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TO THE EDITOR:
Karyotypic aberrations of chromosome (chr) 6 include duplications
(trisomy 6 [+6]), deletions of its short arm (del6p), uniparental
disomy 6p (UPD6p), as well as various microduplications and
microdeletions. Lesions involving 6p are of particular interest as
they point toward HLA locus involvement, including loss of
heterozygosity and/or haploinsufficiency, as pathogenic drivers
resulting from deletions and UPD6p [1, 2]. Along with somatic
mutations in various HLA alleles, deletions of various sizes
including microdeletions of the HLA locus as well as somatic
UPD6p have been suggested to result from immune pressure and
to act as means of escape hematopoiesis in immune-mediated
aplastic anemia (AA) [3, 4]. Similarly, our group described these
lesions in the context of loss of graft versus leukemia (GvL) effect
of mismatched donor HLA alleles following allogeneic hemato-
poietic stem cell transplant (alloHSCT) with subsequent relapse
of myeloid leukemias [5]. We further demonstrated that the
enrichment of specific amino acids within the peptide-binding
groove of HLA class II, especially HLA-DRB1, affects its interaction
with the T-cell receptor (TCR) and hence underlies the auto-
reactivity inherent to autoimmune AA [6].
Trisomy 6 has been observed in myelodysplastic neoplasm

(MDS) and acute myeloid leukemia (AML) and can occur as a
sole genomic abnormality. It has also been reported in AA and
other bone marrow failure disorders [7]. However, to date
reports have been limited to individual or small case series,
hence precluding a comprehensive analysis of the clinical and
molecular features of these patients. Specifically, the pathogen-
esis of duplication has not been clarified and may involve
various potential oncogenes located on chr 6, e.g., RAB44, ECT2L,
among others. Alternatively, as with other chromosomal lesions,
primary drivers may be located on other chromosomes. In
addition, the intrachromosomal disruption of the HLA locus
through microdeletions or loss of function mutations may
possibly facilitate disease evolution and progression. While
analyzing the HLA locus in AA, we observed several cases with
isolated +6 (iso +6), which served as the impetus for the
formulation of this report in lieu of the association of analogous

occurrences in MDS and AML and the enigmatic clinical features
and diverse pathogenesis of +6.
In addition to cases from our clinics (N= 83), our search was

complemented by iso +6 cases described in the literature
(N= 54) to incorporate additional clinical data on iso +6 AA, MDS
and AML [7] (metanalytic cases are summarized in Supplementary
Tables S1 and S2). In total, we were able to examine a large cohort
of patients collected from multiple sources and diagnosed with
MDS (n= 3971), AML (n= 6788), or AA (n= 706) for iso +6, non-
isolated +6 (non-iso +6), and normal karyotype (NK) disease for
comparisons (Fig. 1A and Supplementary Appendix) [8–12]. For
selected cases with +6 and healthy controls (N= 8), we have also
performed expression analysis using bulk deep RNA-sequencing
(RNA-seq) (Supplementary Appendix).
In total, we identified 94 +6 AML patients, of whom 48 had iso

+6 and 46 non-iso +6. In addition, 16 iso +6 MDS and 14 iso +6
AA cases were found (Fig. 1A and Supplementary Tables S1, S2).
Of note is that, the iso +6 AML cases from our cohort (n= 16) and
the one reported in the literature (n= 32) exhibited a similar
clinical phenotype and survival characteristics (Supplementary
Table S3). In general, iso +6 AML presented at a younger age of
50 vs 66.3 years (P < 0.0001) compared to NK AML. Iso +6
had analogous ontogenesis as NK AML (primary AML – pAML –
proportions of 89.4 vs 85.7%, P= 0.7), and exhibited a similar
hyperproliferative AML phenotype (median WBC count 20.8 vs
14.4 × 109/L, P= 0.8). Targeted next-generation sequencing
demonstrated similar co-mutational patterns to NK AML, including
FLT3 mutations, except NPM1 mutations which were not found in
iso +6 (0 vs 44.5% in NK AML, P= 0.0013; Fig. 2A). Remarkably,
5/16 iso +6 AML patients did not harbor any of the common
myeloid mutations (Supplementary Table S4). The remaining cases
of iso +6 AML were enriched for DNMT3A, FLT3, and TET2 but had
less TP53 mutations compared to non-iso +6 disease (Supple-
mentary Table S5). Despite the low mutational burden, iso +6 in
AML patients had shorter overall survival (median 22 vs 32.1
months; P= 0.04) when compared to NK AML (Supplementary
Fig. S1); yet, survival was not significantly different relative to non-
iso +6 AML (22 vs 11 months, P= 0.1; Supplementary Fig. S1).
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In terms of treatment, 2/2 patients who received 7+ 3 regimens
followed by cytarabine consolidation achieved remission, and 4/6
iso +6 AML patients successfully underwent alloHSCT and
remained relapse-free post-transplant (Supplementary Table S3).
In MDS, iso +6 disease also presented at a significantly younger

age vs NK MDS (median 43 vs 70 years, P < 0.0001). Interestingly, iso
+6 MDS manifested a distinct clinical phenotype, notably char-
acterized by profound anemia (median 8.4 vs 9.5 g/dL, P= 0.04) and
hypocellular BMmorphology (75% vs 9.5%, P= 0.0002) compared to
NK MDS. Like AML, 3 of 4 iso +6 MDS patients with available
sequencing did not have any detectable mutations. Transformation
rate to AML was 37.5% with a median time to progression of 5
months (IQR 2–33.5). The association of +6 with pancytopenia and
hypocellularity in 75% of the MDS cases is suggestive of a
pathogenetic similarity with AA. Indeed, 2 of 14 patients with iso
+6 AA eventually transformed to MDS.
When performed, RNA-seq in +6 AML (n= 3) vs healthy BM

samples (n= 5) showed lower HLA mRNA expression in +6 AML,
including 2/3 +6 AML cases with HLA expression ≤20th percentile
of controls in 18 of 21 sequenced HLA genes, and even completely
absent in 14 of the 21 HLA genes (Fig. 2B). We then analyzed HLA
genes to search for somatic hits in +6 MDS/AML (N= 8) using our
in-house developed HLA pipeline [6]. While no mutations were
detected in the +6 MDS (n= 3) or +6 AML (n= 5) samples, yet
2/5 +6 AML patients were found to have allelic loss of HLA-DRB1
(Supplementary Table S6). In contrast, none of the 3 +6 MDS cases
had any HLA lesions (Supplementary Table S6). Both +6 AML
patients with allelic loss were pAML and had complex karyotypes,
comparable age (67 vs 58 years), similar Hb (9.3 vs 9.4 g/dL) and
platelet count (16 vs 14 k/uL), and a large percentage of BM blasts
(79 vs 60%). However, the first patient had significantly higher
WBC count (162.6 vs 5.3 k/uL) and higher number of co-mutations
(ASXL1, PRPF8, SRSF2 and TP53 vs BCOR and TP53, respectively).
With regard to outcomes, both patients survived <1 month after
diagnosis.
Our results suggest that+6 may present as the sole cytogenomic

abnormality in AA with progression to MDS as suggested by the

hypoproliferative phenotype reminiscent of prior AA. It is possible
that +6 via duplication of HLA locus may lead to increased
expression of peptides triggering immune response in AA, e.g., as
part of tumor surveillance reaction. In contrast, +6 in the context
of AML exhibits adverse risk possibly due to paucity of
prognostically favorable NPM1 mutations. In addition, the
absence of heightened HLA expression in certain +6 AML cases
may contribute to the distinct clinical behavior of +6 in AML
through HLA downregulation or segmental microdeletions as
demonstrated in our study. Based on these results, one could
speculate that an increased copy of the HLA locus in AA and MDS
may lead to increased autoantigen presentation beyond TCR
activation threshold, possibly leading to breach of tolerance, a
mechanism that may be operative in AA and hypocellular MDS
(Fig. 2C). Thus, clonal duplication through copy number gains,
+6, or UPD of the HLA locus in MDS may result in immune
pressure as seen in AA and GvL effect [13–15]. Indeed, we
identified frequent combination features of pancytopenia and
BM hypocellularity in iso +6 MDS in this series. In more advanced
diseases, additional triggers such as deletions of tumor suppres-
sor genes or acquisition of subclonal mutations may also play
a role, with progression reflecting somatic pressure to overcome
immune inhibition. Conversely, the allelic loss and lower
expression of HLA in +6 AML may imply a dichotomy of
mechanisms by which +6 contributes to advanced leukemia vs
bone marrow failure. Further evidence of allelic deletion of HLA
genes in +6 AML points toward immune escape and evasion, a
mechanism already described in relapsing AML under immune
pressure [5] and potentially contributing to the transformation of
AA to malignant disease in this series.
To the best of our knowledge, we herein performed the most

comprehensive clinico-genomic meta-analysis of the largest
cohort ever reported of +6 in myeloid neoplasms, given its rarity
in the literature. Our study includes novel analyses of the
contrasting, context-dependent role of HLA in mediating the
pathogenesis of MDS and AML by predisposing to hyperimmunity
and its somatic alIelic loss, respectively.

Fig. 1 Summary and clinical characteristics of the included cases. A Flow diagram of patients with trisomy 6 and aplastic anemia (AA),
myelodysplastic neoplasm (MDS), or acute myeloid leukemia (AML) included in our study. B Comparison of baseline clinical characteristics of
isolated trisomy 6 (iso +6)-related AA, MDS, and AML using unpaired t-test for continuous variables and Chi-square or Fisher’s exact test for
categorical variables.
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article and Supplementary Appendix. For additional information, please contact the
corresponding author (maciejj@ccf.org).

REFERENCES
1. Afable MG 2nd, Wlodarski M, Makishima H, Shaik M, Sekeres MA,

Tiu RV, et al. SNP array-based karyotyping: differences and similarities between
aplastic anemia and hypocellular myelodysplastic syndromes. Blood. 2011;117:
6876–84.

2. Maciejewski JP, Balasubramanian SK. Clinical implications of somatic mutations in
aplastic anemia and myelodysplastic syndrome in genomic age. Hematol Am Soc
Hematol Educ Program. 2017;2017:66–72.

3. Katagiri T, Sato-Otsubo A, Kashiwase K, Morishima S, Sato Y, Mori Y, et al. Fre-
quent loss of HLA alleles associated with copy number-neutral 6pLOH in acquired
aplastic anemia. Blood. 2011;118:6601–9.

4. Tantravahi SK, Huber BD, Vagher J, Maese L, Pomicter AD, Al-Sweel N, et al.
Genome-wide uniparental disomy as a mechanism of immune escape in
acquired aplastic anaemia. Br J Haematol. 2022;198:e78–81.

5. Pagliuca S, Gurnari C, Hercus C, Hergalant S, Hong S, Dhuyser A, et al. Leukemia
relapse via genetic immune escape after allogeneic hematopoietic cell trans-
plantation. Nat Commun. 2023;14:3153.

6. Pagliuca S, Gurnari C, Awada H, Kishtagari A, Kongkiatkamon S, Terkawi L, et al.
The similarity of class II HLA genotypes defines patterns of autoreactivity in
idiopathic bone marrow failure disorders. Blood. 2021;138:2781–98.

7. Mitelman F, Johansson B, Mertens F. Mitelman Database of chromosome aber-
rations and gene fusions in cancer. Available from: https://mitelmandatabase.isb-
cgc.org.

8. Tyner JW, Tognon CE, Bottomly D, Wilmot B, Kurtz SE, Savage SL, et al. Functional
genomic landscape of acute myeloid leukaemia. Nature. 2018;562:526–31.

9. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and
epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med.
2013;368:2059–74.

Fig. 2 Genomic characteristics and proposed mechanisms of trisomy 6-mediated myeloid neoplasms. A Spectrum of mutations in trisomy
6 acute myeloid leukemia. The similar mutational patterns across iso +6 AML and NK AML except for NPM1 mutations which are less common
in isolated +6 AML. B The expression of HLA genes in trisomy 6 AML patients vs healthy controls. C Scheme illustrating the proposed
dichotomy “autoimmunity vs immune pressure with HLA somatic loss” underlying the mechanisms of trisomy 6-related myeloid disorders.

H. Awada et al.

3

Leukemia

https://mitelmandatabase.isb-cgc.org
https://mitelmandatabase.isb-cgc.org


10. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al.
Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med.
2016;374:2209–21.

11. Bersanelli M, Travaglino E, Meggendorfer M, Matteuzzi T, Sala C, Mosca E, et al.
Classification and personalized prognostic assessment on the basis of clinical and
genomic features in myelodysplastic syndromes. J Clin Oncol. 2021;39:1223–33.

12. Gurnari C, Pagliuca S, Prata PH, Galimard JE, Catto LFB, Larcher L, et al. Clinical
and molecular determinants of clonal evolution in aplastic anemia and parox-
ysmal nocturnal hemoglobinuria. J Clin Oncol. 2023;41:132–42.

13. Shah YB, Priore SF, Li Y, Tang CN, Nicholas P, Kurre P, et al. The predictive value of
PNH clones, 6p CN-LOH, and clonal TCR gene rearrangement for aplastic anemia
diagnosis. Blood Adv. 2021;5:3216–26.

14. Sweeney C, Vyas P. The graft-versus-leukemia effect in AML. Front Oncol.
2019;9:1217.

15. Vago L, Perna SK, Zanussi M, Mazzi B, Barlassina C, Stanghellini MT, et al. Loss of
mismatched HLA in leukemia after stem-cell transplantation. N Engl J Med.
2009;361:478–88.

ACKNOWLEDGEMENTS
This work was supported by a grant from the Edward P. Evans Foundation (to CG),
The Leukemia & Lymphoma Society TRP Award 6645-22 and R35HL135795 (to JPM)
and VeloSano 9 Pilot Award (to VV). This study was approved by The Institutional
Review Board of Cleveland Clinic and other institutions. All procedures were carried
out in accordance with guidelines set forth by the Declaration of Helsinki.

AUTHOR CONTRIBUTIONS
Hussein A, CG, VV and JPM generated and conceived the study design, figures, tables
and wrote the manuscript; AD performed data analysis. TK, FU, DD, Hassan A, SP, MM
and TH reviewed the clinical data, took part in patient selection, and helped editing
the manuscript. All authors participated in data interpretation and critical review of
the final paper and submission.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41375-024-02268-w.

Correspondence and requests for materials should be addressed to
Jaroslaw P. Maciejewski.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

H. Awada et al.

4

Leukemia

https://doi.org/10.1038/s41375-024-02268-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Context-dependent role of trisomy 6 in myelodysplastic neoplasms and acute myeloid leukemia: a multi-omics analysis
	To the Editor:
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




