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Blastic plasmacytoid dendritic cell neoplasm (BPDCN) constitutes a rare and aggressive malignancy originating from plasmacytoid
dendritic cells (pDCs) with a primarily cutaneous tropism followed by dissemination to the bone marrow and other organs. We
conducted a genome-wide analysis of the tumor methylome in an extended cohort of 45 BPDCN patients supplemented by WES
and RNA-seq as well as ATAC-seq on selected cases. We determined the BPDCN DNA methylation profile and observed a dramatic
loss of DNA methylation during malignant transformation from early and mature DCs towards BPDCN. DNA methylation profiles
further differentiate between BPDCN, AML, CMML, and T-ALL exhibiting the most striking global demethylation, mitotic stress, and
merely localized DNA hypermethylation in BPDCN resulting in pronounced inactivation of tumor suppressor genes by comparison.
DNA methylation-based analysis of the tumor microenvironment by MethylCIBERSORT yielded two, prognostically relevant clusters
(IC1 and IC2) with specific cellular composition and mutational spectra. Further, the transcriptional subgroups of BPDCN (C1 and C2)
differ by DNA methylation signatures in interleukin/inflammatory signaling genes but also by higher transcription factor activity of
JAK-STAT and NFkB signaling in C2 in contrast to an EZH2 dependence in C1-BPDCN. Our integrative characterization of BPDCN
offers novel molecular insights and potential diagnostic applications.
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INTRODUCTION
Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an
aggressive and extremely rare blood cancer, accounting for
~0.5% of acute hematological malignancies. In its recent editions,
the WHO classification of myeloid neoplasms recognizes BPDCN
as a distinct entity descending from non-activated, CD56+

plasmacytoid dendritic cells (pDC) [1–3]. However, a broader
cellular origin encompassing transcriptional signatures of both
AXL1+ SIGLEC6+ DCs and earlier, common dendritic cells, termed
transitional DCs and conventional DCs, respectively, has been
proposed, before, suggesting a diverse cellular ontogeny [4–6].
Clinically, skin lesions commonly precede bone marrow infiltration
and secondary propagation into lymph nodes and extranodal
organs. A striking 4:1 male predominance, attributed to sex-biased

ZRSR2mutations and enrichment in elderly patients with a median
age of around 70 years at diagnosis has been observed [7, 8].
While the typical BPDCN immunophenotype (CD4+, CD56+,
CD123+) is relatively specific and reliably enables correct
diagnosis, discrimination from AML, especially in cases with pDC
features can be challenging [9, 10]. Investigation of
pDC–associated antigens (e.g., TCL1 or CD303) can facilitate
differential diagnosis, while the expression of B- (CD79b), T- (CD2,
CD7), and precursor antigens (Tdt) poses variable pitfalls in both
immunohistochemistry and flow cytometry [11, 12]. Treatment
with conventional chemotherapy alone results in insufficient and
short-lived remissions (median overall survival (OS) of 12 to
14 months), which necessitates either allogeneic or autologous
stem cell transplantation in therapeutic approaches of curative
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intent [7, 13, 14]. Only through the introduction of tagraxofusp, a
CD123-directed cytotoxin, which recently demonstrated high
clinical efficacy, curative treatment has become possible in elderly
patients, as well, while the outcome in relapsed/refractory cases
remains dismal [15].
Genome-wide DNA methylation profiling has evolved from a

descriptive, ontological analysis into a diagnostic assay of
prognostic relevance across a variety of solid cancers, including
CNS tumors and sarcomas [16, 17]. While genomic and transcrip-
tional profiling has revolutionized the taxonomy of myeloid
cancers, embedded in the current WHO classification, the study of
DNA methylation may add another layer of insight into BPDCN
biology that is so far insufficiently captured by DNA- and RNA-
sequencing [18]. Methylome analysis may further assist in
differential diagnostics between BPDCN and other malignancies
sharing close molecular ties including chronic myelomonocytic
leukemia (CMML), acute myeloid leukemia (AML), and myelodys-
plastic syndromes (MDS), which may occur syn- and metachro-
nously in up to 20% of cases [19–21].
DNA methylation profiling can further assess the tumor immune

microenvironment (TME), by deconvoluting cell types from within
tissue-derived bulk DNA and discriminating immunologically hot
from cold tumors [22]. The robust correlation of its output with an
immunohistochemical dissection of the TME has been shown in
non-small cell lung cancer and others [22, 23].
In this study, we have extended our previously published

BPDCN cohort [6], assessed by paired whole-exome (WES) and
transcriptome sequencing (RNA-seq) as well as genome-wide
copy number analysis and conducted array-based genome-wide
DNA methylation profiling and ATAC-sequencing on selected
cases, allowing for a more profound and novel understanding of
BPDCN pathobiology and reliable discrimination from AML as the
predominant diagnostic challenge in clinical practice. Moreover,
we identify two immunological subtypes, characterized by
features in the TME and recurrent genomic alterations.

MATERIALS AND METHODS
Case selection, clinicopathological assessment, whole exome,
and whole transcriptome sequencing processing and
downstream including statistical analysis
For details on the above methods including transcription factor (TF) and
pathway activities from RNA-seq data please see Supplementary materials
and methods.

Genome-wide DNA methylation profiling and data analysis
Whole-genome DNA methylation analysis was carried out on all 54 cases of
the study cohort employing the Illumina EPIC array at ATLAS Biolabs.
Bioconductor R package MINIFI (v1.46.0) was used to further process raw
IDATs that were previously generated from iScan. The quality of samples
was checked by using mean detection P values and only samples with P
values < 0.05 were kept for further processing (five samples excluded). In
addition, according to in-house bioinformatic QC pipelines were applied
(one additional case was excluded). The remaining samples were
normalized using quantile normalization (function preprocessQuantile)
and DNA methylation data predicted sex was compared to the actual
sex. Samples, where the predicted sex did not match with the actual sex,
were removed (four samples removed), leaving 45 samples for further
analysis. DNA methylation probes were quality filtered and probes with
non-significant P values were removed (P > 0.01). Additionally, cross-
reactive probes and BOWTIE2 multi-mapped probes were removed, and M-
and beta-values of the remaining probes were extracted [24].
Differentially methylated probes between two conditions were identi-

fied using a linear modeling approach as implemented in LIMMA. General-
ized gene set testing (GST) on differentially methylated probes was
performed by applying the gsameth function (MISSMETHYL package v1.34.0)
against the REACTOME and/or HALLMARK gene sets (MSigDB v7.5).
Details on the comparative analysis of genome-wide DNA methylation

data from BPDCN (including DNA-methylation-based mitotic clock
estimation), different sorted cell types, and data from AML and other

entities including CMML, T-ALL, and malignant melanoma as well as the
analysis of the tumor microenvironment (TME) by MethylCIBERSORT and
immunohistochemistry are provided within the Supplementary materials
and methods.

FFPE-ATAC-seq
ATAC-sequencing on FFPE tissue sections from four typical pDC-like
BPDCN patients was performed as described [25]. Briefly, for nuclei
isolation 20 µm-thick sections were deparaffined and underwent subse-
quent enzyme digestion. Then, 50,000 isolated FFPE nuclei were used in
each FFPE-ATAC reaction composed of Tn5-mediated transposition and T7
in vitro transcription. FFPE-ATAC libraries were then sequenced on an
Illumina NovaSeq 6000 platform at Novogene (Cambridge, UK) to a depth
of at least 40 million 150 bp single-end or paired-end sequencing reads per
library.

RESULTS
Clinical characteristics of the study group and expanded
deconvolution cohort
Baseline clinicopathological characteristics of BPDCN cases
included in the current study are briefly summarized in Table 1.
Clinical outcomes, when available, reflected previous dismal
observations in BPDCN with a median progression-free and OS
of 8 and 12 months, respectively. Following our previous study,
RNA-seq data were deconvoluted according to single-cell DC and
monocyte datasets (Supplementary Fig. 1), and previous observa-
tions were recapitulated/extended to new samples including
differentially mutated genes (Supplementary Fig. 2). Additionally,
mutational landscape, MutSigCV analysis, and immunohistochem-
ical profiles were extended to new cases as described (Supple-
mentary Tables 1, 2, and 3) [6]. Tumor mutational burden (TMB)
was confirmed to be significantly higher (p= 0.0055) among C1-
BPDCN and the set of differentially mutated genes was updated
(Supplementary Fig. 3a, b).

Epigenetic profiling reveals significant deregulation of key
regulatory pathways through loss of DNA methylation
compared to dendritic cells
To assess epigenetic processes contributing to the malignant
transformation from DCs to BPDCN and to allocate the entity
within the spectrum of blood cells, we performed a principal
component analysis (PCA) of BPDCN and various cell types of the
peripheral blood (Fig. 1) [26]. Expectedly, we observed a clear
segregation of blood cell types and BPDCN, but beyond this, a
marked difference between BPDCN and previously profiled DC
subsets became apparent (Fig. 1a) [27]. This was further reflected
in significantly higher global mean DNA methylation levels in both
early and mature DCs, signifying the extent of DNA methylation
loss during transformation of DCs towards BPDCN (Fig. 1b).
Enrichment analysis of differentially methylated regions (DMRs)
(CpG FDRs <0.01, absolute difference above 0.3, enrichment
analysis against HALLMARK and REACTOME) revealed significantly
reduced DNA methylation in genes involved in extracellular matrix
organization, collagen modulation, and neuronal systems. Onco-
genic driver processes affected by these altered profiles included
KRAS signaling (Fig. 1c, d).

BPDCN is characterized by a DNA methylation profile distinct
from its related entities yet borderline cases exist
To assess the potential of DNA methylation analysis in the
differential diagnosis between BPDCN and neighboring entities,
we performed a comparative analysis of DNA methylation data
between our cohort and the BEAT-AML cohort as well as a CMML
cohort previously published by Palomo et al. This analysis revealed
a separation of samples into entity-specific DNA methylation
classes in both an unsupervised (PCA; Fig. 2a) as well as a
supervised (PLS-DA; Fig. 2b) approach. Distinction from T-cell
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acute lymphoblastic leukemia (T-ALL) and malignant melanoma,
which was added for comparison, as another entity driven by a
UV-related mutational signature, was even more pronounced
(Fig. 2j). Intriguingly, we observed four borderline cases (Fig. 2c;

BPDCN_01; 15; 27; 37), exhibiting a relevant amount of overlap
between both groups in terms of DNA methylation. In contrast to
the overall distinction between BPDCN and AML, we found three
of these cases to exhibit synchronous concurrent manifestations
of AML and/or transformed CMML with pDC features and one of
these three cases even presented with genetic features typically
encountered in AML with pDC-features (RUNX1 mutation; Fig. 2c,
d–i). The patient was allocated closest to the 95% CI cut-off for the
AML definition and exhibited an atypical, more immature C2-
BPDCN phenotype. Intriguingly, the RUNX1 mutation was
observed at an approx. VAF of 50%, despite the obvious
phenotypical heterogeneity with typical BPDCN, infiltrates along-
side cells more typical of pDC-like AML emerging from an MDS,
suggesting a partially shared clonal architecture. While RUNX1
mutations are considered rather rare in BPDCN we observed
eleven cases, however, most of these (nine out of eleven) where
these mutations were subclonal events and some cases even
exhibited syn- and/or metachronous myeloid neoplasms other
than BPDCN. Subsequent comparative pathway enrichment
analysis against HALLMARK and REACTOME gene sets for most
DMRs within gene-body regions revealed a significant enrichment
across RHO GTPases, cell migration control, and leukemic stem cell
maintenance (HSF1 activation) in BPDCN, whereas promotor
regions in BPDCN compared to AML were methylated to a
significantly higher degree in epigenetic and transcriptional
regulation as well as TP53 regulation and cell cycle control.
(Fig. 2m–o).

The BPDCN genome is characterized by an exceptional degree
of DNA methylation loss and epigenetic signs of mitotic stress
Global DNA methylation is commonly diminished in malignant
compared to healthy cells, being stably maintained in the latter. In
this line, BPDCN revealed the highest methylation loss compared
to AML, CMML, T-ALL, and melanoma irrespective of the C1 or C2
subtype (Wilcoxon rank-sum test, p < 0.001) (Fig. 2k) [8, 28–31].
Intriguingly, the aggressive clinical nature of BPDCN was further
reflected in our epiCMIT analysis, as a DNA methylation-based
mitotic clock, which recapitulates the proliferative history of a
given tumor sample [32]. epiCMIT predicted unveiled an
accelerated mitotic history in BPDCN compared to CMML and
even AML, matched only by T-ALL (Fig. 2l). Although an
independent prognostic impact of a high epiCMIT score was
observed for a wide range of blood cancers, we observed no such
trend in our cohort, plausibly attributable to the limited
sample size.

DNA methylation of tumor suppressor genes is highly
deregulated in BPDCN compared to CMML and AML
In keeping with a substantially deregulated DNA methylation
profile in BPDCN and global loss of DNA methylation, we observed
promotor regions of tumor suppressor genes to be methylated to
an exceptionally high degree, compared to CMML and AML
(Fig. 3a). A significantly lower level of gene-body associated
methylation in the same genes was identified (Fig. 3b), indicating
a substantial oncogenic impact of deregulated DNA methylation
in BPDCN (manually selected candidate TSGs, Fig. 3c, for
exhaustive information on deregulated TSGs see Supplementary
Fig. 2). Strikingly, we hereby observe an increasingly deregulated
DNA methylation profile from CMML to BPDCN in parallel to the
aggressiveness of the entity’s clinical behavior.

DNA methylation patterns and gene expression signatures
differentiate C1 and C2 subtypes in BPDCN and shape a JAK/
STAT-driven profile in C2-BPDCN
Building on transcriptional BPDCN subtype classification, we
performed a differential DNA methylation analysis. Alongside
differentially mutated genes in BPDCN, we discovered 114 probes,
which were differentially methylated between C1 and C2

Table 1. Baseline clinicopathological characteristics of the
study group.

Characteristics BPDCN-C1
(n= 29)

BPDCN-C2
(n= 25)

Age (yrs.; median (range)) 70 (15–91) 74 (42–90)

Sex

Female 6 (21%) 8 (32%)

Male 23 (79%) 17 (68%)

Manifestation

Skin (histologically
confirmed)

20 (69%) 14 (56%)

Skin (suspected not
biopsied)

6 (21%) 7 (28%)

Bone marrow 8 (28%) 8 (32%)

0 EN-sites 3 (10%) 3 (12%)

1–2 EN sites 26 (90%) 19 (76%)

>2 EN sites – 3 (12%)

Stage (Ann Arbor)

I/II 2/16 (13%) 3/16 (19%)

III/IV 14/16 (87%) 13/16 (81%)

ECOG PS

0–1 8/10 (80%) 3/11 (27%)

≥2 2/10 (20%) 8/11 (73%)

B-symptoms

No 6/14 (43%) 4/15 (27%)

Yes 8/14 (57%) 11/15 (73%)

Immunohistochemistry

BPDCN-specific 29/29 (100%) 25/25 (100%)

CD56+ 29/29 (100%) 25/25 (100%)

CD123+ 29/29 (100%) 25/25 (100%)

TCL1 27/28 (96%) 17/23 (74%)

Immature lineage
marker

21/29 (72%) 19/24 (79%)

CD34 1a/29 (3%) 4a/24 (17%)

TdT+ 21/29 (72%) 16/23 (70%)

T-lineage markers 28/29 (96%) 24/25 (96%)

CD2+ 5/22 (23%) 7/16 (44%)

CD3+ 4/26 (15%) 5/23 (22%)

CD4+ 28/29 (96%) 23/25 (92%)

B-lineage marker
CD79A+

23/28 (82%) 20/23 (87%)

Myeloid-lineage
markers

24/26 (92%) 21/23 (91%)

CD33+ 24/26 (92%) 20/23 (87%)

CD117+ 2/26 (8%) 9/23 (39%)

MPO+ 1a/28 (4%) 4a/23 (17%)

Ki-67 (median, range) 60% (30–90%) 50% (25–90%)

BPDCN blastic plasmacytoid dendritic cell neoplasm, ECOG Eastern
Cooperative Oncology Group, EN extranodal, MPO myeloperoxidase, yrs
years.
aCases with concurrent other myeloid neoplasia (CMML or AML; n= 4) or
minimal positivity in a subclonal population (n= 1).
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(p < 0.0001; 10,136 probes with p < 0.01), corresponding to a
relatively similar methylome, in keeping with our above PCA/PLS-
DA (depicted as scales beta values in Fig. 4a; beta values see
Supplementary Table 4).
To gain insight into the effect of differential DNA methylation of

both subtypes, we assigned differentially methylated probes to
their respective genes (Fig. 4b). GST (Fig. 4c) revealed enrichment
in elevated DNA methylation levels for interleukin signaling genes
and prominent members of JAK/STAT signaling (STAT5B) in C1-
BPDCN, whereas C2-BPDCN samples exhibit significantly pro-
nounced DNA methylation of posttranslational modifications and
metabolic processes (e.g., vitamin and heme metabolism).
Next, we performed differential gene expression analysis

(Fig. 4d, e). Hereby, we observed an induction of innate and
adaptive immunological processes alongside an upregulation of
extracellular matrix interactions in C2 cases. Further, we found
several prominent candidate genes, including STAT5A, CDK6, CCR4,
CCND2, and FOXO1 to be expressed at significantly higher levels in
C2 cases. Corresponding to higher gene expressions in C2, CDK6
(p= 5.3 × 10−4, log2 fold-change 1.52) and STAT5A (p= 5.5 × 10−3,

log2 fold-change 1.19) had promotor-associated sites that were
significantly higher methylated in C1-BPDCN leading to relative
transcriptional inactivation in C1. Correlation of DNA methylation
at promotor and gene body sites and relative RNA-seq-derived
gene expression data yielded a substantial number of significant
correlations. Findings regarding the enrichment of gene promotor
methylation in particular TSGs are only partially recapitulated on
the transcriptional level (Supplementary Table 5 and Supplemen-
tary Fig. 4a). Various statistically significant correlations between
DNA-methylation at either type of site and gene expression,
regardless of potential confounding factors, including copy
number variants and mutations, affecting prominent TSGs and
oncogenes are identified through both a focused and genome-
wide approach (see Supplementary Fig. 4b, c). Significantly
correlated candidates include BCL2, ALK, GNAQ, and RUNX1.
To further focus our observations on potential therapeutic

applicability, we inferred TF activities from bulk RNA-seq data
employing CollecTRI as a resource for TF pathway activity
inference with PROGENy. Hereby we observed the transcriptional
mirror image of the divergence in DNA methylation profiles
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Fig. 1 Epigenetic profiles of BPDCN and sorted hematopoietic cell populations. a First and second principal components of the 10,000
most variable DNA methylation sites in BPDCN (C1 and C2) and various hematopoietic cell types (B B lymphocytes, Granulo granulocytes, HSC
hematopoietic stem cells, iDC immature dendritic cells, mDC mature dendritic cells, Mono monocytes, NK natural killer cells; ellipses show
95% confidence intervals of multivariate normal distribution). b Average genome-wide DNA methylation level (beta values) of BPDCN and
various cell types and of BPDCN cluster C1 and C2. Individual estimates are shown as dots and cell type-specific distributions are shown as
box- and violin-plots; significant differences against BPDCN were assessed by unpaired Wilcoxon test and significant levels are indicated by
asterisks (*p < 0.05, **p < 0.01, and ***p < 0.001). c Enrichment analysis of differentially methylated regions (DMRs) between BPDCN and
dendritic cells (harmonic mean of the individual CpG FDRs <0.01, absolute difference above 0.3) against HALLMARK and REACTOME gene sets.
Only significant gene sets are shown (FDR < 0.1). d Network enrichment against REACTOME for DMRs (as in c); fold changes of DMRs (BPDCN
vs DC) are color-scaled (red: higher DNA methylation in BPDCN; blue: higher DNA methylation in DC) and gene sets are denoted by light-
brown nodes.
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between C1 and C2-BPDCN. In particular, we observed signifi-
cantly higher activity of NFkB (driven by FOXC1, NFKB1, and NFKB;
p < 0.05) and more strikingly JAK-STAT (predominantly driven by
STAT3, STAT1, and STAT5A; p < 0.05) associated TF in C2 and an

EZH2 dependence in C1-BPDCN (Fig. 4f, g). We supplemented
these observations by FFPE-ATAC-seq of four C2-BPDCN, which
revealed substantial chromatin accessibility, in keeping with our
epigenetic and transcriptional findings (Fig. 4h, i).
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Tumor microenvironment by MethylCIBERSORT and
immunohistochemistry reveals distinct immunological
subtypes correlated with tumor genomics
To evaluate the TME, we conducted a MethylCIBERSORT analysis
on all 45 high-quality genome-wide DNA methylation profiles.
From inferred relative abundance of T-cell subpopulations, B-cells,
natural killer (NK)-cells neutrophils, monocytes, eosinophils, and
stromal cells two TME classes (IC1 and IC2) were predicted. The
smaller class (IC1) exhibited a depletion in monocytes, B- and NK-
cells, an enrichment in Tregs, and a trend towards higher counts
of neutrophils and cytotoxic T cells (Fig. 5a). Additional
deconvolution revealed a significantly higher proportion of
keratinocytes in skin samples compared to non-skin samples
(p= 0.036). These observations were subsequently validated via
IHC for tumor-infiltrating T cells and monocytes with a significant
correlation between relative distributions of cell populations
(Fig. 5b–g; monocytes: Pearson correlation coefficient= 0.6437,
p= 1.84 × 10−6 and T-cell populations: Pearson correlation coeffi-
cient= 0.3809 p= 0.0098). The correlation of TME with mutational
profiles (restricted to the eight genes mutated in at least 30% of
BPDCN cases) is presented in Supplementary Fig. 5. We observed
enrichment in mutations affecting CDH11, ERBB2, ASXL1, EP300,

KMT2C, JAK2, SMAD2, NOTCH1, and DNMT3A (Fig. 5h, Supplemen-
tary Fig. 6a) and a trend towards a higher TMB (Supplementary
Fig. 6b) in IC1. Further, IC1 patients had significantly shorter
progression-free survival (p= 0.044) and a trend towards inferior
OS (p= 0.14) (Fig. 5i, j). Similar characteristics in terms of TME
composition were observed by immunohistochemistry and
MethylCibersort with enrichment of T-cells in IC1 and monocytes
in IC2 (Supplementary Fig. 6c–f). epiCMIT was applied to estimate
the history of proliferative stress/DNAm age in both immunolo-
gical clusters and revealed significantly higher proliferative stress
in IC2 compared to IC1, which resembles DNA methylation-based
pre-aging in this subgroup (p= 0.038; Supplementary Fig. 6g). A
partial overlap between TME classes IC1/2 and transcriptional
clusters C1/C2 with a strong enrichment of IC2 cases in C1 BPDCN
patients was observed. An integrated summary of immunohisto-
chemical and molecular features including cluster allocation is
provided in Supplementary Table 3. Of particular clinical relevance
and in keeping with the impact on survival we identify substantial
differences in terms of overall response rates between C1/C2 (66%
vs 31%) and IC1/IC2 (12% vs 62%) (Fig. 5f, g). Previous reports
identified a correlation between DNA methylation and chronolo-
gical age [33, 34]. We observed a trend towards higher levels of
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Fig. 3 DNA methylation of tumor suppressor genes in BPDCN, AML, and CMML. a Average promoter DNA methylation (beta values) of
tumor suppressor genes in BPDCN, AML, and CMML. b Average gene body DNA methylation (beta values) of tumor suppressor genes in
BPDCN, AML, and CMML. c Average promoter and gene body DNA methylation in selected tumor suppressor genes (for a complete
representation of significantly divergent TSGs see Supplementary Fig. 2). Differences between BPDCN and the AML/CMML were assessed by
unpaired Wilcoxon test and significant levels are indicated by asterisks (*p < 0.05, **p < 0.01, and ***p < 0.001).

Fig. 2 BPDCN DNA methylation in comparison to AML, CMML, t-ALL, and melanoma. a Visualization of the first and second principal
components of the 10,000 most variable DNA methylation sites (ellipses show 95% confidence intervals of multivariate normal distribution).
b Partial-least squares discriminant analysis (PLS-DA) of adjusted beta values. c First and second principal components of the comparison
between BPDCN and AML (RUNX1 wild-type and mutated samples highlighted differently). The four BPDCN cases falling inside the 95%
confidence interval of the AML data are labeled. d–j a prototypical borderline case with both typical BPDCN as well as AML with pDC-like
features. d Morphology of the neoplastic infiltrate within the lymph node resembles acute leukemia with polymorphic blast-like cells of
variable size (H&E, 40×). e Uniform expression of CD123 initially led to the inclusion of BPDCN into the differential diagnosis (CD123, 40×).
f Further immunophenotypic work-up revealed several atypical features, reminiscent of AML with partial pDC phenotype, including variable
expression of CD33 in a significant fraction of the malignant infiltrate (CD33, 40×), yet only partial expression of CD56 (g; CD56, 200×) and
CD117 (h; CD117, 200×). i The bi-phenotypic character of the infiltrate is further underlined by a strong CD34 expression of a minor fraction of
the blast-like cells alongside the vascular structures, resembling the pDC-like AML phenotype component, whereas the majority of blasts
resemble phenotypically characteristic BPDCN cells. j Two-dimensional density plots of average CpG site DNA methylation in BPDCN vs AML,
CMML, t-ALL, and melanoma (low density: orchid; high density: yellow/orange). k Average genome-wide DNA methylation level (beta values)
of BPDCN, AML, CMML, t-ALL, and melanoma; for BPDCN subcluster estimates are shown as well. l DNA-methylation-based mitotic clock
(epiCMIT) estimates for each entity and BPDCN subtypes.m Network enrichment against REACTOME for DMRs between BPDCN and AML; fold
changes are color-scaled (red: higher DNA methylation in BPDCN; blue: higher DNA methylation in AML) and gene sets are denoted by light-
brown nodes. n Pathway enrichment against REACTOME gene sets of gene-associated CpGs between BPDCN (blue) and AML (orange).
o Pathway enrichment against REACTOME gene sets of promotor-associated CpGs between BPDCN (blue) and AML (orange). If not stated
differently, differences between BPDCN and the four other entities were assessed by unpaired Wilcoxon test, and significant levels are
indicated by asterisks (*p < 0.05, **p < 0.01, and ***p < 0.001).
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tumor-infiltrating T-cells in C2-BPDCN samples despite the overall
higher TMB in C1 patients, regardless of patient age or location of
the tumor sample by both MethylCIBERSORT and IHC (Supple-
mentary Fig. 7a, b).

DNA methylation-based clusters cannot be fully recapitulated
in transcriptional BPDCN subtypes
The most 5600 variable CpG probes were subject to discovering
DNA methylation subtypes using K-means clustering. The optimal
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Fig. 4 Differential DNA methylation, expression, and mutation patterns in BPDCN subtypes C1 and C2. a Top part of the heatmap shows
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values (DNA methylation levels) of CpG sites where an absolute mean difference above 0.25 was observed between C1 and C2. b Volcano plot
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number of clusters was determined using the average silhouette
method and gap statistics. Both methods agreed on the optimal
number of clusters (n= 2). Upon unsupervised cluster analysis, we
observed no statistically significant recapitulation of transcrip-
tional BPDCN subtypes C1 and C2. Some overlap was, however,
found in shared genomic features (EP300 and ATRX mutations

in C1 and MethC1), consistent with higher TMB in C1 and
MethC1. A significantly more pronounced overlap was
apparent upon correlation analysis between DNA methylation-
based cluster allocation and immunological clusters according to
our methyCIBERSORT-derived immunoclusters (Supplementary
Fig. 8a, b).
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Mutational drivers and promotor status of epigenetic
regulators shape the proliferative fate and DNA methylation
profile of BPDCN
To provide genomic context for DNA methylation profiles
obtained within this study, we performed complementary WES
on all patients, who were not part of our previous molecular
BPDCN study (Fig. 6a). WES confirmed a higher mutational load in
C1 BPDCN (Supplementary Fig. 3b), further supporting a non-
mutational mechanism driving C2-BPDCN such as the deregulated
DNA methylation and transcriptional profile outlined above. The
pathophysiological role of epigenetic features within the C2
cluster is supported by more frequent DNMT3A (14% vs 36%)
alterations bordering on statistical significance in this limited
cohort and the significant mutational enrichment for splicing gene
SRSF2 (0% vs 16%; Supplementary Fig. 3a).
Further, we wondered whether specific mutational drivers were

associated with the proliferative history of a given case, thereby
integrating mutational and epigenetic datasets to identify genetic
alterations, which could confer a selective advantage as mitotic
accelerators. We observed a trend towards a proliferative increase
in cases harboring ARID1A, ZRSR2, JAK3, CIC, and CREBBPmutations
and a (significant) decrease in mitotic activity in cases with mutant
PPARGC1A, CDH1, SI, RUNX1, SF3B1, MSH2 and SETD2 (Fig. 6b, c). In
summary, our findings suggest, that the proliferative potential of
BPDCN is determined by mutational driver events. To unravel
additional determinants, that shape the globally demethylated
landscape in BPDCN, we investigated the promotor DNA
methylation status of a set of genes associated with epigenetic
regulation (Fig. 6d). Hypermethylation of the promotor region
(promoter CGI methylation >0.2) of DNMT1, WT1, MYC, and TET1
was hereby observed in 42.2%, 73.2%, 40.0%, and 53.3% of
patients, respectively. Further, we observed a significant correla-
tion between promotor methylation and overall CGI methylation
for 22 of the 24 genes (Spearman’s rank correlation, padj < 0.05)
signifying a substantial impact on the epigenetic landscape in
BPDCN. Only DNMT1 and KMD2B did not show a significant
correlation. Of note, a substantial overlap between patients
harboring WT1 and MYC promoter methylation was observed in
16/45 cases (35.6%). Given that MYC constitutes a known WT1
target, this hints at a coupled mechanism in BPDCN pathogenesis
[35] (Fig. 6b, c).

DISCUSSION
BPDCN is a heterogeneous disease that poses a multi-level
challenge in terms of diagnostics and treatment alike. Unraveling
the epigenetic characteristics of the disease may aid in providing a
correct and timely diagnosis, which is crucial for the initiation of
specific treatments. Through comparative analysis of the DNA
methylation landscape of BPDCN, AML, CMML, and T-ALL, we
identify distinguishing features and provide unprecedented

insights into the molecular pathogenesis of BPDCN, which may
in turn facilitate the development of more refined therapies. In this
integrated molecular study we report on the largest BPDCN cohort
studied so far and systematically defined genomic and transcrip-
tional signatures in the context of genome-wide DNA methylation
[4, 8, 10, 36–42]. Hereby, we made three essential observations.
First, DNA methylation profiles allowed for a clear distinction

between BPDCN, AML, CMML, and T-ALL. BPDCN is characterized
by global demethylation and merely localized DNA hypermethyla-
tion showing dominant signs of mitotic stress, resembling a
pronounced variant of the canonical cancer methylome. Several
patients, for whom a borderline DNA methylation profile between
AML and BPDCN was identified, were found to resemble cases
with either syn- or metachronous development of CMML/AML or a
molecular and phenotypical constellation resembling AML with
pDC-like features [9, 10]. In one case, we observed the
simultaneous occurrence of typical BPDCN and pDC-AML infil-
trates, the latter seemingly emerging from an underlying MDS.
Moreover, all but one of these cases exhibit the more immature
C2-BPDCN transcriptional profile [6]. This aligns with observations
in B-cell malignancies and solid tumors where the DNA methyla-
tion profile reflects the degree of maturation of the cell-of-origin
[32, 43]. In keeping with previous observations, we observed syn-
or metachronous myeloid non-BPDCN neoplasms in a substantial
subgroup of the cohort and quite intriguingly RUNX1 mutations
with VAFs suggestive of subclonal aberrations in several cases.
Recently, clonal hematopoiesis (CH), disrupting epigenetic reg-
ulators in the majority of BPDCN cases, was proposed as an
underlying mechanism rendering mutations in RAS signaling
(NRAS, KRAS) and tumor suppressors like TP53 and ATM secondary
clonal events and thereby more specific in BPDCN pathogenesis
[44]. Our previous genomic studies revealed a significant overlap
in mutational drivers between BPDCN and the abovementioned
entities, underscoring the close molecular relatedness between
BPDCN and especially AML/CMML, which was recently further
illustrated in cases of divergent clonal evolution from a CHiP
constellation. This might be particularly relevant in cases with
syn-/metachronous AML/CMML and/or (subclonal) RUNX1 muta-
tions, as observed in a substantial subgroup of our cohort. The
present study, however, revealed a significant impact on signaling
processes shaping the specific phenotype of BPDCN in particular.
This can therefore be harnessed for diagnostics beyond estab-
lished approaches [20, 28, 45]. DNA methylation profiling revealed
a canonical epigenetic deregulation of TSGs with putative
oncogenic effects, vastly exceeding previous observations in
related entities [28, 29]. Intriguingly, we observed several
mutational drivers of mitotic stress, signified through a prolif-
erative epigenetic signature. In line with previous reports, we
found ARID1A mutant BPDCN samples to exhibit pronounced
signs of proliferative activity, while decreased mitotic activity in
RUNX1 mutant BPDCN is in keeping with reduced proliferation in

Fig. 5 Tumor immune composition by MethylCIBERSORT identifies clusters of divergent immunogenicity. a DNA methylation data were
deconvoluted according to immune cell populations (MethylCIBERSORT). This revealed two different types of BPDCN (Treg and CD14 driven;
named IC1 and IC2, respectively) presenting with significantly differing immune cell subsets in regard to the markers CD14 (monocytes/
macrophages), CD19 (B-cells), CD4 (T-helper cells) as well as fibroblasts, NK-cells and T-regulatory cells (T-regs). b–e A borderline BPDCN/AML
pDC-like case analyzed by MethylCIBERSORT and a comparative immunohistochemical assessment of the tumor microenvironment is
presented. b H&E staining reveals a cutaneous infiltrate covered by an intact epidermis. c Giemsa staining reveals small blastoid cells with
partly roundish occasionally monocytoid nuclei, small nucleoli, and weakly basophilic cytoplasm with increased mitotic activity. d Staining for
myeloid peroxidase reveals expected negativity in the malignant infiltrate alongside a few positive, tumor-infiltrating myeloid cells.
e However, CD14-Expression highlights both a typical negative BPDCN population, as well as a relevant monocytoid population, including few
tumor-infiltrating monocytes alongside a larger subgroup of malignant cells. f Mosaic plot visualizing the overlap between transcriptional
phenotype C1/C2 and IC1/IC2. g Overall, complete and partial response rates according to C1/C2 and IC1/IC2. h Oncoplot displays mutational
patterns of 9 genes that were found to be more differentially mutated between IC1 and IC2. Additionally, the heatmap illustrates TME cell
proportions for each individual sample. i, j Progression-free (PFS) and Overall survival (OS) analysis for patients with available clinical follow-up
according to IC1 vs IC2 identifies a significant inferior prognostic impact for the IC1 subtype regarding PFS accompanied by a trend towards
inferior OS.
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hematopoietic stem cells harboring similar mutations [46, 47]. At
the same time, unsupervised clustering of genome-wide DNA
methylation levels only partially recapitulated transcriptional
clusters, which was, however, previously observed in other blood
cancers (T-ALL) as well [48].

Second, recently established molecular subgroups of BPDCN
differ in terms of both transcriptional profile by RNA-seq and to a
lesser extent by DNA methylation. Expanding on previous studies,
we found predominant pathways deregulated by these circum-
stances to include innate and adaptive immunological processes,
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for which gene expression was significantly induced in C2-BPDCN.
This corresponds to elevated DNA methylation levels in inter-
leukin/inflammatory signaling genes in C1-BPDCN, leading to a
relative upregulation of the interleukin 4/13 interactome in C2-
BPDCN [49]. Interrogating our bulk RNA-seq data for TF activity,
we observed the transcriptional mirror image of the divergence in
DNA methylation profiles between C1 and C2-BPDCN. Regarding
potential therapeutic targets, we observed significantly higher
JAK-STAT- (predominantly driven by STAT3, STAT1, and STAT5A)
and NFkB- (driven by FOXC1, NFKB1, and NFKB) associated TF
activity in C2 in contrast to an EZH2-dependence in C1-BPDCN.
Potent inhibitors for molecularly informed therapeutic combina-
tions with tagraxofusp are readily available [50]. These observa-
tions were then verified by FFPE-ATAC-seq, revealing substantial
chromatin accessibility at highly expressed loci, including CDK6
and STAT5A, in keeping with our epigenetic and transcriptional
findings.
Finally, we gained insight into the TME through the combined

analysis of MethylCIBERSORT and immunohistochemistry. There
are two, prognostically relevant immunologic classes (IC1 and IC2)
of BPDCN, an unfavorable IC1 subgroup with lower PFS and ORR
(comprising ~25% of patients) harboring higher TMB and
significant enrichment for ERBB2, ASXL1, EP300, and KMT2C
mutations alongside a TME relatively depleted of NK-cells,
monocytes, and B-cells but enriched in Tregs while IC2 showed
pronounced monocyte, B- and NK-cell infiltrates and superior ORR
and PFS. Beyond PD-L1 expression levels, our comprehensive
MethylCIBERSORT approach identified a subset of immunologic
hot cases in which immunotherapeutic strategies beyond
tagraxofusp seem to be promising [51]. Moreover, we found that
IC2 had a significantly higher epigenetic age but there was no
difference regarding chronological age between both subgroups,
congruent with previous observations in NSCLC [23], where a
higher epigenetic age was able to emulate the malignant
potential of tumors with a high mutational load or decisive driver
mutations including TP53 [23]. In addition to the immunologically
defined classes, we observed an elevated level of TILs in atypical
C2-BPDCN. Our future goal is now to dissect the TME in even
greater detail by single-cell RNA sequencing and spatial tran-
scriptomics. Relatively high rates of positivity for B-cell antigen
CD79a and myeloid antigen CD33 compared to large-scale flow
cytometry studies are partially attributable to the TME, which will
most likely be more precisely dissected in multi-parameter follow-
up analyses at single-cell resolution [7, 12].
Limitations of the current study include a restricted number of

cases, sampled at various anatomical sites, alongside a partial lack
of information including clinical follow-up. In addition, the
limitations of the Illumina EPIC array, chosen for comparability
with large-scale studies on neighboring entities, are acknowl-
edged in that it is based on a bisulfite conversion and cannot
distinguish between 5-methylcytosine, 5-hydroxymethylcytosine,
5-formylcytosine, and 5-carboxycytosine. Although the levels of
total 5hmC detected across the human genome in both healthy
and cancer cells are ~14-fold lower than those of 5mC, indicating
that most observations in this study indeed stem from 5mC, we
will partially address this through a coupled analysis of a split

aliquot by both conventional bisulfite conversion as well as the
TET-assisted bisulfite approach in a follow-up study including
longitudinal sample collection [52]. Moreover, a substantial subset
of tagraxofusp-treated patients in the context of routine clinical
care alongside patients treated with novel agents including
IMGN632, BCL2 inhibitors as well as allogenic or autologous
CAR-T cell therapies or combination approaches within the scope
of clinical trials will make a valuable addition to future studies.
In conclusion, we can reliably distinguish BPDCN from its

related entities. Further, we unravel the epigenetic and transcrip-
tional underpinnings of the two recently defined subtypes
of BPDCN, identifying divergent potential targetable vulnerabil-
ities and characterizing immunologically and prognostically
meaningful BPDCN.
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