flat-optics-based designer surfaces.
We believe that the deeply subwavelength design features of,
e.g., diffractive metasurfaces, can open up new avenues in the
design of coherent optical processers by enabling indepen-
dent control over the amplitude and phase modulation of
neurons of a diffractive layer, also providing unique oppor-
tunities to engineer the material dispersion properties as
needed for a given computational task.

Materials and methods
Coefficient and basis vector generation for an optical
network formed by two diffractive surfaces
Here, we present the details of the coefficient and basis

vector generation algorithm for a network having two dif-
fractive surfaces with the neurons (NL1,NL2) to show that it is
capable of forming a vectorized transformation matrix in an
NL1+NL2− 1-dimensional subspace of an N2

FOV-dimen-
sional complex-valued vector space. The algorithm depends
on the consumption of the transmittance values from the
first or the second diffractive layer, i.e., T1 or T2, at each step
after its initialization. A random neuron is first chosen from
T1 or T2, and then a new basis vector is formed. The chosen
neuron becomes the coefficient of this new basis vector,
which is generated by using the previously chosen trans-
mittance values and appropriate vectors from hij (Eq. (5)).
The algorithm continues until all the transmittance values
are assigned to an arbitrary complex-valued coefficient and
uses all the vectors of hij in forming the basis vectors.
In Table 1, a pseudocode of the algorithm is also presented.

In this table, C1,k and C2,k represent the sets of transmittance
values that include t1,i and t2,j, which were not chosen before
(at time step k), from the first and second diffractive surfaces,
respectively. In addition, ck= t1,i in Step 7 and ck= t2,j in Step
10 are the complex-valued coefficients that can be inde-
pendently determined. Similarly, bk ¼Pt2;j=2C2;k

t2;jhij and
bk ¼Pt1;i=2C1;k

t1;ihij are the basis vectors generated at each
step, where t1;i=2C1;k and t2;j=2C2;k represent the sets of

coefficients that are chosen before. The basis vectors in Steps
7 and 10 are formed through the linear combinations of the
corresponding hij vectors.
By examining the algorithm in Table 1, it is straightfor-

ward to show that the total number of generated basis
vectors is NL1+NL2− 1. That is, at each time step k, only
one coefficient either from the first or the second layer is
chosen, and only one basis vector is created. Since there are
NL1+NL2-many transmittance values where two of them
are chosen together in Step 1, the total number of time steps
(coefficient and basis vectors) becomes NL1+NL2− 1. On
the other hand, showing that all the NL1NL2-many hij vectors
are used in the algorithm requires further analysis. Without
loss of generality, let T1 be chosen n1 times starting from the
time step k= 2, and then T2 is chosen n2 times. Similarly, T1

and T2 are chosen n3 and n4 times in the following cycles,
respectively. This pattern continues until allNL1+NL2-many
transmittance values are consumed. Here, we show the
partition of the selection of the transmittance values from T1

and T2 for each time step k into s-many chunks, i.e.,

k ¼ 2; 3; ¼|fflfflfflffl{zfflfflfflffl}
n1

; ¼|{z}
n2

; ¼|{z}
n3

; ¼|{z}
n4

; ¼ ; ¼NL1 þ NL2 � 2;NL1 þ NL2 � 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ns

8<
:

9=
;
ð8Þ

To show that NL1NL2-many hij vectors are used in the
algorithm regardless of the values of s and ni, we first define

pi ¼ ni þ pi�2 for even values of i � 2

qi ¼ ni þ qi�2 for odd values of i � 1

where p0= 0 and q−1= 1. Based on this, the total number
of consumed basis vectors inside each summation in
Table 1 (Steps 7 and 10) can be written as

nh ¼ 1þ Pq1
k¼2

1þ Pp2þq1

k¼q1þ1
q1 þ

Pq3þp2

k¼p2þq1þ1
ðp2 þ 1Þ þ Pp4þq3

k¼q3þp2þ1
q3

þ Pq5þp4

k¼p4þq3þ1
ðp4 þ 1Þ þ Pp6þq5

k¼q5þp4þ1
q5 þ

Pq7þp6

k¼p6þq5þ1
ðp6 þ 1Þ

þ¼ þ PNL1þps�2

k¼ps�2þqs�3þ1
ðps�2 þ 1Þ þ PNL1þNL2�1

k¼NL1þps�2þ1
NL1

ð9Þ
where each summation gives the number of consumed hij
vectors in the corresponding chunk. Please note that
based on the partition given by Eq. (8), qs−1 and ps
become equal to NL1 and NL2− 1, respectively. One can
show, by carrying out this summation, that all the terms
except NL1NL2 cancel each other out, and therefore, nh=
NL1NL2, demonstrating that all the NL1NL2-many hij
vectors are used in the algorithm. Here, we assumed that
the transmittance values from the first diffractive layer are
consumed first. However, even if it were assumed that the
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transmittance values from the second diffractive layer are
consumed first, the result does not change (also see
Supplementary Information Section S4.2 and Fig. S2).
The Supplementary Information and Table S1 also report

an independent analysis of the special case for NL1 ¼ NL2 ¼
Ni ¼ No ¼ N and Table S3 reports the special case of NL2 ¼
Ni ¼ No ¼ N and NL1 ¼ ðK � 1ÞN � ðK � 2Þ, all of which
confirm the conclusions reported here. The Supplementary
Information also includes an analysis of the coefficient and
basis vector generation algorithm for a network formed by
three diffractive surfaces (K= 3) when NL1 ¼ NL2 ¼ NL3 ¼
Ni ¼ No ¼ N (see Table S2); also see Supplementary
Information Section S4.3 and Supplementary Fig. S3 for
additional numerical analysis of K= 3 case, further con-
firming the same conclusions.

Optical forward model
In a coherent optical processor composed of diffractive

surfaces, the optical transformation between a given pair
of input/output FOVs is established through the mod-
ulation of light by a series of diffractive surfaces, which we
modeled as two-dimensional, thin, multiplicative ele-
ments. According to our formulation, the complex-valued
transmittance of a diffractive surface, k, is defined as

t x; y; zkð Þ ¼ a x; yð Þ exp j2πϕ x; yð Þð Þ ð10Þ

where a(x, y) and ϕ(x, y) denote the trainable amplitude
and the phase modulation functions of diffractive layer k.
The values of a(x, y), in general, lie in the interval (0, 1),
i.e., there is no optical gain over these surfaces, and the
dynamic range of the phase modulation is between (0,
2π). In the case of phase-only modulation restriction,
however, a(x, y) is kept as 1 (nontrainable) for all the
neurons. The parameter zk defines the axial location of
the diffractive layer k between the input FOV at z= 0
and the output plane. Based on these assumptions, the
Rayleigh–Sommerfeld formulation expresses the light
diffraction by modeling each diffractive unit on layer k at
(xq, yq, zk) as the source of a secondary wave

wk
q x; y; zð Þ ¼ z � zk

r2
1

2πr
þ 1
jλ

� �
exp

j2πr
λ

� �
ð11Þ

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xq
� �2þ y� xq

� �2þ z � zkð Þ2
q

. Combining
Eqs. (10) and (11), we can write the light field exiting the
qth diffractive unit of layer k+ 1 as

ukþ1
q x; y; zð Þ ¼ t xq; yq; zkþ1

� �
wkþ1
q x; y; zð ÞX

p2 Sk

ukp xq; yq; zkþ1
� � ð12Þ

where Sk denotes the set of diffractive units of layer k.
From Eq. (12), the complex wave field at the output plane

can be written as

uKþ1 x; y; zð Þ ¼ P
q2 SK

t xq; yq; zK
� �

wK
q x; y; zð Þ P

p2 SK�1

uK�1
p xq; yq; zK
� �" #

ð13Þ
where the optical field immediately after the object is
assumed to be u0(x, y, z). In Eq. (13), SK and SK− 1 denote
the set of features at the Kth and (K− 1)th diffractive
layers, respectively.

Image classification datasets and diffractive network
parameters
There are a total of nine image classes in the dataset

defined in Fig. 3, corresponding to nine different sets of
coordinates inside the input FOV, which covers a region
of 80λ × 80λ. Each point source lies inside a region of λ ×
λ, resulting in 6.4K coordinates, divided into nine image
classes. Nine classification detectors were placed at the
output plane, each representing a data class, as depicted in
Fig. 3b. The sensitive area of each detector was set to
25λ × 25λ. In this design, the classification decision was
made based on the maximum of the optical signal col-
lected by these nine detectors. According to our system
architecture, the image in the FOV and the class detectors
at the output plane were connected through diffractive
surfaces of size 100λ × 100λ, and for the multilayer (K > 1)
configurations, the axial distance, d, between two
successive diffractive surfaces was taken as 40λ. With a
neuron size of λ/2, we obtained N= 40K (200 × 200),
Ni= 25.6K (160 × 160), and No= 22.5K (9 × 50 × 50).
For the classification of the CIFAR-10 image dataset, the

size of the diffractive surfaces was taken to be ~106.6λ ×
106.6λ, and the edge length of the input FOV containing
the input image was set to be ~53.3λ in both lateral
directions. Unlike the amplitude-encoded images of the
previous dataset (Fig. 3), the information of the CIFAR-10
images was encoded in the phase channel of the input
field, i.e., a given input image was assumed to define a
phase-only object with the gray levels corresponding to
the delays experienced by the incident wavefront within
the range [0, λ). To form the phase-only object inputs
based on the CIFAR-10 dataset, we converted the RGB
samples to grayscale by computing their YCrCb repre-
sentations. Then, unsigned 8-bit integer values in the Y
channel were converted into float32 values and normal-
ized to the range [0, 1]. These normalized grayscale
images were then mapped to phase values between [0, 2π).
The original CIFAR-10 dataset49 has 50K training and
10K test images. In the diffractive optical network designs
presented here, we used all 50K and 10K images during
the training and testing stages, respectively. Therefore, the
blind classification accuracy, efficiency, and optical signal
contrast values depicted in Fig. 6 were computed over the
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entire 10K test set. Supplementary Fig. S4 and S5
demonstrate 600 examples of the grayscale CIFAR-10
images used in the training and testing phases of the
presented diffractive network models, respectively.
The responsivity of the 10 class detectors placed at the

output plane (each representing one CIFAR-10 data class,
e.g., automobile, ship, and truck) was assumed to be
identical and uniform over an area of 6.4λ × 6.4λ. The
axial distance between two successive diffractive surfaces
in the design was assumed to be 40λ. Similarly, the input
and output FOVs were placed 40λ away from the first and
last diffractive layers, respectively.

Loss functions and training details
For a given dataset with C classes, one way of designing

an all-optical diffractive classification network is to place
C-class detectors at the output plane, establishing a one-
to-one correspondence between data classes and the
optoelectronic detectors. Accordingly, the training of
these systems aims to find/optimize the diffractive sur-
faces that can route most of the input photons, thus the
optical signal power, to the corresponding detector
representing the data class of a given input object.
The first loss function that we used for the training of

diffractive optical networks is the cross-entropy loss,
which is frequently used in machine learning for multi-
class image classification. This loss function acts on the
optical intensities collected by the class detectors at the
output plane and is defined as

L ¼ �
X
c2C

gc log ðocÞ ð14Þ

where gc and oc denote the entry in the one-hot label
vector and the class score of class c, respectively. The class
score oc, on the other hand, is defined as a function of the
normalized optical signals, I′′

oc ¼
exp I 0c
� �P

c2C expðI 0cÞ
ð15Þ

Equation (15) is the well-known softmax function. The
normalized optical signals I′ are defined as I

maxfIg ´T , where
I is the vector of the detected optical signals for each class
detector and T is a constant parameter that induces a virtual
contrast, helping to increase the efficacy of training.
Alternatively, the all-optical classification design achieved

using a diffractive network can be cast as a coherent image
projection problem by defining a ground-truth spatial
intensity profile at the output plane for each data class and an
associated loss function that acts over the synthesized optical
signals at the output plane. Accordingly, the MSE loss
function used in Fig. 6 computes the difference between a
ground-truth-intensity profile, Icg ðx; yÞ, devised for class c and

the intensity of the complex wave field at the output plane,
i.e., uKþ1 x; yð Þj j2. We defined Icgðx; yÞ as

Icgðx; yÞ ¼
1 if x2Dc

x and y2Dc
y

0 otherwise



ð16Þ

where Dc
x and Dc

y represent the sensitive/active area of the
class detector corresponding to class c. The related MSE
loss function, Lmse, can then be defined as

Lmse ¼
Z Z

uKþ1 x; yð Þ�� ��2�Icg x; yð Þ
��� ���2dxdy ð17Þ

All network models used in this work were trained
using Python (v3.6.5) and TensorFlow (v1.15.0, Google
Inc.). We selected the Adam50 optimizer during the
training of all the models, and its parameters were taken
as the default values used in TensorFlow and kept iden-
tical in each model. The learning rate of the diffractive
optical networks was set to 0.001.

Acknowledgements
The Ozcan Lab at UCLA acknowledges the support of Fujikura (Japan). O.K.
acknowledges the support of the Fulbright Commission of Turkey.

Author details
1Electrical and Computer Engineering Department, University of California, Los
Angeles, CA 90095, USA. 2Bioengineering Department, University of California,
Los Angeles, CA 90095, USA. 3California NanoSystems Institute, University of
California, Los Angeles, CA 90095, USA

Author contributions
All the authors contributed to the reported analyses and prepared the paper.

Data availability
The deep-learning models reported in this work used standard libraries and
scripts that are publicly available in TensorFlow. All the data and methods
needed to evaluate the conclusions of this work are presented in the main
text. Additional data can be requested from the corresponding author.

Conflict of interest
The authors declare that they have no conflict of interest.

Supplementary information is available for this paper at https://doi.org/
10.1038/s41377-020-00439-9.

Received: 11 August 2020 Revised: 16 November 2020 Accepted: 17
November 2020

References
1. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85,

3966–3969 (2000).
2. Cubukcu, E., Aydin, K., Ozbay, E., Foteinopoulo, S. & Soukoulis, C. M. Negative

refraction by photonic crystals. Nature 423, 604–605 (2003).
3. Fang, N. Sub-diffraction-limited optical imaging with a silver superlens. Science

308, 534–537 (2005).
4. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging

beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).
5. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by

metamaterials. Science 317, 1698–1702 (2017).

Kulce et al. Light: Science & Applications           (2021) 10:25 Page 16 of 17

https://doi.org/10.1038/s41377-020-00439-9
https://doi.org/10.1038/s41377-020-00439-9


6. Liu, Z., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens
magnifying sub-diffraction-limited objects. Science 315, 1686–1686
(2007).

7. MacDonald, K. F., Sámson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active
plasmonics. Nat. Photon. 3, 55–58 (2009).

8. Lin, D., Fan, P., Hasman, E. & Brongersma, M. L. Dielectric gradient metasurface
optical elements. Science 345, 298–302 (2014).

9. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13,
139–150 (2014).

10. Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S. &
Luk’yanchuk, B. Optically resonant dielectric nanostructures. Science 354,
aag2472 (2016).

11. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48
(2007).

12. Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and
applications. Rep. Prog. Phys. 79, 076401 (2016).

13. Smith, D. R. Metamaterials and negative refractive index. Science 305, 788–792
(2004).

14. Yu, N. et al. Flat optics: controlling wavefronts with optical antenna meta-
surfaces. IEEE J. Sel. Top. Quantum Electron. 19, 4700423 (2013).

15. Maier, S. A. et al. Local detection of electromagnetic energy transport below
the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2,
229–232 (2003).

16. Alù, A. & Engheta, N. Achieving transparency with plasmonic and metama-
terial coatings. Phys. Rev. E 72, 016623 (2005).

17. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave fre-
quencies. Science 314, 977–980 (2006).

18. Pendry, J. B. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).
19. Cai, W., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with

metamaterials. Nat. Photon. 1, 224–227 (2007).
20. Valentine, J., Li, J., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of

dielectrics. Nat. Mater. 8, 568–571 (2009).
21. Narimanov, E. E. & Kildishev, A. V. Optical black hole: broadband omnidirec-

tional light absorber. Appl. Phys. Lett. 95, 041106 (2009).
22. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461,

629–632 (2009).
23. Zhao, Y., Belkin, M. A. & Alù, A. Twisted optical metamaterials for

planarized ultrathin broadband circular polarizers. Nat. Commun. 3,
870 (2012).

24. Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial
light modulators. Nat. Photon. 8, 605–609 (2014).

25. Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that
solve equations. Science 363, 1333–1338 (2019).

26. Hughes, T. W., Williamson, I. A. D., Minkov, M. & Fan, S. Wave physics as an
analog recurrent neural network. Sci. Adv. 5, eaay6946 (2019).

27. Qian, C. et al. Performing optical logic operations by a diffractive neural net-
work. Light. Sci. Appl. 9, 59 (2020).

28. Psaltis, D., Brady, D., Gu, X.-G. & Lin, S. Holography in artificial neural networks.
Nature 343, 325–330 (1990).

29. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon.
11, 441–446 (2017).

30. Shastri, B. J. et al. Neuromorphic photonics, principles of. In Encyclopedia of
Complexity and Systems Science (eds Meyers, R. A.) 1–37 (Springer, Berlin
Heidelberg, 2018). https://doi.org/10.1007/978-3-642-27737-5_702-1.

31. Bueno, J. et al. Reinforcement learning in a large-scale photonic recurrent
neural network. Optica 5, 756 (2018).

32. Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P.
All-optical spiking neurosynaptic networks with self-learning capabilities.
Nature 569, 208–214 (2019).

33. Miscuglio, M. et al. All-optical nonlinear activation function for photonic neural
networks [Invited]. Opt. Mater. Express 8, 3851 (2018).

34. Tait, A. N. et al. Neuromorphic photonic networks using silicon photonic
weight banks. Sci. Rep. 7, 7430 (2017).

35. George, J. et al. Electrooptic nonlinear activation functions for vector matrix
multiplications in optical neural networks. in Advanced Photonics 2018 (BGPP,
IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF) SpW4G.3 (OSA, 2018). https://
doi.org/10.1364/SPPCOM.2018.SpW4G.3.

36. Mehrabian, A., Al-Kabani, Y., Sorger, V. J. & El-Ghazawi, T. PCNNA: a photonic
convolutional neural network accelerator. In Proc. 31st IEEE International
System-on-Chip Conference (SOCC) 169–173 (2018). https://doi.org/10.1109/
SOCC.2018.8618542.

37. Sande, G. V., der, Brunner, D. & Soriano, M. C. Advances in photonic reservoir
computing. Nanophotonics 6, 561–576 (2017).

38. Lin, X. et al. All-optical machine learning using diffractive deep neural net-
works. Science 361, 1004–1008 (2018).

39. Li, J., Mengu, D., Luo, Y., Rivenson, Y. & Ozcan, A. Class-specific differential
detection in diffractive optical neural networks improves inference accuracy.
AP 1, 046001 (2019).

40. Mengu, D., Luo, Y., Rivenson, Y. & Ozcan, A. Analysis of diffractive optical neural
networks and their integration with electronic neural networks. IEEE J. Select.
Top. Quantum Electron. 26, 1–14 (2020).

41. Veli, M. et al. Terahertz pulse shaping using diffractive surfaces. Nat. Commun.
https://doi.org/10.1038/s41467-020-20268-z (2021).

42. Luo, Y. et al. Design of task-specific optical systems using broadband dif-
fractive neural networks. Light Sci. Appl. 8, 112 (2019).

43. Mengu, D. et al. Misalignment resilient diffractive optical networks. Nano-
photonics 9, 4207–4219 (2020).

44. Li, J. et al. Machine vision using diffractive spectral encoding. https://arxiv.org/
abs/2005.11387 (2020). [cs, eess, physics]

45. Esmer, G. B., Uzunov, V., Onural, L., Ozaktas, H. M. & Gotchev, A. Diffraction field
computation from arbitrarily distributed data points in space. Signal Process.:
Image Commun. 22, 178–187 (2007).

46. Goodman, J. W. in Introduction to Fourier Optics. (Roberts and Company
Publishers, Englewood, CO, 2005).

47. Zhang, Z., You, Z. & Chu, D. Fundamentals of phase-only liquid crystal on
silicon (LCOS) devices. Light: Sci. Appl. 3, e213 (2014).

48. Moon, T. K. & Sterling, W. C. in Mathematical methods and algorithms for signal
processing (Prentice Hall, Upper Saddle River, NJ, 2000).

49. CIFAR-10 and CIFAR-100 datasets. https://www.cs.toronto.edu/~kriz/cifar.html
(2009).

50. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. https://arxiv.
org/abs/1412.6980 (2014).

Kulce et al. Light: Science & Applications           (2021) 10:25 Page 17 of 17

https://doi.org/10.1007/978-3-642-27737-5_702-1
https://doi.org/10.1364/SPPCOM.2018.SpW4G.3
https://doi.org/10.1364/SPPCOM.2018.SpW4G.3
https://doi.org/10.1109/SOCC.2018.8618542
https://doi.org/10.1109/SOCC.2018.8618542
https://doi.org/10.1038/s41467-020-20268-z
https://arxiv.org/abs/2005.11387
https://arxiv.org/abs/2005.11387
https://www.cs.toronto.edu/~kriz/cifar.html
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

	All-optical information-processing capacity of diffractive surfaces
	Introduction
	Results
	Theoretical analysis of the information-processing capacity of diffractive surfaces
	Analysis of a single diffractive surface
	Analysis of an optical network formed by two diffractive surfaces
	Analysis of an optical network formed by three or more diffractive surfaces

	Numerical analysis of diffractive networks

	Discussion
	Materials and methods
	Coefficient and basis vector generation for an optical network formed by two diffractive surfaces
	Optical forward model
	Image classification datasets and diffractive network parameters
	Loss functions and training details

	Acknowledgements




