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Abstract
Mode-coupling-induced dispersion has been used to engineer microresonators for soliton generation at the edge of
the visible band. Here, we show that the optical soliton formed in this way is analogous to optical Bragg solitons and,
more generally, to the Dirac soliton in quantum field theory. This optical Dirac soliton is studied theoretically, and a
closed-form solution is derived in the corresponding conservative system. Both analytical and numerical solutions
show unusual properties, such as polarization twisting and asymmetrical optical spectra. The closed-form solution is
also used to study the repetition rate shift in the soliton. An observation of the asymmetrical spectrum is analysed
using theory. The properties of Dirac optical solitons in microresonators are important at a fundamental level and
provide a road map for soliton microcomb generation in the visible band.

Introduction
Soliton mode locking in microresonators1 provides a

pathway for the miniaturization of frequency comb sys-
tems2. The dissipative solitons3 formed in the resulting
microcombs4 are coherently pumped5 and were first
observed in optical fibre cavities6. In microresonators,
such Kerr solitons (KSs) have been realized in a wide
range of geometries and material systems7–14. Soliton
microcomb devices have been tested in diverse system
demonstrations, including spectroscopy15–17, coherent
communications18, range detection19–21, optical fre-
quency synthesis22, exoplanet studies23,24, and optical
clocks25. Progress towards integration of the microcomb
with pump and other control functions is also being
made26–28. Modal coupling, wherein distinct mode
families experience frequency degeneracy analogous to an
energy level crossing29, is an important feature of soliton
formation in microresonators. Such crossings impart
structure to the soliton spectral envelope30 and are
responsible for an intriguing range of microcomb phe-
nomena of both scientific and technical importance,

including dispersive wave emissions9,31, dark soliton for-
mation32, pump noise isolation33, improved pumping
efficiency34,35, and dispersion engineering for near-visible
emissions36,37.
Here, a new type of soliton in microresonators, termed

Dirac solitons (DSs), is shown to result from broadband
modal coupling. The name originates from the nonlinear
Dirac equations, which govern the dynamics of these
solitons and are discussed below. A similar soliton has
been theoretically studied in fibre Bragg gratings38,39 and
later experimentally observed40. In these Bragg solitons,
forward and backward propagating waves are coupled by
a periodic structure, and a Dirac-like model has been
applied to understand these systems41,42. As shown
recently for broadband coupling in a dimer resonator
system43, the co-existence of coupling and nonlinearity
changes the solution behaviour qualitatively, and a full
understanding requires a non-perturbative approach. We
show that broadband nonlinear coupling results in a range
of new phenomena in the Dirac soliton system, including
polarization twisting along the soliton and asymmetrical
soliton comb spectra. A closed-form expression for DSs is
derived by solving the Lugiato-Lefever equation (LLE)5,44

augmented with mode coupling. Curiously, the requisite
coupling conditions for DS generation have been obtained
experimentally for near-visible36 and 1-μm-band37 soliton
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generation. As shown here, these experiments were per-
formed in a regime where Dirac solitons collapse into
conventional Kerr solitons. New data from the 778-nm-
band measurement featuring asymmetrical spectra will be
presented, showing initial deviation away from conven-
tional Kerr soliton behaviour.

Results
Polarization mode coupling and coupled LLEs
To illustrate the features of DSs, we consider the specific

case of a circularly symmetric (whispering-gallery) reso-
nator that has an initial reflection plane of symmetry in the
plane of the resonator. The resulting geometry supports
transverse-electric (TE) and transverse-magnetic (TM)
mode families (Fig. 1a) that are symmetrical and anti-
symmetrical, respectively, with respect to the reflection
plane. A pair of TE and TM modes can have accidental
degeneracy for a particular wavenumber. By breaking
the reflection geometry, it becomes possible to lift the
degeneracy and create an avoided crossing36. In effect, the
original modes are strongly coupled, and the eigenmodes
of the non-symmetric system are hybrid modes, as shown
in Fig. 1b. Loosely speaking, the resulting hyperbolic shape
of the eigenfrequency dispersion creates an anomalous
dispersion window that is suitable for soliton generation.
However, we note that this dispersion is not associated

with a single mode family across the entire avoided
crossing. Indeed, the mode composition changes when the
wavenumber increases, evolving from TM to TE mode for
the upper branch or vice versa for the lower branch.
The standard form of the LLE for one transverse mode

family (denoted by mode 1) describes the temporal soliton
dynamics in a microresonator44:

∂E1

∂t
¼ ð�iδω� κ1

2
ÞE1 � iL̂1E1 þ ig11jE1j2E1 þ f1 ð1Þ

Here, E1 is the slowly varying amplitude in a co-moving
frame normalized to optical energy, defined via E1=
E1A1, where E1 is the electric field and A1 is the
normalized vector field distribution. The frequency
detuning δω= ωc− ωp is the frequency difference
between the cavity resonant frequency ωc and pump
frequency ωp. The Kerr nonlinear coefficient is
g11 ¼ nð2Þωcc=ðn2V11Þ, with speed of light in vacuum c,
refractive index n, Kerr nonlinear index n(2) and mode
volume V11 ¼ ðR jA1j2dV Þ2=R jA1j4dV . κ1 is the energy
loss rate, and f1 is the pumping term for mode 1. The
linear dispersion operator ~L1 describes mode dispersion
and can be Taylor expanded as L̂1 � �iD1;1∂θ � D2;1∂

2
θ=2,

where θ is the angular coordinate and D1,1/(2π) and D2,1/
(2π) are the free spectral range (FSR) and second-order
dispersion (proportional to the group velocity dispersion
(GVD)), respectively, for mode 1. In the case of a
conservative system (κ1= 0 and f1= 0) and D1,1= 0 (i.e.,
choosing a co-moving reference frame), the exact soliton
solution to Eq. (1) is given by:

E1 ¼
ffiffiffiffiffiffiffiffiffi
2δω
g11

s
sech

ffiffiffiffiffiffiffiffiffi
2δω
D2;1

s
θ

 !
ð2Þ

which is also commonly used as an ansatz to describe a
KS7.
To generalize the above LLE to the coupled pair of TE

and TM modes (modes 1 and 2, respectively), we intro-
duce mode coupling as well as cross-phase modulation
into the equations. The following two-mode coupled LLE
results:

∂E1
∂t ¼ ð�iδω� κ1

2 ÞE1 þ igcE2 � δD1
∂E1
∂θ

þiðg11jE1j2E1 þ g12jE2j2E1Þ þ f1
∂E2
∂t ¼ ð�iδω� κ2

2 ÞE2 þ igcE1 þ δD1
∂E2
∂θ

þiðg22jE2j2E2 þ g12jE1j2E2Þ þ f2

ð3Þ

Here, gc > 0 gives the coupling rate between the two
(originally uncoupled) modes, gij ¼ nð2Þωcc=ðn2VijÞ (i, j=
1, 2), and the mode volumes V11 and V22 and cross mode
volume V12 are defined as Vij ¼ ðR jAij2dV

R jAjj2dV Þ=R jAij2jAjj2dV . A reference frequency (relative to which all
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Fig. 1 Principle of mode hybridization and Dirac solitons. a For a
symmetric resonator cross section (top-left insets), TE and TM modes
within the resonator can become accidentally degenerate at the same
wavenumber. The bottom (right) inset depicts the TE (TM) mode
electric field directions. b For an asymmetric resonator cross section
(top-left inset), degeneracy is lifted, and an avoided crossing is
created. The left and right insets depict the hybridized mode electric
field directions. c Schematic of balancing nonlinear and dispersion
effects for a KS. d Schematic of balancing nonlinear, coupling and
group velocity difference effects for one of the components in a DS
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frequencies are measured) is chosen as the degeneracy
frequency. In the symmetric co-moving frame (moving at a
speed corresponding to D1 ¼ ðD1;1 þ D1;2Þ=2), the group
velocities of the two resulting hybrid modes become anti-
symmetric with δD1 ¼ jD1;1 � D1;2j=2. Here, second- and
higher-order dispersions are ignored, as the coupling-
induced dispersion of the eigenfrequency is typically one
order of magnitude larger than the intrinsic mode dispersion.
The nonlinear terms include self-phase and cross-phase
modulation. Other four-wave mixing terms that induce
nonlinear coupling, such as jE1j2E1E�

2 and E2
1ðE�

2Þ2, have
been dropped because these are either forbidden by
reflection symmetry or strongly suppressed by the phase
mismatching of the underlying modes.
The LLE Eq. (1) (without loss and pump terms) is known

as the nonlinear Schrödinger equation in theoretical physics.
Similarly, the coupled LLE Eq. (3) presented here are a
generalization of the nonlinear Dirac equations. When only
cross-phase modulation is considered (g11= g22= 0), Eq. (3)
reduces to the massive Thirring model in quantum field
theory45, which is known to support Dirac solitons46,47.
With equal but nonzero self-phase modulations (g11= g22),
the Bragg soliton solution38,39 is recovered, which has been
realized in fibre Bragg grating systems40. On the other hand,
when second-order dispersion is present and is much
stronger than the effect induced by linear inter-mode cou-
pling within the band being considered, Eq. (3) becomes the
vector soliton model in birefringent systems, where soliton
solutions are also known48–50. We note that the vector
soliton relies on both modes having anomalous dispersion,
while anomalous dispersion is not required in the DS model.
Before proceeding to solve Eq. (3), it is helpful to

understand why a DS solution exists in the absence of
second-order dispersion. The conventional KS is a delicate
balance of the Kerr nonlinear effect, which creates chirping
within a pulse, and the anomalous mode dispersion, which
cancels the chirping effect (Fig. 1c). In the DS system, the
hyperbolic-shaped upper-branch eigenfrequency spectrum
(as in Fig. 1b) resembles a spectrum with anomalous dis-
persion. While this “dispersion” plays the same role as
conventional dispersion and constitutes the foundation for
the generation of the DS, this viewpoint only holds when
the pumping frequency (and soliton spectrum) is close to
this branch. Indeed, in this case, it will be shown that it
reduces to the conventional KS. In general, and as noted in
the introduction, dispersion is only locally well-defined in
this spectrum, because the mode composition of the hybrid
mode can change rapidly with respect to the wavenumber.
Correspondingly, the dispersion interpretation fails for the
general DS, and the coupling effect must be treated non-
perturbatively. These rapid composition changes in the
hybridized modes redistribute pulse energy in the frequency
domain and produce a new contribution to chirping within
the pulse, which manifests as phase differences between the

two-mode components of the pulse. Coupling then makes
the two components interfere differently at different posi-
tions and leads to both chirping and pulse shifting. These
effects are delicately cancelled by nonlinear effects and
group velocity differences, respectively (Fig. 1d), and
maintain the DS pulse shape without anomalous dispersion.
In the language of field theory, anomalous mode dispersion
provides a positive “mass” for the KS field, which then
becomes a well-defined non-relativistic field theory. The
“mass” of the DS field is the inter-mode coupling, and the
mode spectrum corresponds to a relativistic field theory.

Closed-form soliton solutions
To obtain an analytical solution for the coupled LLE, we

consider a conservative system by setting κ1= κ2= 0 and
f1= f2= 0. Equation (3) can then be solved by finding the
invariants associated with the system (see ‘Materials and
methods’). The closed-form single bright soliton solution
for Eq. (3), without periodic boundary conditions, can be
obtained as:

E1;2 ¼ ±
ffiffiffiffiffi
2gc
G

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ξ2

p
ðδD1 ± v
δD1�vÞ1=4

cosh 2
ffiffiffiffiffiffiffiffi
1�~ξ2

p
~θ

� �
�~ξ

� � ± γ=2
ffiffiffiffiffiffi
1�~ξ

p
cosh

ffiffiffiffiffiffiffiffi
1�~ξ2

p
~θ

� �
�i
ffiffiffiffiffiffi
1þ~ξ

p
sinh

ffiffiffiffiffiffiffiffi
1�~ξ2

p
~θ

� �� �1± γ

exp �i v
δD1

~ξ~θ
� �

ð4Þ

G ¼ δD1þv
δD1�v

g11
2 þ δD1�v

δD1þv
g22
2 þ g12; γ ¼ 1

G
δD1þv
δD1�v g11 � δD1�v

δD1þv g22
� �

~ξ ¼ δD1ffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p δω

gc
; ~θ ¼ gcffiffiffiffiffiffiffiffiffiffiffiffi

δD2
1�v2

p θ

where E1 (E2) takes the upper (lower) sign in all instances of
± or ∓, v is the repetition rate shift in the symmetric co-
moving frame, G is the combined nonlinear coefficient, γ is
a phase exponent related to v, ~ξ is the reduced detuning and
~θ is the reduced coordinate. While dark soliton solutions
and bright soliton on a background solutions can also be
found in the same conservative system (see Supplementary
Information), we will focus on this bright soliton solution
and refer to it as the DS. In the following discussion of DS
properties, we take the special case g11= g22 (i.e., additional
exchange symmetry between the modes) and v= 0 (i.e., the
pulse is stationary in the symmetric co-moving frame), and
the general solution simplifies to:

E1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðg2c � δω2Þ
ðg11 þ g12Þgc

s
1

±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gc � δω

p
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2c � δω2

p
θ=δD1

� �� i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gc þ δω

p
sinh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2c � δω2

p
θ=δD1

� �

ð5Þ

Figure 2a shows the offset frequency for the hybrid
modes, defined as ωoff ¼ ωk � ωc � kD1 where k is the
relative wavenumber (the difference between the absolute
wavenumber and the wavenumber at the degeneracy
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point) and ωk is the mode eigenfrequency at k. Due to the
square roots in the special solution (Eq. (5)), the soliton
detuning range can lie only in the band gap created by the
avoided crossing. This phenomenon can be intuitively
understood, as none of the comb lines can have the same
frequency as the resonator modes, which would otherwise
create infinite amplitudes on the modes due to perfect
resonance with no loss. Geometrically, the resonance of
the soliton can be described by the linear equation ωDS=
−δω+ vk, and the line cannot intersect the two hyper-
bolas of mode frequencies on the mode spectrum plot.
The same also holds for the general solution (Eq. (4)) and
is depicted in Fig. 2b (see ‘Materials and methods’). As a
result, the soliton cannot have a group velocity faster than
the first mode or slower than the second mode. This
argument does not apply to dark solitons and bright
solitons on a background, where the resonance line always
intersects the mode spectrum (see Supplementary
Information).
To understand the properties of the DS, we consider

some special cases of detuning (marked in Fig. 2a). The
first case is when δω approaches −gc, where the resonance
line is close to the upper branch. By taking appropriate

limits, Eq. (5) reduces to:

E1;2 � ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðgc þ δωÞ
g11 þ g12

s
sech

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gcðgc þ δωÞ

δD2
1

s
θ

 !
ð6Þ

which is exactly in the form of a conventional KS. A
comparison of the exact DS near δω=−gc and the
limiting KS is shown in Fig. 2c. The appearance of the
sech-shaped KS here is not a coincidence. The effective
nonlinear coefficient for a single component is g11+ g12
(using jE1j2 ¼ jE2j2), the effective detuning is gc+ δω, and
the curvature of the eigenfrequency (the hybrid-mode
equivalent of the second-order dispersion) is δD2

1=gc, as
derived from coupled mode theory. The reduction of a DS
to a KS is straightforward when these quantities are
substituted into the KS solution. Thus, if the DS is close to
the resonance (which is usually the case when the
hybridization coupling gc is large), the eigenfrequency
spectrum is locally equivalent to a single mode in terms of
dispersion, and mode composition differences for differ-
ent wavenumbers can be ignored. This phenomenon also
applies to the general solution (Eq. (4)) by explicitly
reducing the coupled LLE to a single-mode LLE, and the
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truncation errors can also be estimated (see ‘Materials and
methods’).
The second case is when δω= 0, where the resonance

line passes through the degeneracy point. In this case, Eq.
(5) simplifies to:

E1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gc
g11 þ g12

s
1

± cosh gcθ=δD1ð Þ � isinh gcθ=δD1ð Þ
ð7Þ

and begins to deviate from a hyperbolic secant shape
(Fig. 2d). With this analytical solution, it becomes
apparent that each component of the wave packet has
an overall phase shift when θ goes from −∞ to ∞ (π/2 in
this special case). This phase twist within the pulse
contributes to the chirping and shifting of the soliton
pulse when they are coupled together, as discussed in the
previous section. If pulse polarization is considered, it
also twists from the start of the pulse to the end of the
pulse (Fig. 2e).
The last case we consider is when δω approaches gc,

where the resonance line moves towards the lower branch
and maximum red detuning is approached. As this phe-
nomenon occurs, the exponential tails of the soliton decay
at an increasingly slower rate until finally in the limit
δω→ gc Eq. (5) becomes:

E1;2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gc
g11 þ g12

r
2

± 1� 2igcθ=δD1
ð8Þ

showing that the solution decays polynomially rather than
exponentially when θ→∞ (Fig. 2f). The resulting poly-
nomial tails can potentially enable long-range interactions
of the DS.
We now turn to the frequency domain profile for Eq. (5)

by the Fourier transform, which can also be expressed in
closed form using contour integration:

Z 1

�1
E1;2e

�ikθdθ ¼ ±π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1

ðg11 þ g12Þgc

s
sech ~k exp ±

arccosð�δω=gcÞ
π

~k

	 


ð9Þ

where k is the relative wavenumber and
~k ¼ πδD1k=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2c � δω2

p Þ. Apart from the usual sech-
shaped envelope, the extra exponential factor causes the
spectrum of each component to become asymmetrical
around k= 0 (Fig. 2g). This phenomenon can be
explained by different mode compositions on the different
sides of the spectrum. We note that the spectrum for the
total power is still symmetric, which is consistent with the
soliton carrying no total momentum in the symmetric co-
moving frame. In the general v ≠ 0 case, the spectrum for
the total power is expected to become asymmetric around
the centre frequency of the soliton.

DS with dissipation and repetition rate shifts
In addition to being an exact solution to the conservative

system, the solution (Eq. (4)) also serves as a DS ansatz for
dissipative cases, similar to how a KS can be approximated
by a sech-shaped soliton on a background7. As an exam-
ple, we study the repetition rate shifts associated with the
DS when externally pumped by continuous waves.
Accordingly, we do not require g11= g22 or v= 0 and
return to work with the general solution (Eq. (4)).
The repetition rates of ideal KSs remain constant when

pumped in the same mode while the detuning changes, as
formulated by the standard LLE. In contrast, real-world
KSs may experience additional nonlinear effects, includ-
ing dispersive wave backactions33 or Raman effects51,
which lead to centre frequency changes and repetition
rate shifts. The mode hybridization process is similar to a
mode crossing in dispersive wave generation where two
modes are strongly coupled, and therefore, the DS is also
expected to experience repetition rate shifts. As the
repetition rate shift parameter v is free in the conservative
case, we need to find the conditions that determine v
when dissipation is present.
By calculating the momentum integral of the solution,

the following criterion is obtained (see ‘Materials and
methods’):

Z
κ1jE1j2 ∂argE1

∂θ
þ κ2jE2j2 ∂argE2

∂θ

� �
dθ ¼ 0 ð10Þ

where arg is the argument function and E1,2 should be
substituted by the DS solution. According to the above
criterion, the phase twist of each component is essential in
determining the repetition rate shift. Intuitively, this
concept can be understood as follows: the pulse cannot
carry any net momentum in the reference frame of the
pumping, and any additional momentum will be damped
out by the dissipation. All the above integrations can be
carried out in closed form, leading to an equation in v,
which can then be solved as the repetition rate shift.
For a fixed detuning δω, the repetition rate shift v

depends on the ratios of the nonlinear coefficients g11, g22
and g12. Figure 3a plots the special case of δω= 0. When
the nonlinearity on the second mode increases, the optical
field will shift to the first mode to compensate, leading to
an increased overall speed of the pulse, and vice versa. As
the repetition rate shift results from the imbalance of self-
phase modulations, increasing the proportion of g12 leads
to more stability in the repetition rate, while decreasing
the proportion of g12 allows more tunability. We note
that, depending on the nonlinear nature of the resonator
material and the mode overlap, the cross-phase modula-
tion may be larger or smaller than the self-phase mod-
ulation52,53. Moreover, theoretical DS solutions exist for
almost all combinations of nonlinear coefficients.
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For the tunability of the DS repetition rate, Fig. 3b shows
the repetition rate shift as the detuning changes. Near δω=
−gc, the repetition rate shift approaches zero, which is con-
sistent with the local KS equivalence argument in the pre-
vious section. With a more red-detuned δω, the effect of
imbalance in the nonlinear coefficients is more apparent,
leading to repetition rate changes in the corresponding
direction. Simulations of the coupled LLE have also been
performed and show that both the simulated pulse shape and
the repetition rate shifts agree with the analytical solutions
(Fig. 3b). A graphical representation of the repetition rate
shift is also shown in Fig. 3c. As an aside, breather-like
states54 have also been observed in the simulations, but the
origin of breathing and whether it behaves in the same way as
for KS breathers55–58 is not yet fully understood.
Although the discussion so far has focused on pumping

at the central mode, it can be readily generalized to off-
centre pumping by introducing additional detunings into
each of the mode families and shifting the spectral centres

of the solutions accordingly. The DS offers a novel and
controllable way to tune the repetition rate of the fre-
quency combs. Together with existing nonlinear pro-
cesses for the resonator, the hybridization-induced shift
can be tailored to enhance or suppress the overall repe-
tition rate shift with respect to the pump detuning and
may find application in optical frequency division or for
pump noise isolation, such as what is performed using
quiet point operation33.

Implementation of Dirac solitons
The wedge resonator59 is used to induce mode hybridiza-

tion and Dirac soliton formation. This resonator offers very
high-quality factors60 and independent control over key
parameters during the fabrication process (Fig. 4a). A wedge
is entirely characterized by three geometric parameters: the
diameter D, which depends on the lithographic pattern; the
thickness t, which depends on the oxidation growth time of
the silicon wafer; and the wedge angle α, which depends on
the adhesion between silica and the photoresist used for
patterning. In the following, we will fix the resonator dia-
meter as D= 3.2mm (corresponding to a resonator FSR of
~20GHz at ~1550 nm), but we note that this can be readily
generalized to resonators of other sizes.
For a symmetrical wedge resonator (α= 90°), the typical

simulated effective refractive index neff versus wavelength is
shown in Fig. 4b. At shorter wavelengths, TE1 and TM1 have
the highest indices, followed by TE2, TE3 and other high-
order modes. Since the electrical fields of the TM modes are
along the thickness direction, their indices are more sensitive
to changes in the wavelength scale, and the index of TM1
decreases faster than TE2 as the wavelength increases.
Eventually, TM1 and TE2 cross, and their relative positions
are interchanged at longer wavelengths. However, for α=
90°, no hybridization occurs, as the reflection symmetry
prohibits interactions between modes of different parities.
On the other hand, if we explicitly break the reflection
symmetry of the resonator by decreasing the wedge angle
(α < 90°), the original modes will see an asymmetric change in
the refractive index profile, which causes them to couple.
Such couplings lift the degeneracy, leading to avoided
crossing. The two cases are compared in Fig. 4c, where neff is
first converted to the mode number m via
m ¼ neffDωm=ð2cÞ, where ωm is the resonance (angular)
frequency, and then plotted as offset (angular) frequencies
ωoff ¼ ωm � ωX � ðm�mXÞD1 versus the relative mode
number m−mX, where the subscript X indicates the
quantity at the degeneracy point. We note that the relative
mode number has the same role as the relative wavenumber
k in the theoretical analyses, except that it is restricted to
integer values for periodic boundary conditions.
In view of perturbation theory61, the wedge part of the

resonator perturbs the underlying symmetrical structure
and induces polarization coupling similar to the coupling
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Fig. 3 Repetition rate shifts in the DS. a Ternary plot of the
normalized repetition rate shift v/δD1 versus the proportions of
nonlinear coefficients for δω= 0. κ1= κ2 is assumed. The black dashed
curve (g11g22 ¼ g212) separates the parameter space into two regions;
cross-phase modulation is dominant in the upper region, while self-
phase modulation is dominant in the lower region. b Plot of the
repetition rate shift versus the detuning. κ1= κ2 is assumed. The
parameters are g11= g12 and g22= 2g12. The black curve is the
analytical result, and the dots are simulated data that use a modified
split-step Fourier algorithm adapted to the hybrid system. The inset
shows a comparison of the simulated (orange solid line) and analytical
(black dashed line) pulse shapes of jE1j at δω= 0. c Plot of repetition
rate shifts on the mode spectrum. Each line indicates a soliton
resonance line with different detunings (negative y-intercept). The
parameters are the same as those in (b)
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obtained in directional couplers62. Therefore, we expect
that the centre wavelength of hybridization λX is deter-
mined by the thickness t, while the wedge angle controls
the coupling strength gc. A plot of λX versus t is shown as
the black curve in Fig. 4d. As t is the only geometry scale
close to optical wavelengths in the system, we expect that
λX will scale linearly with t, which can be visually verified
in the plot. This scaling allows for hybridization to occur
at short wavelengths where the dispersion of the original
modes (for example, the TE1 mode shown in the figure) is
typically normal. A plot of gc versus α is shown in Fig. 4e.
While only a particular wavelength (778 nm) is shown, gc
depends on the wavelength very weakly, varying less than
5% from wavelengths of 400–1600 nm. The coupling
strength scales linearly with α near α= 90°, which can also
be independently verified by first-order perturbation
theory (see ‘Materials and methods’), but the coupling
effect eventually saturates at shallow wedge angles
because mode profiles cannot “squeeze” into the wedge
tip as α decreases. The calculated GVD β2 is shown in Fig.
4f, which is related to D2 via β2 ¼ �nD2=ðcD2

1Þ. Using
suitably designed thicknesses and wedge angles greater
than 30°, an anomalous dispersion window can be created

all the way down to the blue side of the visible spectrum,
where simple geometrical dispersion fails to compensate
for normal material dispersion.

Demonstration of Dirac solitons
Guided by these design principles, devices that target

1550 nm and 778 nm as their hybridization wavelengths
were fabricated. The mode spectra are measured for each
device using a tuneable laser and a calibrated Mach-
Zehnder interferometer8. As expected, each of the devices
shows a pair of modes with hyperbolic dispersion and
large curvatures (Fig. 5a, c). The local D2 of the anom-
alous branch can be fit to give D2= 2π × 401 kHz
(1550 nm) (Fig. 5b) and D2= 2π × 132 kHz (778 nm),
corresponding to β2=−790 ps2 km−1 and β2=−255 ps2

km−1, respectively, which are orders of magnitude larger
than the mode intrinsic GVD without hybridization.
Finally, to demonstrate the existence of DSs in wedge

resonators with hybridized modes, we generated solitons at
778 nm. The detailed experimental setup and measurement
procedures can be found elsewhere36. The optical spec-
trum of the soliton is shown in Fig. 5. A direct sech2 fit to
the spectrum reveals that the frequency components are
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highly asymmetric around the spectrum centre, which
results from the high-order dispersions of the mode and is
a typical feature for DSs not being pumped in the crossing
centre. Indeed, the analytical DS solution derived here
provides a good fit to the measured spectrum, further
confirming the above theoretical results and their

applicability for soliton modelling in microresonators. The
detuning relative to the upper branch can be inferred from
the fitting and is approximately 90MHz, which is less than
5% of the band gap. We did not attempt to increase the
detuning further due to pump power limitations. As an
aside, we believe that a similar 780-nm soliton generated
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in36, using the same resonator but under different pumping
conditions, can also be classified as a DS.
To further validate the feasibility of DSs in the visible

band, we also performed simulations of a DS near 532 nm.
A resonator design is shown in Fig. 5e together with its
simulated mode dispersions, and solitons can be found in
the resonator with different pumping positions (Fig. 5f).
The soliton at the crossing centre has a more symmetric
spectrum, while the soliton far away from the crossing
centre has a more skewed spectrum, as expected.

Discussion
Critical to the generation of solitons in microresonators

is the control of mode dispersion. Bright soliton forma-
tion requires anomalous dispersion. The curvature of a
circular resonator contributes to normal dispersion,
shifting the zero-dispersion wavelength towards longer
wavelengths as the resonator size decreases. Both this and
material dispersion have been managed over a range of
wavelengths by using geometrical dispersion introduced
through optical waveguide confinement1. However, nor-
mal dispersion of bulk dielectric materials increases
towards shorter wavelengths making visible soliton gen-
eration in dielectric microresonators difficult. And the
offset of this normal dispersion through waveguide con-
finement increases unwanted scattering loss, which
degrades the resonator Q factor and increases the
pumping power (i.e., the comb threshold power varies
inversely quadratically with the Q factor8,63). While the
use of intra-cavity nonlinear optical processes such as
second- or third-harmonic generation and sum-
frequency generation can provide a way to bypass nor-
mal dispersion for comb generation in the visible
band13,64–67, managing dispersion by mode coupling
provides an alternative approach that can avoid wave-
guide confinement loss36,37,68–72. The practical manage-
ment of dispersion for soliton formation at the edge of
the visible band36,37 has been possible using Dirac soli-
tons, and they can provide a way to further extend
operation well into the visible region.
In summary, we demonstrated the peculiar char-

acteristics of the Dirac soliton in microresonators by
solving the corresponding conservative coupled LLE
non-perturbatively and using the exact solution as a
soliton ansatz for the hybrid system. The balance
between nonlinearity and coupling provides a new
viewpoint on the soliton and opens up further directions
for the study of soliton dynamics. From an experimental
viewpoint, generating DSs in resonator platforms is
straightforward, but it might be challenging to observe
some of their more unusual properties at large detun-
ings. Decreasing the linear coupling (and thus the band
gap) is beneficial for pushing the soliton deeper into the
band gap, and tuning the pumping polarization to match

the soliton decreases the pumping power requirements.
We believe the formalism described here can be readily
generalized to other systems, including Dirac solitons in
waveguides, solitons on ordinary (non-polarization)
mode crossings33 and counter-propagating solitons with
moderate coupling73.

Materials and methods
Solving the conservative coupled LLE
We copy the conservative coupled LLE here for con-

venience:

∂E1
∂t ¼ �iδωE1 þ igcE2 � δD1

∂E1
∂θ þ iðg11jE1j2E1 þ g12jE2j2E1Þ

∂E2
∂t ¼ �iδωE2 þ igcE1 þ δD1

∂E2
∂θ þ iðg22jE2j2E2 þ g12jE1j2E2Þ

We seek soliton solutions in the form of E1,2(θ− vt),
where v is the repetition rate shift in the symmetric co-
moving frame, which reduces the partial differential
equations to ordinary differential equations:

ðδD1 � vÞ∂θE1 ¼ �iδωE1 þ igcE2 þ iðg11jE1j2E1 þ g12jE2j2E1Þ
�ðδD1 þ vÞ∂θE2 ¼ �iδωE2 þ igcE1 þ iðg22jE2j2E2 þ g12jE1j2E2Þ

Continuous symmetries of the system result in conserva-
tion laws74, which can reduce the dimensions of
the system. As the system is conservative, we expect the
equations will have a Hamiltonian structure. Indeed, the
following quantity is conserved when θ is viewed as an
evolution coordinate46:

H ¼ �δωðjE1j2 þ jE2j2Þ þ gcðE�
1E2 þ E�

2E1Þ
þ 1

2 g11jE1j4 þ g22jE2j4 þ 2g12jE1j2jE2j2
� �

The conservation of H can be verified by rewriting ðδD1 �
vÞ∂θE1 ¼ i∂E�

1
H and �ðδD1 þ vÞ∂θE2 ¼ i∂E�

2
H . Another

quantity that is conserved is the photon number flow
along the θ-axis:

N ¼ ðδD1 � vÞjE1j2 � ðδD1 þ vÞjE2j2

The conservation of N can be verified by observing that
all the nonlinear terms do not change the individual
numbers of particles, while the coupling terms do not
change the total number of particles.
For soliton solutions, these two conserved quantities can be

determined as H ¼ N ¼ 0 since the solution should vanish
exponentially as θ→∞ without periodic boundary condi-
tions. This determination leads to the following amplitude-
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phase parametrization of the solutions:

E1 ¼ 1ffiffiffiffiffiffiffiffiffiffi
δD1�v

p ψexpðiχ1Þ;E2 ¼ � 1ffiffiffiffiffiffiffiffiffiffi
δD1þv

p ψexpðiχ2Þ
ψ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δD1 � v
p jE1j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD1 þ v

p jE2j; χ1;2 ¼ 1
2i ln

E1;2
E�
1;2

which automatically satisfies the N conservation (the
negative sign is added for later convenience). The H
conservation reads as:

� 2δD1δω
δD2

1�v2 ψ
2 � 2gcffiffiffiffiffiffiffiffiffiffiffiffi

δD2
1�v2

p ψ2cosðχ2 � χ1Þ

þ g11
2ðδD1�vÞ2 þ

g22
2ðδD1þvÞ2 þ

g12
δD2

1�v2

h i
ψ4

¼ 0

from which the cosine of the phase difference χ2− χ1 can
be solved as:

cosðχ2 � χ1Þ ¼
Gψ2 � 2δD1δω

2gc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1 � v2
p

where for convenience, we defined a combined nonlinear
coefficient:

G ¼ δD1 þ v
δD1 � v

g11
2

þ δD1 � v
δD1 þ v

g22
2

þ g12

Turning back to the original equations of evolution
along θ, we substitute E1,2 with the parametrization and
split the real and imaginary parts:

∂ψ2

∂θ ¼ 2gcffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p ψ2sinðχ2 � χ1Þ

∂χ1
∂θ ¼ � δω

δD1�v � gcffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p cosðχ2 � χ1Þ þ g11

ðδD1�vÞ2 þ
g12

δD2
1�v2

� �
ψ2

� ∂χ2
∂θ ¼ � δω

δD1þv � gcffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p cosðχ2 � χ1Þ þ g22

ðδD1þvÞ2 þ
g12

δD2
1�v2

� �
ψ2

For the differential equation for ψ2, expressing sin(χ2− χ1)
in terms of ψ2 gives:

∂ψ2

∂θ
¼ ±

2gcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1 � v2
p ψ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Gψ2 � 2δD1δω

2gc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1 � v2
p

 !2
vuut

which can be integrated (with the boundary condition
ψ2→ 0 as θ→∞) in terms of elementary functions:

ψ2 ¼ gc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1 � v2
p

G
2ð1� ~ξ2Þ

cosh 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ξ2

p
~θ

� �
� ~ξ

where the pulse centre is chosen as θ= 0 without loss of
generality and the reduced detuning and coordinate are

defined as:

~ξ ¼ δD1ffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p δω

gc

~θ ¼ gcffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p θ

As an aside, we also obtain that:

cosðχ2 � χ1Þ ¼
1� ~ξcosh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ξ2

p
~θ

� �

cosh 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ξ2

p
~θ

� �
� ~ξ

The differential equation for χ1,2 can be integrated after
substitution of the above solution for ψ2 and cos(χ2− χ1).
Because the equation has global phase symmetry
(E1;2 ! eiϕE1;2, where ϕ is an arbitrary constant phase),
we can fix χ1(θ= 0)= 0, which also forces χ2= 0 through
cosðχ1 � χ2Þjθ¼0 ¼ 1. We obtain:

χ1 ¼ � v
δD1

~ξ~θ þ 1
G

δD1þv
δD1�v g11 � δD1�v

δD1þv g22
� �

þ 1
h i

arctan
ffiffiffiffiffiffi
1þ~ξ
1�~ξ

q
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ξ2

p
~θ

� �h i

χ2 ¼ � v
δD1

~ξ~θ � 1
G

δD1�v
δD1þv g22 � δD1þv

δD1�v g11
� �

þ 1
h i

arctan
ffiffiffiffiffiffi
1þ~ξ
1�~ξ

q
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ξ2

p
~θ

� �h i

With these results, the soliton solutions can be
expressed as:

E1 ¼ þ
ffiffiffiffiffi
2gc
G

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ξ2

p
ðδD1þv
δD1�vÞ1=4

cosh 2
ffiffiffiffiffiffiffiffi
1�~ξ2

p
~θ

� �
�~ξ

� �γ=2
ffiffiffiffiffiffi
1�~ξ

p
cosh

ffiffiffiffiffiffiffiffi
1�~ξ2

p
~θ

� �
�i
ffiffiffiffiffiffi
1þ~ξ

p
sinh

ffiffiffiffiffiffiffiffi
1�~ξ2

p
~θ

� �� �1þγ

exp �i v
δD1

~ξ~θ
� �

E2 ¼ �
ffiffiffiffiffi
2gc
G

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ξ2

p
ðδD1�v
δD1þvÞ1=4

cosh 2
ffiffiffiffiffiffiffiffi
1�~ξ2

p
~θ

� �
�~ξ

� ��γ=2

ffiffiffiffiffiffi
1�~ξ

p
cosh

ffiffiffiffiffiffiffiffi
1�~ξ2

p
~θ

� �
þi
ffiffiffiffiffiffi
1þ~ξ

p
sinh

ffiffiffiffiffiffiffiffi
1�~ξ2

p
~θ

� �� �1�γ

exp �i v
δD1

~ξ~θ
� �

where we introduce the phase exponent:

γ ¼ 1
G

δD1 þ v
δD1 � v

g11 � δD1 � v
δD1 þ v

g22

� �

Although we have not been very rigorous for multivalued
functions encountered in the calculations, direct substitu-
tion shows that the E1,2 obtained above is indeed a
solution to the original conservative LLE when principal
branches are used.

Resonance line and the band gap
The general bright soliton solution includes the square

root of 1� ~ξ2, which requires that j~ξj< 1. Expanded with
resonator parameters, this gives:

jδωj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1 � v2
p

δD1
gc

For a fixed v, the inequality gives the detuning range
where the solution is well-defined. A quick plot of the
range (Fig. 2b) shows that the boundaries are tangent to
the mode spectrum curves. Indeed, using coupled mode
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theory, the frequencies can be described as:

ω± ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1k2 þ g2c

q

where ω+ (ω−) is the eigenfrequency for the lower
symmetric branch (upper anti-symmetric branch) and k is
the wavenumber. The tangent lines for the upper branch
with slope v satisfy:

v ¼ ∂ω�
∂k

¼ δD2
1kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δD2
1k

2 þ g2c
p

Eliminating k recovers the previous boundaries. Thus, the
soliton resonance lines can stay only in the band gap and
cannot cut through the band curves.
We note that in dissipative cases, v is not fixed but

depends on the pumping details (as discussed in the main
text), so this point should not be understood as a lim-
itation on detuning when pumping the soliton. Instead,
the detuning range should be determined from the
momentum constraints imposed on the soliton at fixed k
(the longitudinal mode being pumped).

Reduction of a DS to a KS
Following the above discussions on resonance lines, we

focus on the case in which ~ξ ! �1þ, where the resonance
line is almost tangent to the upper branch of the mode
spectrum. Taking the limits and expanding the reduced
quantities results in:

E1;2 ¼ ±
ffiffiffiffiffi
2gc
G

q ffiffiffiffiffiffiffiffiffiffiffi
1þ ~ξ

p
ðδD1 ± v
δD1�vÞ1=4sech

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ ~ξÞ

q
~θ

� �
exp i v

δD1

~θ
� �

E1;2 ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2δD1ðδω�δωminÞ

GðδD1�vÞ
q

sech
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðδω� δωminÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gcδD1

ðδD2
1�v2Þ3=2

r
θ

� �

exp i gcv

δD1

ffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p θ

� �

where δωmin ¼ �gc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1 � v2
p

=δD1. The hyperbolic
secant form is now apparent, and to complete the
reduction, we explicitly calculate the local quantities of
the mode spectrum.
When the resonance line is tangent to the mode spec-

trum, the wavenumber k can be solved from the previous
section:

k ¼ gcv

δD1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1 � v2
p

which matches the exponential term. The minimum
detuning that can be achieved at this particular m also

matches δωmin. The local second-order dispersion is given
by:

∂2ω�
∂k2

¼ g2c δD
2
1

ðδD2
1k

2 þ g2c Þ3=2
¼ ðδD2

1 � v2Þ3=2
gcδD1

where we have eliminated k using v and it matches the
dispersion term. The mode composition can be found
using coupled mode theory and is given by:

E1

E2
¼ �ω� þ δD1k

gc
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD1 þ v

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD1 � v

p

which agrees with the prefactors in E1,2 and is also consistent
with the conservation of N . Finally, the effective nonlinear
coefficient GðδD2

1 � v2Þ=ð2δD2
1Þ can be calculated as a

weighted average of the nonlinear coefficients, the weight
being the power proportions on each mode derived above. It
matches the nonlinear coefficient except for the extra factor
ðδD1 ± vÞ=ð2δD1Þ, which is the power ratio of each mode
component
to the total power and is a result of expressing the solution
using components rather than the hybridized field.
To complete the discussion of reducing a DS to a KS, we

also present a perturbative approach that is explicitly
based on the hybridized field. We begin by defining the
following auxiliary fields:

ψ� ¼
ffiffiffiffiffiffiffiffiffiffi
δD1�v
2δD1

q
E1 �

ffiffiffiffiffiffiffiffiffiffi
δD1þv
2δD1

q
E2

� �
exp i v

δD1

~ξ~θ
� �

ψþ ¼
ffiffiffiffiffiffiffiffiffiffi
δD1�v
2δD1

q
E1 þ

ffiffiffiffiffiffiffiffiffiffi
δD1þv
2δD1

q
E2

� �
exp i v

δD1

~ξ~θ
� �

We note that while the ψ+ component is the normalized
linear eigenstate of the lower branch at the wavenumber
corresponding to v, the ψ− term defined here is, in
general, not the eigenstate of the upper branch, and ψ−

and ψ+ are not orthogonal (although in the special case
ψ+= 0, ψ− becomes proportional to the true field
amplitude). Rewriting the conservative coupled LLE in
terms of ψ± results in:

∂ψþ
∂~θ

¼ �ið1þ ~ξÞψ� þ iδD1

2gc
ffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p δD1þv

δD1�v
g11
2 jψþ þ ψ�j2ðψþ þ ψ�Þ

h

�g12ðψ2
þ � ψ2

�Þψ�
�

� δD1�v
δD1þv

g22
2 jψþ � ψ�j2ðψþ � ψ�Þ

i
∂ψ�
∂~θ

¼ ið1� ~ξÞψþ þ iδD1

2gc
ffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p δD1þv

δD1�v
g11
2 jψþ þ ψ�j2ðψþ þ ψ�Þ

h

þg12ðψ2
þ � ψ2

�Þψ�
þ

þ δD1�v
δD1þv

g22
2 jψþ � ψ�j2ðψþ � ψ�Þ

i
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where we have substituted δω and θ with ~ξ and ~θ,
respectively, for later convenience. Based on the structure
of the above equation, we seek the following solution near
~ξ ! �1þ:

ψ� � Oð1þ ~ξÞ1=2;ψþ � Oð1þ ~ξÞ

Keeping the lowest-order terms gives:

∂ψþ
∂~θ

¼ �ið1þ ~ξÞψ� þ iδD1

2gc
ffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1�v2
p Gjψ�j2ψ�

∂ψ�
∂~θ

¼ 2iψþ

Combining gives:

1
2
∂2ψ�
∂~θ2

� ð1þ ~ξÞψ� þ δD1

2gc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD2

1 � v2
p Gjψ�j2ψ� ¼ 0

which is the steady-state single-mode LLE and its solution
is the same as the limit of E1,2 as derived above.

Repetition rate shifts in the DS
We copy the dissipative coupled LLE here for con-

venience:

∂E1
∂t ¼ �iδωE1 þ igcE2 � δD1

∂E1
∂θ þ iðg11jE1j2E1 þ g12jE2j2E1Þ

� κ1
2 E1 þ f1

∂E2
∂t ¼ �iδωE2 þ igcE1 þ δD1

∂E2
∂θ þ iðg22jE2j2E2 þ g12jE1j2E2Þ

� κ2
2 E2 þ f2

We define the following momentum integral in the hybrid
system:

P ¼
Z

E�
1 �i

∂E1

∂θ

� �
þ E�

2 �i
∂E2

∂θ

� �	 

dθ

For a steady-state solution, P should be a constant in time.
We thus calculate the first derivative of P with respect to t:

0 ¼ ∂P
∂t

¼
Z

�i
∂E�

1

∂t
∂E1
∂θ

þ i
∂E1
∂t

∂E�
1

∂θ
� i

∂E�
2

∂t
∂E2
∂θ

þ i
∂E2
∂t

∂E�
2

∂θ

� �
dθ

where we have used integration by parts to move the
spatial derivatives to the conjugated field. After plugging
the equations of motion into the integral, all the
conservative terms cancel each other out, and the pumping
terms vanish by integration by parts. We are left with:

κ1
2

Z
iE�

1
∂E1
∂θ

� iE1
∂E�

1

∂θ

� �
dθ þ κ2

2

Z
iE�

2
∂E2
∂θ

� iE2
∂E�

2

∂θ

� �
dθ ¼ 0

Rewriting the above equation using arguments gives:

κ1

Z
jE1j2 ∂argE1

∂θ
dθ þ κ2

Z
jE2j2 ∂argE2

∂θ
dθ ¼ 0

To proceed further, we take the soliton ansatz as the
exact solution of the DS derived earlier. In this case, the
integration can be carried out analytically:

Z
jE1;2j2 ∂argE1;2

∂θ
dθ ¼ 2gc

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δD1 ± v
δD1 � v

s
� v
δD1

þ γ ± 1

� �
ðπ � arccos~ξÞ~ξ þ ðγ ± 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~ξ2

q	 


All the quantities can be explicitly expressed in v, and the
resulting equation can be solved numerically. In the
special case of κ1= κ2 and δω= 0, we have ~ξ ¼ 0
independent of v, and the criterion is greatly simplified:

v
δD1

¼ �γ

Expanding γ gives a cubic equation in v and is used in the
plot of Fig. 3a.

First-order perturbation calculation of mode coupling in
wedge resonators
Here, using first-order degeneracy perturbation theory

and the integral form of the propagation constant, we
derive the mode coupling in wedge resonators as an
overlap integral of the unperturbed modes.
For a circular waveguide, the angular momentum

number (angular propagation constant) of a mode can be
expressed as61:

m ¼ ω0

2c

R
n2ðE�

r Er þ E�
z Ez � E�

θEθÞ þ c2ðB�
r Br þ B�

zBz � B�
θBθÞ

� �
rdrdzR

cðErB�
z � EzB�

r Þdrdz
where ω0 is the angular frequency of the light and Er, Ez,
Eθ (Br, Bz, Bθ) are the mode electric field (magnetic flux
density) components (the coordinate system in use is
shown in Fig. 6). The linear propagation of a field (with
fixed ω0) is described by dE1=dθ ¼ imE1, where E1 is the
field amplitude at different angular positions. If the mode
profile in another waveguide with a slightly different
shape is nearly identical to the current waveguide, which
is usually true up to the first-order of the geometry
differences, then the same integral can be used to
calculate the propagation constant using the known field
profile and the perturbed refractive index profile.
For a pair of nearly degenerate modes, the propagation

constant generalizes into a matrix:

d
dθ

E1

E2

� �
¼ i

m11 m12

m21 m22

� �
E1

E2

� �
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mij ¼ ω0

2c

R
n2ðE�

r;iEr;j þ E�
z;iEz;j � E�

θ;iEθ;jÞ þ c2ðB�
r;iBr;j þ B�

z;iBz;j � B�
θ;iBθ;jÞ

h i
rdrdzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

cðEr;iB�
z;i � Ez;iB�

r;iÞdrdz
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

cðEr;jB�
z;j � Ez;jB�

r;jÞdrdz
q

The off-diagonal elements m12 and m21 have an overlap
integral structure and are proportional to gc. Since the
modes are orthogonal in the original waveguide, only the
changes in refractive index induce coupling:

mij ¼ ω0

2c

R
Δðn2ÞðE�

r;iEr;j þ E�
z;iEz;j � E�

θ;iEθ;jÞrdrdzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
cðEr;iB�

z;i � Ez;iB�
r;iÞdrdz

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
cðEr;jB�

z;j � Ez;jB�
r;jÞdrdz

q

where Δ(n2) is the change in n2 of the perturbed
waveguide compared to the original waveguide.
The introduction of the wedge angle adds a dielectric

triangle to the lower-right part and subtracts a dielectric
triangle to the upper-right part (Fig. 6). As these are the
only areas in which the refractive index changes, the
overlap integral is effectively restricted to the triangles. If
π/2− α is small, we can further replace all the fields by
their values on the vertical boundary of the wedge. This
replacement results in:

m12 � ω0

2c
n2M � 1
� � �R t=2�t=2 E�

r;1Er;2 þ E�
z;1Ez;2 � E�

θ;1Eθ;2

� �
ðD=2Þðπ=2� αÞzdzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

cðEr;1B�
z;1 � Ez;1B�

r;1Þdrdz
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

cðEr;2B�
z;2 � Ez;2B�

r;2Þdrdz
q

where nM is the dielectric index. The integral can be
further reduced by symmetry, using Er;1ðzÞ ¼ Er;1ð�zÞ,
Ez;1ðzÞ ¼ �Ez;1ð�zÞ and Eθ;1ðzÞ ¼ Eθ;1ð�zÞ for the TE
mode and Er;2ðzÞ ¼ �Er;2ð�zÞ, Ez;2ðzÞ ¼ Ez;2ð�zÞ and
Eθ;2ðzÞ ¼ �Eθ;2ð�zÞ for the TM mode. This process
reduces the integration limits by half:

m12 � ω0

c
D
2
ðn2M � 1Þ�

R t=2
0 ½ðn2M þ 1ÞD�

r;1Dr;2=ð2n2Mε20Þ þ E�
z;1Ez;2 � E�

θ;1Eθ;2�r¼D=2zdzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
cðEr;1B�

z;1 � Ez;1B�
r;1Þdrdz

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
cðEr;2B�

z;2 � Ez;2B�
r;2Þdrdz

q ðπ
2
� αÞ

where the radial electric field is replaced by the electric
displacement field Dr to prevent ambiguities across the
dielectric boundary; ε0 is the vacuum permittivity.

Finally, m12 can be converted to gc in the same way that
the effective index is converted to the mode spectrum:

gc ¼ 2c
neffD

jm12j � ω0

neff
ðn2M � 1Þ

t=2
0 ½ðn2M þ 1ÞD�

r;1Dr;2=ð2n2Mε20Þ þ E�
z;1Ez;2 � E�

θ;1Eθ;2�r¼D=2zdz



 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

cðEr;1B�
z;1 � Ez;1B�

r;1Þdrdz
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

cðEr;2B�
z;2 � Ez;2B�

r;2Þdrdz
q ðπ

2
� αÞ

Given a target hybridization wavelength, modes in
symmetric resonators with different thicknesses can be
simulated to find the degeneracy point, and the mode
coupling in the asymmetric case can be estimated from
the above overlap integral without actually simulating the
asymmetric resonators. For 780-nm-wavelength silica
resonators (using nM= 1.454), the prefactor in gc is
15.78 GHz, or 0.275 GHz per degree angle. This estimate
agrees with the full simulation results for wedge
resonators for α close to 90° (Fig. 4e).
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