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Dirac-vortex topological photonic crystal fibre
Hao Lin1,2 and Ling Lu 1,3

Abstract
The success of photonic crystal fibres relies largely on the endless variety of two-dimensional photonic crystals in the
cross-section. Here, we propose a topological bandgap fibre whose bandgaps along in-plane directions are opened by
generalised Kekulé modulation of a Dirac lattice with a vortex phase. Then, the existence of mid-gap defect modes is
guaranteed to guide light at the core of this Dirac-vortex fibre, where the number of guiding modes equals the
winding number of the spatial vortex. The single-vortex design provides a single-polarisation single-mode for a
bandwidth as large as one octave.

Introduction
Topological photonics1–3, initiated with the idea of

robust waveguiding, is inspiring novel fibre concepts, such
as a one-way fibre inside a magnetic three-dimensional
photonic crystal4 and a Bragg fibre with nontrivial edge
modes5. In this article, we introduce the topological
photonic crystal fibre (PCF) whose invariant cross-section
resembles the recent Dirac-vortex topological cavity6 in
two-dimensional photonic crystals. Such a topological
bound state can be traced back to the Jackiw-Rossi zero
mode in the two-dimensional (2D) Dirac equation7 and
has been realised in honeycomb lattices8,9 in a couple of
systems10–13. This Dirac-vortex silica fibre can support an
arbitrary number of nearly degenerate guiding modes by
varying the winding number (w) of the spatial vortex.
When w= ±1, the fibre can support a single-polarisation
single-mode (SPSM) with a large bandwidth.
The SPSM fibre supports truly one mode, while tradi-

tional single-mode fibres and polarisation-maintaining
fibres both support two polarisations, either degenerate or
nondegenerate, respectively. Such fibre birefringence
(dual polarisation) broadens the optical pulses being
transmitted, known as polarisation-mode dispersion. To
solve this limitation, SPSM fibres have been designed to

separate the degenerate cutoff frequencies by lowering the
symmetry of the fibre cross-section, which can be
achieved by structural asymmetry or nonuniform stress.
This dominant asymmetric approach is applied mostly to
the lowest-frequency index-guided fundamental modes
(polarisation-degenerate)14–19 but also works for the
nonfundamental degenerate modes inside a bandgap20–22.
The SPSM bandwidth is very limited due to the amount

of asymmetry that can be applied; the best experimental
value is ~30% (frequency span over central frequency),
which is achieved in a stressed PCF18 (In integrated
waveguides, an SPSM bandwidth over one octave
[66.67%] has been demonstrated23). For example, in Fig.
1a, the SPSM bandwidth is bounded from above by the
cutoff frequency of the other polarisation (blue) and
bounded from below by the confinement loss, even if this
guiding mode (red line) has no cutoff frequency. However,
there exists a symmetric approach to an SPSM by oper-
ating at a singly degenerate mode inside a bandgap so that
the fibre cross-section can remain highly symmetric.
Shown in Fig. 1b, this symmetric approach has thus far
only been proposed theoretically in a hollow-core Bragg
fibre24,25, in which many other guided modes (blue line)
can be made much lossier than the TE01 mode (red line).
The SPSM bandwidth of this design is even more limited.
The Dirac-vortex fibre is an ideal design for an ultra-

broadband SPSM by ensuring singlet mid-gap dispersion
inside the bandgap (the symmetric approach), as illu-
strated in Fig. 1c. Without the topological mechanism of
the Dirac-vortex, it is generally difficult to stabilise a
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defect mode at the middle of the bandgap for every wave
vector.
In the rest of the article, we first show how to gap the

nodal-line without leaving residual Weyl points. Such a
supercell Kekulé modulation6,8 is generalised to continuous
2π phase angles that are used to construct a vortex gap
around the fibre core that can confine any number of fibre
modes. To ease the fabrication, a simplified design of only
four capillary silica tubes is introduced. Finally, we enlarge
the vortex size to eliminate the index-guided modes and
achieve an octave-spanning SPSM.

Results
Nodal lines and Weyl points in a PCF
We start with the most common PCF structure26,27, a

silica photonic crystal with a triangular lattice of air holes,
shown in Fig. 2a. There are two nodal lines of 2D Dirac
points28,29 at the ±K points in the Brillouin zone. The
Dirac points are frequency isolated in the in-plane 2D
band structure for kza/2π > 1.6. Each nodal-line gaps into
Weyl points30 if we break the inversion symmetry by
adding an extra small air hole in the primitive cell, as
shown in Fig. 2b. Since this PCF structure has mirror
symmetry along z, the Weyl surface state does not have
handedness propagating along the z axis, unlike that
observed in coupled spiral waveguide arrays31,32 con-
taining similar type-II Weyl points. To gap the entire
nodal-line, without leaving Weyl degeneracies, we apply
supercell modulations.

Generalised Kekulé modulation
As shown in Fig. 3a–d, we perturb the nodal-line lattice

with the generalised Kekulé pattern discussed in ref. 6.
The idea is to couple the two nodal lines (of Dirac points)
together in an enlarged supercell and annihilate them into
a bandgap through supercell modulation. Since each
supercell has three primitive cells, we label each primitive

cell [Fig. 2a inset] as an artificial “atom” consisting of
three struts [Fig. 3a]. In practice, we shift the three
“atoms” in the supercell with identical amplitude and
constant phase difference (120°) between each two
“atoms”. To move each “atom”, we can shift its centre of
mass δ(ϕ), in any direction ϕ, by adjusting the thickness of
the three struts (t1, t2, t3) without changing the total mass
of the “atom” (∝3t0). Therefore, the strut thickness for any
modulation vector δ(ϕ) can be determined by the fol-
lowing equation:

P3
i¼1

tiRi ¼ δ ϕð ÞP3
i¼1

ti ¼ δ ϕð Þ3t0 ð1Þ

where Ri (jRij ¼
ffiffiffi
3

p
=6a) is the position vector of the

centre of mass of each strut. Examples of the lattices
before and after the Kekulé modulations are drawn in
Fig. 3b1–d1, and their corresponding band structures are
plotted in (b2–d2).
After the generalised modulation (|δ(ϕ)| ≠ 0), the entire

nodal lines gap out for arbitrary ϕ∈ (0, 2π), and the
bandgaps share a common frequency range, which is
eventually determined by the band edges of the two most
symmetric supercells of ϕ= 60° and 120°. The lattices of
the rest of the modulation phases can be understood as
interpolations between the two. Note that the modulation
phase ϕ of each supercell is labelled by the shift angle of
“atom” A1 in Fig. 3c1.

Continuous modulation
As shown in Fig. 3e, we arrange the series of Kekulé-

modulated 2D lattices angularly around a chosen core point
in the fibre cross-section as a function of their modulation
phase ϕ. As a result, a single defect mode appears in the
middle of the bandgap and is spatially localised at the fibre
core, as shown in Fig. 3f. This result is expected from the
Dirac-vortex cavity result6 because a PCF can be regarded

SPSM
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Fig. 1 Asymmetric and symmetric approaches to an SPSM. a Dominant approach to split the degenerate fundamental modes by structural
asymmetry. b Proposed Bragg fibre design to guide light by a singly degenerate mode with lower loss than other modes. c The topological PCF
provides singlet mid-gap dispersion for a broadband SPSM
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as a 2D cavity for every propagation constant (kz). Since the
fibre is C3v symmetric, one-sixth of the structure is suffi-
cient to study this topological mode.
The large momentum (kza/2π > 5), or short-wavelength,

behaviour of the fibre band diagram in Fig. 3f is worth
discussion. First, the common bandgap frequency is lower
than that of the nodal-line (central dashed line in the
figure) at short wavelengths because the short-wavelength
modes can localise preferentially at struts that are thicker
than t0 (rather than at those that are thinner) in the
modulated lattice, resulting in lowering of the overall
band frequencies. Second, the topological mode is very

sensitive to the central three struts, where the modal
intensity peaks. In this case, the three central red struts
are the thickest, and consequently, the fibre mode cuts off,
in the short-wavelength region, at a frequency lower than
the bandgap. Third, although we “continuously” vary the
modulation angle ϕ in the surrounding lattice, the dis-
cretization is still limited to a single strut in our design. A
consequence of the strut-discrete vortex is that a set of
extra modes is trapped very close to the spectral edges of
the bandgap. We call them local-defect modes, shaded in
grey colour in the figure. These modes tend to arise at
short wavelengths and are more prominent for large
modulation amplitudes (large bandgaps), as shown in the
example in Fig. 3f. Since these local-defect modes are
located near the bulk band edges with an extended mode
profile, their confinement losses are at least one order of
magnitude higher than that of the guided topological
mode with w=+1.

Arbitrary degenerate modes
One main topological feature of the Dirac-vortex fibre is

the ease of creating multiple near-degenerate modes by
simply increasing the winding number (w) of the vortex6.
We demonstrate this in Fig. 4 for w=+1, +2, +3, where
w is the topological invariant of the system and can be an
arbitrary integer. The sign of w determines where the field
peaks around one of the two sublattices of a honeycomb
lattice. The two sublattices can be viewed as the two
joints, each having three struts, in the primitive cell of
Fig. 2a. An example of w=−1 is presented in Supple-
mentary Part I.
In these multimode examples, we decrease the modula-

tion amplitude (as well as the bandgap size) to eliminate the
local-defect modes in the momentum range plotted.
Additionally, we keep the core centre at the C3v centre of
the w=+1 vortex. If we choose a w-dependent centre, then
any vortex can be C3v symmetric, so some pairs of fibre
dispersions will be rigorously degenerate due to the doublet
representation of the point group.
In principle, a continuous, single-mode or multimode,

Dirac-vortex PCF can be fabricated either from three-
dimensional (3D)-printed preforms or by the stack-and-draw
method with over a hundred tubes with different tube
thicknesses. Neither of the two solutions are convenient.
Therefore, we present the discrete version of the fibre design.

Discrete modulation with four tubes
We discretize the continuous vortex design [Fig. 3e]

into six discrete modulation phase angles (ϕ). Owing to
the C3v symmetry of the cross-section, only two phases of
the six have distinct structures. The three phases that
differ by 120° are actually identical in the unit-cell struc-
ture (but with different origins and orientations). As a
result, we only need four tubes to stack-and-draw the
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with jδj ¼ ffiffiffi
3

p
a=80, ϕ= 120°; |δ|= 0; and jδj ¼ ffiffiffi

3
p

a=80, ϕ= 60°, respectively. Δt ¼ 2
ffiffiffi
3

p jδjt0=a ¼ 0:012a. The corresponding band structures are
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Dirac-vortex PCF, which is very reasonable for fabrica-
tion. Another discrete version is presented in Supple-
mentary Part II using four strut thicknesses.
As shown in Fig. 5a, the four silica capillary tubes have

the same outer diameter douter to maintain the lattice but
different inner diameters di for modulation. The four
exact ratios of di/douter can be determined from Eq. 2,
satisfying the thickness and area proportionality.

douter � ðd1;4 þ d2;3Þ=2
t2;4

¼ douter�d2;3
t1;3

π 3d2
outer � d2

1;4 � 2d2
2;3

� �
4d2

outer
¼ 3

ffiffi
3

p
t0 a�t0=2ð Þ
a2

8>>>><
>>>>:

ð2Þ

The resulting discrete Dirac-vortex fibre and its band
structure are plotted in Fig. 5b, c. Compared to the con-
tinuous version in Fig. 3e, f, the structural nonuniformity

now only exists at the six identical interfaces (also
determined by Eq. 2) between the two distinct lattices33,
at which the extra defect modes can locate. In addition to
these line-defect modes inside the bandgap, there are also
higher-order vortex modes plotted in green and blue lines,
according to their C3v point group representations. The
mode profiles of the higher-order modes are much larger
than that of the topological mode.
We have been focusing on the modes inside the

bandgap. However, as shown in Fig. 5d [also in Fig. 3e, f],
there could also be index-guided modes in the Dirac-
vortex fibre whose frequency is the lowest for a common
wave vector. Index-guided modes exist wherever there is
a sharp local maximum of the strut thickness, equivalent
to a local rise of the effective refractive index. The loss of
the index-guided modes is usually much lower than that
of the in-gap modes.
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Nonzero vortex size with continuous modulation
To operate at the topological mid-gap dispersion, we have

to remove the index-guided modes in the design. We do this
by enlarging the vortex size and smoothing the sharp lattice
(strut) interfaces at the fibre core. The smooth modulation
envelope function is Δt(r)= tanh(r/R), where r is the radial
distance and R is the vortex radius of choice, similar to the
2D cavity design in ref. 6. Note that in the previous examples
of this paper, the vortex size is R= 0.
The fibre cross-section with vortex size R= 3a is shown

in Fig. 6a, and the corresponding band structure is shown
in Fig. 6b, c. There are no index-guided modes at the
bottom of the bands. For completeness, we also plot the
blue mid-gap dispersion inside the second topological
bandgap, originating from a higher frequency Dirac point
(nodal-line) illustrated in Supplementary Part III. We did
not discuss it in the previous examples because it has a
much higher loss than the red mid-gap modes in the first
topological gap, as shown in Fig. 6d.

Octave SPSM
The continuously modulated Dirac-vortex PCF with a

finite vortex diameter (2R= 6a) has an SPSM. We evaluate
its potential performance in terms of the confinement loss,
dispersion parameter, effective area and bending loss in Fig.
6d–f. We choose the wave vector (kza/2π) range from 1.8 to

5.7 and the period a= 3 μm so that the corresponding
wavelength ranges from 1700 nm to 700 nm—the low-loss
window of silica.
The modes with the lowest confinement losses are plotted

in Fig. 6d, computed with absorbing boundary conditions.
The loss of the topological mode (red) is always the lowest
for the whole wavelength range over one octave. Most of its
confinement loss is less than 1dB/km with sixteen layers of
air holes along the fibre radius [Fig. 6a].
The dispersion parameter D of the topological mode can

take large negative values of −1500 ps/nm/km, and the
zero-dispersion wavelength is ~1.3 μm. The effective area
(Aeff defined in ref. 34) is 23 μm2 at a 0.7 μm wavelength and
increases to 243 μm2 at a 1.7 μm wavelength. The bending
loss is calculated using a conformal transformation analy-
sis35 with an equivalent refractive index profile
neqðx; yÞ ¼ nðx; yÞ expðx=XÞ36 for bending radius X. The
results in Fig. 6f show that the fibre can be bent to a radius
as small as 15mm without experiencing significant losses.
These specifications of the Dirac-vortex PCF are similar to
those of previous PCFs37,38, with the key difference being
that the topological mode is a single-polarisation mode.

Discussion
We numerically investigate the Dirac-vortex topological

PCF in terms of its principle, construction, and potential
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performance. This fibre could be made with the standard
stack-and-draw process with silica glass tubes or 3D-printed
preforms. The design is tolerant of structural details such as
the interface curvatures, not considered in the main text but
discussed in Supplementary Part IV. It is also possible to
move the topological dispersion above the light line, as dis-
cussed in Supplementary Part V.
Similar to the case of a three-dimensional one-way fibre4,

where the topological invariant is a four-dimensional second
Chern number, the topological invariant of the Dirac-vortex
PCF can be written as a three-dimensional integral (equation
4.2 in ref. 39 under chiral symmetry) where the coordinates are
kx, ky and the polar angle (a form of synthetic dimension40).
The advantage of the Dirac-vortex PCF over previous

fibres is the ability to guide any number of near-degenerate
modes at will. The single-mode design provides an SPSM
fibre with an octave bandwidth. The effective mode area is
easily tuneable by changing the vortex size (R). This work
suggests PCFs as a new platform for topological photonics.
We are aware of a relevant work after paper submission41.
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