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TO THE EDITOR:
Recent studies have identified mutational genomic signatures
introduced by Apolipoprotein B mRNA-Editing Catalytic Polypeptide-
like (APOBEC) deaminases as well as inflammatory processes as
being pivotal for MM onset and progression [1–4]. Although these
recent insights provide a better understanding of MM pathogen-
esis, they have not yet been translated into clinical applications
such as MM risk stratification. The current standards for MM
patient risk classification are the International Staging System (ISS),
the Revised ISS (R-ISS) and the second revision of the R-ISS (R2-ISS)
introduced between 2005 and 2022, respectively [5]. All scores are
based on clinical parameters reflecting tumor burden, and the
newer R-ISS and R2-ISS further incorporate high-risk cytogenetics
[5]. Considering that most risk-defining chromosomal abnormal-
ities reflect early events in MM cells [6], we concluded that tumor
burden and/or cytogenetics-based classifiers might not accurately
reflect the dynamics of disease progression in MM patients.
Therefore, we hypothesized that a predictive score which reflects
molecular mechanisms that drive MM progression, can improve
the accuracy of current MM risk classifiers. To test this hypothesis,
we constructed and validated a proof-of-principle risk classifier
called Editor/Inflammation- or EI-score, which combines mRNA
levels of survival-associated APOBEC genes, pro/anti-inflammatory
genes as well as clinical markers for MM disease burden.
Data from 1143 patients with newly diagnosed MM (NDMM)

and available survival information was obtained through the
CoMMpass database version IA14, which was generated as part of
the Multiple Myeloma Research Foundation (MMRF) Personalized
Medicine Initiatives (www.themmrf.org). ISS, R-ISS and R2-ISS
staging information was available for 1113, 694, and 694 patients,
respectively. For 599 patients, information on both blood
parameters and RNA-seq was available. As an independent
validation cohort, we analyzed clinical, cytogenetic, and RNA-seq

data from 263 NDMM patients treated as part of the IFM/DFCI
2009 trial (ClinicalTrials.gov identifier: NCT01191060) [7]. IFM/DFCI
patients were treated with Bortezomib, Lenalidomide and
Dexamethasone (VRD) alone or with VRD+autologous stem cell
transplantation (ASCT). All patient baseline characteristics (CoMM-
pass and IFM/DFCI) are summarized in Table S1. A stepwise
workflow for the evaluation and selection of individual features
and multivariate models in the MMRF CoMMpass dataset is shown
in Fig. S1 and described in detail in the Supplementary Methods.
To translate recent whole genome- and RNA-sequencing

findings into a predictive score, we pre-selected 163 features,
including demographic, clinical, genomic, and cytogenetic infor-
mation, as well as inflammatory signaling and nucleotide editing-
associated mRNA covariates from the MMRF CoMMpass dataset
(Fig. S1). Of the 163 tested variables, 25 for overall survival (OS)
and 21 for progression-free survival (PFS) showed significant time-
to-event outcomes. Notably, only one out of five cytogenetic
features, namely +1q/amp1q (Fig. S2), passed our stringent
selection criteria in 599 NDMM patients. In line with our
hypothesis, we found that mRNA levels of individual APOBEC
genes as well as APOBEC-induced genomic mutational signatures
(calculated in form of both COSMIC single-base substitution (SBS)
signature and APOBEC mutation enrichment score [8, 9]) were
associated with inferior OS and PFS (Fig. S2). As the rationale of
this study was not to provide a score for immediate clinical
application but rather to determine if combining APOBEC and
inflammation-associated gene expression variables holds prog-
nostic merit for MM patients, we reduced our feature set to only
the most significant variables that were associated with both OS
and PFS. We then combined all age- and treatment-independent
prognostic variables that passed our selection criteria (and for RNA
parameters, showed a median expression >5 fragments per
kilobase per million) into multivariate CoxPH models, excluding
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patient cytogenetics and mutational signatures. This included the
following parameters: ß2M, Creatinine, Hemoglobin, LDH, APO-
BEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F,
APOBEC3G, IL10, IL11, IL17C, IL27, IFNG, TGFB1, TGFB3, IL22RA1,
IL2RA, TGFBR3, CXCL13. Patient age >75 y was excluded due to the
inclusion criteria of the IFM/DFCI2009 study (18–65 y). The
multivariate model with the highest predictive performance while
retaining as few parameters as possible included the following

seven features: ß2M, LDH, APOBEC2, APOBEC3B, IL11, TGFB1, TGFB3.
Based on these seven parameters, we devised a streamlined
scoring formula that relies on maximally selected rank statistics
established cut-offs and incorporates weights derived from the
rounded integer multivariate CoxPH z-score of each parameter.
Although we detected strong correlation among expression levels
of most members of the APOBEC family, there was no
significant positive correlation between APOBEC2 and APOBEC3B

Fig. 1 The EI-score reclassifies MM patients and identifies novel prognostic MM subgroups. Shown are graphical representations of OS
Kaplan–Meier estimates based on the application of the EI-score[OS] to (A) MMRF CoMMpass patients who were stratified into ISS and R-ISS
stage II and III as well as into R2-ISS low intermediate, high intermediate, and high risk groups. B MMRF CoMMpass patients carrying del(17p),
t(4;14), or +1q, and (C) IFM/DFCI patients carrying del(17p), t(4;14), or +1q reclassified by the EI-score.
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(Pearson’s R= 0.039), which are both part of the EI-score (Fig. S3).
The distribution of each expressed EI-score gene in the different
MMRF CoMMpass cytogenetic and age groups is shown in Fig. S4.
To evaluate the prognostic accuracy of the EI-score compared

to ISS, R-ISS, R2ISS, and mSMARTcyto (a reduced version of the
Mayo clinic mSMART score: https://www.msmart.org, based on the
presence of t(4;14), t(14;16), t(14;20), +1q and/or del(17p)), we
computed performance metrics for the outcome prediction of
each score in MMRF CoMMpass patients (Table 1, Fig. S5). The EI-
score achieved the best performance for OS and PFS prediction
(n= 599; Concordance index (Ci) 0.7 and 0.69, respectively),
followed by R2-ISS (n= 694; Ci 0.66 and 0.61), ISS (n= 1113; Ci 0.66
and 0.6), R-ISS (n= 690; Ci 0.64 and 0.6), and mSMARTcyto (n= 823;
Ci 0.58 and 0.54). We then successfully validated the EI-score in the
IFM/DFCI2009 NDMM cohort (n= 263) (Fig. S5), representing a
homogeneously treated patient collective. Notably, addition of EI-
score gene expression information to ISS, R-ISS, R2-ISS (Fig. 1A,
Table 1, Table S2), and mSMARTcyto, improved the performance of
each classifier significantly. Moreover, applying the EI-score
exclusively to MM patient subgroups with del(17p), +1q, and
t(4;14) allowed to identify previously unrecognized favorable risk
patients with adverse risk cytogenetics in the MMRF CoMMpass
(Fig. 1B, Fig. S6) as well as in the IFM/DFCI cohort (Fig. 1C). In line,
we found that del(17p), +1q, and t(4;14) patients with a high EI-
score, displayed an enrichment of APOBEC-induced genomic
mutations compared to low/intermediate EI-score patients (Fig. S7).
These results demonstrate that the integration of APOBEC and
inflammatory cytokine mRNA levels improve the prognostic
capacity of chromosomal abnormalities, which are currently
viewed as risk class defining. To adjust for the heterogeneous
treatment protocols of patients included in the MMRF CoMMpass
dataset, we also conducted a sub-analysis of MM patients
receiving Cyclophosphamide, Bortezomib, Dexamethasone
(CyBorD) or VRD ± ASCT (Fig. S8) and a sub-analysis of MM
patients receiving VRD ± ASCT + maintenance therapy (Fig. S9), in
which the EI-score also outperformed ISS, R-ISS, and R2-ISS. A
possible explanation why APOBEC family members have so far not
been part of probe-based mRNA classifiers such as EMC-92 [10]
and UAMS-70 [11] is likely due to their high sequence similarity
resulting in probe cross-hybridization and multimapping to
several APOBEC members [12]. The high hazard ratio and
predictive performance of APOBEC3B expression for adverse PFS
and OS which appears to be independent from that of APOBEC-
induced mutational signatures, likely reflects APOBEC3B’s addi-
tional involvement in MM pathogenesis through immune editing,
viral and retroelement restriction, DNA demethylation, and tissue
homeostasis [13]. Although APOBEC3B-induced C-to-U lesions are
typically resolved by DNA repair response mechanisms, they can
promote chronic replication stress and thus contribute to MM
development, which could be a reason for the high predictive
value we observed for APOBEC mRNA levels with MM patient
outcomes. The MM microenvironment is characterized by a
desynchronized cytokine milieu, with imbalanced pro- and anti-
inflammatory factors that impact on MM and niche cells. Besides
their general role in inflammatory processes, IL-11 as well as TGF-ß
have both been implicated in the growth and differentiation block
of osteoblasts [14], which in turn modulates MM cell activity.
Likewise, APOBEC3B and APOBEC2 upregulation has been linked to
systemic inflammation [13], suggesting that a pro-inflammatory
microenvironment in MM cells could drive APOBEC2 and
APOBEC3B expression. However, the precise regulation and
function of APOBEC2 and APOBEC3B in MM cells still needs to
be defined.
In this study, we have developed the EI-score which serves as an

important proof-of-concept, demonstrating that inclusion of
molecular markers that reflect disease progression can improve
MM risk assessment. Although our data highlights the limitations
of cytogenetics-based risk stratifiers, ISS, R-ISS and R2-ISS

represent the current clinical standard due to their accessibility.
Eventually, the development of more contemporary stratification
systems will be necessary to improve risk- and treatment
stratifications of MM patients.

DATA AVAILABILITY
MMRF sequencing data is available through the CoMMpass database version IA14
(www.themmrf.org). DFM/DFCI 2009 sequencing data can be requested through
Nikhil_munshi@dfci.harvard.edu.
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