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TO THE EDITOR:
Current AML therapeutics induce DNA damage and/or modulate
DNA damage response (DDR) directly or indirectly [1, 2]. Recent
reports analyzed large datasets to predict the response of AML
patients to the treatment [3–5]. The combinatorial mutational
events (e.g., NRAS, TP53, TET2, IDH1 and/or NPM1) as well as single
gene expression levels (e.g., PEAR1) were implicated as potential
biomarkers of the clinical outcome. These genes however, except
TP53, are not involved in DDR.
Here, we employed a list of 1800 DDR-related genes [6] to

interrogate a cohort of 612 AML patients (612 specimens) from
waves 1 to 4 of the training BEAT AML 2.0 dataset [3] to determine
the correlations between DDR gene expression and therapeutic
outcomes. Only 500 genes were chosen for actual analysis based on
their median absolute deviation across the dataset. This was done to
reduce background noise in the dataset and to only use genes with
high variation across subjects. Consensus clustering separated AML
subjects into 5 groups with varying DDR transcriptomic signatures
(Fig. 1A). Kaplan-Meier analysis of the survival profiles of the 5 groups
revealed cluster 1 displaying the best prognosis while cluster 5 with
the worst (Fig. 1B). This prediction was validated by detecting higher
frequency of parameters associated with poor prognosis (treatment-
refractory cases, prior-MDS, prior-MPN and TP53mutation) in cluster
5 when compared to cluster 1 (Supplementary Fig. S1). Except
consensus sex (more males in cluster 5 vs cluster 1) no other
distribution demographics (race, ethnicity, and age) were different in
cluster 5 compared to cluster 1 (Supplementary Fig. S2).
The top 10 DDR biomarker genes with the highest expression in

each cluster are indicated in Fig. 1C. Individual gene analysis revealed
4 genes in cluster 1 and cluster 5 which enhanced expression
correlated with good (AIM2, SATB2, TYMP and TLR4 in cluster 1) and
poor (CDC42BPA, LCN2, NF1A and HP in cluster 5) prognosis (Fig. 1D).
The most significant cluster marker genes discriminating between
good and poor survival were AIM2 (cluster 1 biomarker, high values
denoted good prognosis) and CDC42BPA (cluster 5 biomarker, high
values denoted bad prognosis).
Absent in melanoma 2 (AIM2) detects DNA in the cytosol and

assembles an inflammasome, which activates caspase-1 and pro-
inflammatory cytokines leading to pyroptosis, an inflammatory

form of cell death [7]. Thus, AIM2 can facilitate pyroptosis in AML
cells which accumulate cytosolic DNA during treatment, leading to
accelerated elimination of AML cells and favorable prognosis.
CDC42 binding protein kinase alpha (CDC42BPA) also known as

the myotonic dystrophy protein kinase-like alpha (MRCKα) is
required for TP53-dependent autophagy [8]. Autophagy protects
leukemia cells during chemotherapy by providing energy and
facilitating proliferation through the supply of essential compo-
nents such as amino acids and nucleotides. In addition, CDC42BPA
has been also implicated in regulation the sensitivity of high-grade
serous ovarian carcinoma and glioblastoma cells to chemotherapy
and radiotherapy and/or in tumor cell growth [9]. Thus, CDC42BPA
might regulate chemotherapy resistance of AML cells and inhibitors
of the kinase may have therapeutic application in a cohort of high
CDC42BPA expressors [9]. Of note, while TP53 expression did not
alter between high and low CDC42BPA expressors, TP53 mutations
were found in 19.9% high CDC42BPA expressors, compared to only
3.7% of the low CDC42BPA expressors. Therefore, higher frequency
of TP53 mutants among high CDC42BPA expressors might also
contribute to worse survival.
Remarkably, combined values of the expression of AIM2 and

CDC42BPA are extremely powerful predictor for survival in the
training BEAT AML 2.0 database (Fig. 1E). AML patients with high
values of AIM2 and low values of CDC42BPA expression displayed
the best prognosis, whereas these with low values of AIM2 and
high values of CDC42BPA had the worst prognosis. The discovery
of biomarker values of AIM2 and CDC42BPA as predictors of
survival were validated using TARGET-recurrent AML dataset from
427 patients (Fig. 1E).
AML cells accumulate high numbers of DNA double-strand

breaks (DSBs), the most lethal of all DNA lesions resulting from
altered metabolism [10, 11] and induced by therapeutic
approaches [1]. DSBs are highly deleterious, with a single
unrepaired DSB being sufficient to trigger cell death [12].
To repair numerous DSBs AML cells may activate the DSB repair
mechanisms involving RAD51-mediated homologous recombina-
tion (HR), DNA-PK -mediated non-homologous end-joining (NHEJ)
and DNA polymerase theta (Polθ, encoded by POLQ gene)-
dependent microhomology-mediated end-joining (TMEJ) [13]
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Fig. 1 DDR genes as biomarkers predicting survival of AML patients. A Consensus clustering of AML subjects in the BEAT AML 2.0 dataset
into 5 groups with varying DDR transcriptomic signatures. B Kaplan-Meier plot showing the survival of the 5 groups. C Top 10 DDR biomarker
genes with the highest expression in each cluster. D Kaplan-Meier plots of the difference in survival between subjects with high versus low
scaled and normalized values of the DDR biomarker genes for clusters 1 and 5. High versus low cut points were determined via Thiele and
Hirschfield’s method to find an optimal outcome-based cut point, survival. E The combined values of AIM2 and CDC42BPA are a powerful
biomarker for survival in BEAT AML 2.0 and TARGET-recurrent AML databases.

A. Karami and T. Skorski

2

Leukemia



Therefore, we also tested if expression levels of DSB repair genes
had a survival prognostication value.
Analysis of training BEAT AML 2.0 database revealed that

upregulation of several genes involved in RAD51-mediated HR
(BRCA1, RAD51, RAD54L and RAD51AP1) and Polθ-dependent TMEJ
(POLQ, FEN1 and TRIP13) were associated with worse prognosis
(Fig. 2A). Conversely, patients with elevated expression of NHEJ1
gene (non-homologous end-joining factor 1), a member of NHEJ
displayed better prognosis. Remarkably, the biomarker prognos-
ticator values of POLQ and NHEJ1 gene expression were validated
in TARGET-recurrent AML dataset (Fig. 2B).
In conclusion, using DDR genes as probes we identified novel

biomarkers for AML prognostication: co-expression of AIM2 and
CDC42BPA genes and sole expression of POLQ. Overexpression
of Polθ confers cellular resistance to various genotoxic cancer
therapies (ionizing radiation, genotoxic chemotherapy drugs)
[14]. The discovery that POLQ is a key prognostic biomarker in
AML may have a therapeutic value because cancer cells,
including AML cells overexpressing Polθ protein are hypersensi-
tive to Polθ inhibitors which are currently in clinical trials against
solid tumors [10, 15].
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Fig. 2 Expression of DSB repair genes predicts survival of AML. A, B Kaplan-Meier plots showing the difference in survival between subjects
with high versus low scaled and normalized values of the DSB repair genes in the BEAT AML 2.0 (A) and TARGET-recurrent AML (B) datasets.
High versus low cut points were determined via Thiele and Hirschfield’s method to find an optimal outcome-based cut point, survival.
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