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High-plex imaging and cellular neighborhood spatial analysis
reveals multiple immune escape and suppression patterns in
diffuse large B-cell lymphoma
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TO THE EDITOR:
A hallmark of hematological malignancies such as diffuse large
B-cell lymphoma (DLBCL) is heterogeneity, with contribution from
the tumor and its microenvironment. Application of next
generation sequencing technology to patient tumor biopsies
revealed not only genetic and epigenetic underpinnings of tumor
intrinsic heterogeneity [1, 2], but also the complexities of the
tumor microenvironment (TME). Furthermore, the lymphoma
microenvironment has been characterized through computational
inference or digital cytometry techniques from large collections of
DLBCL gene expression data [3, 4]. These analyses demonstrated
that despite lacking a clear structure of tumor/immune compart-
ments found in solid tumors, the lymphoma TME is not a random
assortment of tumor and immune cells. We believe the spatial
relationship between tumor and infiltrating immune cells is a
missing piece in our understanding.
Technological advances in quantitative high-plex imaging such

as multiplexed ion beam imaging (MIBI) and imaging mass
cytometry (IMC) have provided not only quantitative measure-
ment of protein markers but also high-resolution images to reveal
spatial relations among tumor and infiltrated non-tumor cells,
complementing bulk transcriptomic data. An early example of
such study assessed 30 protein markers in 33 DLBCL cases by IMC
[5] and found nine cellular neighborhoods (CNs). However,
detailed characterization of these CNs was lacking. Using MIBI
data in a DLBCL cohort, Wright et al. recently reported
identification of six cell neighborhood types and three aggregate
tumor-immune microenvironments [6]. Here, we extend upon this
approach and systematically characterize the spatial patterns of
tumor and major infiltrating immune cells in newly diagnosed
DLBCL using MIBI coupled with quantitative imaging analysis to
provide a detailed characterization of these CNs, describe their
spatial networks and link to clinical outcomes (Fig. 1a).
We generated MIBI data for two DLBCL cohorts: Cohort A

consists of 27 newly diagnosed and 3 relapsed cases from a
clinical study at BC Cancer, and patients were selected for equal

numbers of achievers and non-achievers of 24-month progres-
sion-free survival (PFS). PFS data following R-CHOP treatment were
available, along with baseline disease characteristics, and FISH for
MYC, BCL2, and BCL6 rearrangement (Table S1). Three regions-of-
interest (ROIs) were manually selected from whole section by
certified pathologists for each sample and assayed with a 33-
marker panel (Table S2). ROI selection was aimed at diversity
within tumorous tissue rather than simply tumor-rich areas.
Similarly, 3–5 ROIs were selected for Cohort B, which consists of
55 newly diagnosed real-world cases with no clinical data and
assayed on a 17-marker MIBI panel (Table S3). Both cohorts had
RNAseq data, enabling gene expression based molecular classifi-
cation [7]. We describe our findings primarily in Cohort A but also
highlight observations consistent between the two cohorts.
The MIBI image analysis and quantitation, performed by IonPath

Inc., (Menlo Park, CA), identified 31 unique cell phenotypes in
Cohort A. Next, largely following methods in Bhate et al. [8], we
calculated CNs consisting of each cell and its 20 nearest
neighbors, for nine relatively abundant immune cell types
(Table S4) plus tumor cells, resulting in a total of 643,114 and
532,755 CNs in the two cohorts, respectively.
K-means clustering of the CN cellular compositions yielded

eight unique CNCs that were notably consistent between both
cohorts (Fig. 1b and Fig. S1). The CNs within each CNC are
enriched with different types of infiltrating immune cells, which
we named with ascending tumor content as: CD4-rich (33%
tumor), CD68−CD163+ mac-rich (38%), DC-rich (40%), CD8-rich
(44%), Treg-rich (53%), Dual-positive (CD68+CD163+) mac-rich
(60%), CD68+CD163− mac-rich (67%), and tumor-rich (87%).
Exemplary MIBI ROIs colored by their CNC composition are
visualized in Fig. 2b and Fig. S2.
By spatial context analysis, which measures proximities

between CNs, we found that CNs within the CD4-rich CNC are
the most segregated from those in the tumor-rich CNC (Fig. 1c, d).
Meanwhile, putatively suppressive CNs including those in the
Treg-rich and dual-positive mac-rich CNCs are more spatially
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Fig. 1 Study overview and spatial characterization of cellular neighborhood clusters (CNCs). a Study design and analysis flow. b Cell type
composition of each cellular neighborhood cluster (CNC). The CNCs are ordered by increasing tumor content. c Aggregate spatial context
networks across all samples in Cohort A. Each CNC is represented as a colored node, with node sizes proportional to the total number of CNCs
in the samples. Edges between two CNCs are shown if >10% of CNs within the two CNCs were in close proximity. Edge thickness (weight) is
proportional to this percentage of close proximity between pairs of CNCs. Self-edges are not included for visual clarity. d Spatial context
network edge weights (fraction of CNs within each CNC in close proximity) between tumor-rich CNs and all other CNs, for each sample in
Cohort A. This is a quantified depiction of the edge weights shown in c, between tumor-rich CNs and all other CNs. e Relative expression of
functional markers across all eight CNCs, for Cohort A. CNCs are ranked based on immune cell abundance and labeled as immune-rich and
immune-sparse. f The expression of PD-L1 or IDO-1 on tumor cells within each sample. p values from Wilcoxon paired test.
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proximal to the CNs in the tumor-rich CNC (Fig. 1c, d). This spatial
structure, which is also suggested by the variable tumor/immune
cell mixing across CNCs as shown in Fig. 1b, suggests that DLBCL
tumor B cells recruit or otherwise are surrounded by a suppressive
immune microenvironment.
We also found immune composition differences between the

two DLBCL cell-of-origin (COO) subtypes. Relative to GCB subtype
samples, ABC subtype samples are more enriched for
CD68−CD163+ mac-rich CNCs (p= 0.008), while GCB samples
have fewer immune-rich CNCs and more immune-sparse CNCs,
which is in line with previously published data [9]. Additionally,
when contrasting spatial context between ABC vs. GCB subtype,
we find that the CD8-rich CNCs in ABC are more proximal to the
CD68−CD163+ mac-rich (p= 0.002) and DC-rich (p= 0.02) CNCs
(Fig. S3a and Fig. S3b). As we describe below, these two latter
CNCs are more likely to be PD-L1 positive (Fig. 1e) and thus to be
immunosuppressive.
These findings motivated us to examine cell marker expression

patterns among the CNCs. We observed CNC-specific expression
patterns of certain functional markers (Fig. 1e). For example,
expression of immune suppressive ligands PD-L1 and IDO-1 was
higher in general in the four immune-rich CNCs than in the four
immune-sparse CNCs, particularly within the DC-rich CNCs. The
CNC-specific expression of these immune suppressive markers is
also associated with the expression of T-cell exhaustion and/or
activation markers (PD-1, LAG3, TIM3, GZMB) (Fig. 1e), indicative of
an immune suppression phenotype. Tumor cells also express
these markers at significantly higher levels in the four immune-
rich CNCs compared to immune-sparse CNCs (p < 3e-8) (Fig. 1f).
This finding suggests that immune suppression by tumor cells
may be induced when they are adjacent to certain immune cells,
in contrast to when they are within tumor-dense regions.
Each sample varies in its CNC composition, and hierarchical

clustering of sample-wise CNC composition results in four primary
patient subtypes (CNSTs) (Fig. 2a). This analysis revealed several
distinct DLBCL tumor/immune landscapes: a highly immune-rich
subtype characterized by high T-cell-rich CNCs and
CD68−CD163+ macrophage-rich CNCs (CNST-1); a tumor-mixed
subtype characterized by high dendritic cell-rich and
CD68+CD163− macrophage-rich CNCs (CNST-2); a tumor-rich
subtype which also has high dual-positive macrophage-rich CNCs
(CNST-3); and a subtype dominated by tumor-rich CNC (CNST-4).
Using the same methods, we obtained four similar CNSTs in
Cohort B (Fig. S4), albeit the relative proportion of these four
CNSTs varies between the two cohorts. Example ROIs from
samples selected from each CNST are illustrated in Fig. 2b.
We investigated whether CNCs and/or CNSTs are associated

with high-risk molecular signatures or clinical outcome in Cohort
A. The dual-positive macrophage CNC is significantly associated
with shorter PFS (log-rank p= 0.004) (Fig. 2c and Fig. S5).
Correspondingly, CNST-3, which is enriched with high dual-
positive macrophage-rich CNC is associated with shorter PFS
(PFS ≤ 9 months [enrichment p= 0.02], Fig. 2a). COO subtype and
double-hit/triple-hit by FISH did not correlate significantly with
CNC or with CNST. As expected, TME classifier-positive (immune-
high) cases [7] are enriched in immune-rich CNST-1 (enrichment
p= 0.01).
Our work bears similarities to a recent publication applying MIBI

analysis to DLBCL [6], including identification of dendritic cell- and
macrophage-enriched CNs, indicative of the strength of these
analyses. The robustness of our analysis is further enhanced by
showing consistency across CNCs and CNSTs in two independent
cohorts. This enables us to report novel details that shed light on
potentially clinically relevant characteristics of the DLBCL TME.
By dividing macrophages into three distinct subpopulations

based on CD68 and CD163 markers and known biology of tumor
associated macrophages [10], we could assign them to different
CNCs that reflect functional difference. Notably, we showed that

double-positive macrophage CNs are associated with poor clinical
outcome and found a patient subtype enriched with this
macrophage population (CNST-3). Our result is consistent with prior
reports that higher CD68+CD163+ (also known as M2-like, or
suppressive macrophages) confers poor prognosis in DLBCL [10–12].
Given seven out of eight CNCs contain at least one type of

infiltrating immune cell, a fundamental question is how DLBCL
tumors escape immune clearance, and three mechanisms were
proposed [13]. First, it is well documented that tumor cells may
achieve immune escape through extensive mutations in compo-
nents of MHC complex [14, 15]. Our analysis reveals an additional
mechanism: tumor cells tend to remain physically isolated from T
helper cells, which perform an essential role of antigen recogni-
tion. Second, tumoral tissues are often enriched with immune
suppressive cells such as CD68+CD163+ macrophages and T
regulatory cells, and we show that tumor cells spatially surround
themselves with immune suppressive cells. Third, tumor cells can
express suppressive ligands such as PD-L1 or IDO-1, canonically
expressed by immune cells. We show this aberrant expression is
more prominent when the tumor is surrounded by immune cells
rather than other tumor cells. How DLBCL acquires these favorable
spatial arrangements is probably through tumor–TME interactions
and further research to detail this is needed.
In summary, by applying cutting-edge proteomic imaging

techniques and cellular neighborhood analysis, we have uncov-
ered spatial patterns that reflect dynamic interactions between
DLBCL tumor and the lymphoma TME, and their association with
clinical outcome. Exploration of these spatial relations may lead to
new immune-oncology therapy approaches.
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