Redefining high risk multiple myeloma with an APOBEC/ Inflammation-based classifier

Sarah Grasedieck (D) ${ }^{1,11}$, Afsaneh Panahi ${ }^{2,3,11}$, Matthew C. Jarvis ${ }^{4}$, Faezeh Borzooee ${ }^{2,5}$, Reuben S. Harris ${ }^{6,7}$, Mani Larijani ${ }^{5}$, Hervé Avet-Loiseau ${ }^{8}$, Mehmet Samur \mathbb{D}^{9}, Nikhil Munshi \mathbb{D}^{9}, Kevin Song ${ }^{10}$, Arefeh Rouhi $\mathbb{D}^{2,3,12}$ and Florian Kuchenbauer (D) ${ }^{2,10,12 凶 ~}$

© The Author(s) 2024

Leukemia; https://doi.org/10.1038/s41375-024-02210-0

TO THE EDITOR:

Recent studies have identified mutational genomic signatures introduced by Apolipoprotein B mRNA-Editing Catalytic Polypeptidelike (APOBEC) deaminases as well as inflammatory processes as being pivotal for MM onset and progression [1-4]. Although these recent insights provide a better understanding of MM pathogenesis, they have not yet been translated into clinical applications such as MM risk stratification. The current standards for MM patient risk classification are the International Staging System (ISS), the Revised ISS (R-ISS) and the second revision of the R-ISS (R2-ISS) introduced between 2005 and 2022, respectively [5]. All scores are based on clinical parameters reflecting tumor burden, and the newer R-ISS and R2-ISS further incorporate high-risk cytogenetics [5]. Considering that most risk-defining chromosomal abnormalities reflect early events in MM cells [6], we concluded that tumor burden and/or cytogenetics-based classifiers might not accurately reflect the dynamics of disease progression in MM patients. Therefore, we hypothesized that a predictive score which reflects molecular mechanisms that drive MM progression, can improve the accuracy of current MM risk classifiers. To test this hypothesis, we constructed and validated a proof-of-principle risk classifier called Editor/Inflammation- or El-score, which combines mRNA levels of survival-associated APOBEC genes, pro/anti-inflammatory genes as well as clinical markers for MM disease burden.

Data from 1143 patients with newly diagnosed MM (NDMM) and available survival information was obtained through the CoMMpass database version IA14, which was generated as part of the Multiple Myeloma Research Foundation (MMRF) Personalized Medicine Initiatives (www.themmrf.org). ISS, R-ISS and R2-ISS staging information was available for 1113, 694, and 694 patients, respectively. For 599 patients, information on both blood parameters and RNA-seq was available. As an independent validation cohort, we analyzed clinical, cytogenetic, and RNA-seq
data from 263 NDMM patients treated as part of the IFM/DFCI 2009 trial (ClinicalTrials.gov identifier: NCT01191060) [7]. IFM/DFCI patients were treated with Bortezomib, Lenalidomide and Dexamethasone (VRD) alone or with VRD+autologous stem cell transplantation (ASCT). All patient baseline characteristics (CoMMpass and IFM/DFCI) are summarized in Table S1. A stepwise workflow for the evaluation and selection of individual features and multivariate models in the MMRF CoMMpass dataset is shown in Fig. S1 and described in detail in the Supplementary Methods.

To translate recent whole genome- and RNA-sequencing findings into a predictive score, we pre-selected 163 features, including demographic, clinical, genomic, and cytogenetic information, as well as inflammatory signaling and nucleotide editingassociated mRNA covariates from the MMRF CoMMpass dataset (Fig. S1). Of the 163 tested variables, 25 for overall survival (OS) and 21 for progression-free survival (PFS) showed significant time-to-event outcomes. Notably, only one out of five cytogenetic features, namely +1 q/amp1q (Fig. S2), passed our stringent selection criteria in 599 NDMM patients. In line with our hypothesis, we found that mRNA levels of individual APOBEC genes as well as APOBEC-induced genomic mutational signatures (calculated in form of both COSMIC single-base substitution (SBS) signature and APOBEC mutation enrichment score [8, 9]) were associated with inferior OS and PFS (Fig. S2). As the rationale of this study was not to provide a score for immediate clinical application but rather to determine if combining APOBEC and inflammation-associated gene expression variables holds prognostic merit for MM patients, we reduced our feature set to only the most significant variables that were associated with both OS and PFS. We then combined all age- and treatment-independent prognostic variables that passed our selection criteria (and for RNA parameters, showed a median expression >5 fragments per kilobase per million) into multivariate CoxPH models, excluding

[^0]苞 $\bar{\sim}$

Table 1．Incorporation of El－score gene expression information improves the performance of established risk classifiers in the MMRF CoMMpass dataset．

 $\stackrel{0}{\circ}$
 ก̂̀ \bigcirc $\stackrel{\vdots}{\circ}$ மٌ O 0.7
0.72
0.6 $\stackrel{0}{0}$ ก̂̀
 Random む ず
 Concor－dance
index $\left(\mathrm{C}_{\mathrm{i}}\right)$ H O O N N O O 응 0.58
0.57
0.62 Concor－dance
 $\stackrel{0}{0} \circ \stackrel{\circ}{0}$ 숭 $\stackrel{\circ}{0}$ N Cox Proportional Hazard Regression Likeli－hood Wald test $\quad \underset{\text { tog rank }}{\text { ratio }}$
 $\stackrel{n}{i} \stackrel{\infty}{\underset{\sim}{\infty}}$

in	

52.98
107.7 37.05
$\stackrel{\circ}{\infty}$ 102.4 $\stackrel{\circ}{\infty}$ if 104.8 $\frac{\div}{8}$ 55.87 $\stackrel{\text { n }}{0}$

126.4
-
55.81
19.43
74.84
$\begin{array}{l}\text { Log rank } \\ \text { test }\end{array}$

24.64 60.62
59.28 87.18
51.97
103.5 36.91 79.01
52.14 96.5
38
85.04 85.04
54.22
97.33 39.37
85.83 54.64 100.2
43.57 은 120.1
 ratio
10.47 49.15 24.19
56.46 59.41 52.04 96.22
36.92 71.75
52.84 90.28 $\stackrel{\infty}{\infty}$ $\stackrel{0}{\mathrm{O}} \mathrm{O}$ 92.5 38.17 54.51 38.6 $\stackrel{m}{0}$ 45.01 63.51 Likeli－hood
ratio $\stackrel{\circ}{\square}$ 18.46
47.67 $\stackrel{\text { N }}{\substack{\text { in } \\ \text { in } \\ \\ \hline}}$

Multivariate model
Progression free survival（PFS）
（1）mSMARTcyto
mSMARTcyto＋APOBEC2，APOBEC3B
mSMARTcyto＋IL11，TGFB1，TGFB3
mSMARTcyto＋APOBECs＋Cytokines
（2）ISS
ISS＋APOBEC2，APOBEC3B
ISS＋IL11，TGFB1，TGFB3
ISS＋APOBECs＋Cytokines
（3）R－ISS
R－ISS＋APOBEC2，APOBEC3B
R－ISS＋IL11，TGFB1，TGFB3
R－ISS＋APOBECs＋Cytokines
（4）R－ISS－nocyto
R－ISS－nocyto＋APOBEC2，APOBEC3B
R－ISS－nocyto＋IL11，TGFB1，TGFB3
R－ISS－nocyto＋APOBECs＋Cytokines
（5）R2－ISS
R2－ISS＋APOBEC2，APOBEC3B
R2－ISS＋IL11，TGFB1，TGFB3
R2－ISS＋APOBECs＋Cytokines
（6）blood parameters（B2M，LDH）
B2M＋LDH＋APOBEC2，APOBEC3B
B2M＋LDH＋IL11，TGFB1，TGFB3
B2M／LDH＋APOBECs＋Cytokines
（EI－score）
7）gene expression only：
APOBEC2，APOBEC3B
IL11，TGFB1，TGFB3
APOBECs＋Cytokines
Overall survival（OS）
（1）mSMARTcyto
mSMARTcyto＋APOBEC2，APOBEC3B
mSMARTcyto＋IL11，TGFB1，TGFB3
mSMARTcyto＋APOBECs＋Cytokines
（2）ISS
ISS＋APOBEC2，APOBEC3B

Table 1. continued

Concor-dance
index $\left(\mathrm{C}_{\mathrm{i}}\right)$

 Likeli-hood
 The bold values highlight the performance metrics achieved by our developed El-score.
patient cytogenetics and mutational signatures. This included the following parameters: B2M, Creatinine, Hemoglobin, LDH, APOBEC2, APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D, APOBEC3F, APOBEC3G, IL10, IL11, IL17C, IL27, IFNG, TGFB1, TGFB3, IL22RA1, IL2RA, TGFBR3, CXCL13. Patient age $>75 \mathrm{y}$ was excluded due to the inclusion criteria of the IFM/DFCI2009 study (18-65 y). The multivariate model with the highest predictive performance while retaining as few parameters as possible included the following
seven features: ß2M, LDH, APOBEC2, APOBEC3B, IL11, TGFB1, TGFB3. Based on these seven parameters, we devised a streamlined scoring formula that relies on maximally selected rank statistics established cut-offs and incorporates weights derived from the rounded integer multivariate CoxPH z-score of each parameter. Although we detected strong correlation among expression levels of most members of the APOBEC family, there was no significant positive correlation between $A P O B E C 2$ and $A P O B E C 3 B$

A
EI-score applied to ISS II+III

EI-score applied to RISS II+III

El-score applied to $\mathrm{t}(4 ; 14)$

El-score applied to $\mathrm{t}(4 ; 14)$

Number at risk

El-score applied to R2-ISS low int + high int + high risk

El-score applied to +1q/amp 1q

El-score applied to +1q/amp 1q

Number at risk

High risk	18	11	7	1
Low/lnt risk	49	42	30	14
	0	1000	2000	300

Fig. 1 The El-score reclassifies MM patients and identifies novel prognostic MM subgroups. Shown are graphical representations of OS Kaplan-Meier estimates based on the application of the El-score[OS] to (A) MMRF CoMMpass patients who were stratified into ISS and R-ISS stage II and III as well as into R2-ISS low intermediate, high intermediate, and high risk groups. B MMRF CoMMpass patients carrying del(17p), $\mathrm{t}(4 ; 14)$, or +1 q , and (C) IFM/DFCI patients carrying del(17p), $\mathrm{t}(4 ; 14)$, or +1 q reclassified by the El-score.
(Pearson's $R=0.039$), which are both part of the El-score (Fig. S3). The distribution of each expressed El-score gene in the different MMRF CoMMpass cytogenetic and age groups is shown in Fig. S4.
To evaluate the prognostic accuracy of the El-score compared to ISS, R-ISS, R2ISS, and mSMART ${ }_{\text {cyto }}$ (a reduced version of the Mayo clinic mSMART score: https://www.msmart.org, based on the presence of $t(4 ; 14), \mathrm{t}(14 ; 16), \mathrm{t}(14 ; 20)$, +1 q and/or del(17p)), we computed performance metrics for the outcome prediction of each score in MMRF CoMMpass patients (Table 1, Fig. S5). The Elscore achieved the best performance for OS and PFS prediction ($n=599$; Concordance index $\left(C_{i}\right) 0.7$ and 0.69 , respectively), followed by R2-ISS ($n=694 ; C_{i} 0.66$ and 0.61), ISS ($n=1113 ; C_{i} 0.66$ and 0.6), R-ISS ($n=690 ; \mathrm{C}_{\mathrm{i}} 0.64$ and 0.6), and mSMART ${ }_{\text {cyto }}$ ($n=823$; $C_{i} 0.58$ and 0.54$)$. We then successfully validated the El-score in the IFM/DFCI2009 NDMM cohort ($n=263$) (Fig. S5), representing a homogeneously treated patient collective. Notably, addition of Elscore gene expression information to ISS, R-ISS, R2-ISS (Fig. 1A, Table 1, Table S2), and mSMART ${ }_{\text {cyto, }}$ improved the performance of each classifier significantly. Moreover, applying the El-score exclusively to MM patient subgroups with del(17p), +1q, and $\mathrm{t}(4 ; 14)$ allowed to identify previously unrecognized favorable risk patients with adverse risk cytogenetics in the MMRF CoMMpass (Fig. 1B, Fig. S6) as well as in the IFM/DFCl cohort (Fig. 1C). In line, we found that del $(17 \mathrm{p}),+1 \mathrm{q}$, and $\mathrm{t}(4 ; 14)$ patients with a high Elscore, displayed an enrichment of APOBEC-induced genomic mutations compared to low/intermediate El-score patients (Fig. S7). These results demonstrate that the integration of APOBEC and inflammatory cytokine mRNA levels improve the prognostic capacity of chromosomal abnormalities, which are currently viewed as risk class defining. To adjust for the heterogeneous treatment protocols of patients included in the MMRF CoMMpass dataset, we also conducted a sub-analysis of MM patients receiving Cyclophosphamide, Bortezomib, Dexamethasone (CyBorD) or VRD \pm ASCT (Fig. S8) and a sub-analysis of MM patients receiving VRD \pm ASCT + maintenance therapy (Fig. S9), in which the El-score also outperformed ISS, R-ISS, and R2-ISS. A possible explanation why APOBEC family members have so far not been part of probe-based mRNA classifiers such as EMC-92 [10] and UAMS-70 [11] is likely due to their high sequence similarity resulting in probe cross-hybridization and multimapping to several APOBEC members [12]. The high hazard ratio and predictive performance of $A P O B E C 3 B$ expression for adverse PFS and OS which appears to be independent from that of APOBECinduced mutational signatures, likely reflects APOBEC3B's additional involvement in MM pathogenesis through immune editing, viral and retroelement restriction, DNA demethylation, and tissue homeostasis [13]. Although APOBEC3B-induced C-to-U lesions are typically resolved by DNA repair response mechanisms, they can promote chronic replication stress and thus contribute to MM development, which could be a reason for the high predictive value we observed for APOBEC mRNA levels with MM patient outcomes. The MM microenvironment is characterized by a desynchronized cytokine milieu, with imbalanced pro- and antiinflammatory factors that impact on MM and niche cells. Besides their general role in inflammatory processes, IL-11 as well as TGF- β have both been implicated in the growth and differentiation block of osteoblasts [14], which in turn modulates MM cell activity. Likewise, $A P O B E C 3 B$ and $A P O B E C 2$ upregulation has been linked to systemic inflammation [13], suggesting that a pro-inflammatory microenvironment in MM cells could drive $A P O B E C 2$ and APOBEC3B expression. However, the precise regulation and function of APOBEC2 and APOBEC3B in MM cells still needs to be defined.
In this study, we have developed the El-score which serves as an important proof-of-concept, demonstrating that inclusion of molecular markers that reflect disease progression can improve MM risk assessment. Although our data highlights the limitations of cytogenetics-based risk stratifiers, ISS, R-ISS and R2-ISS
represent the current clinical standard due to their accessibility. Eventually, the development of more contemporary stratification systems will be necessary to improve risk- and treatment stratifications of MM patients.

DATA AVAILABILITY

MMRF sequencing data is available through the CoMMpass database version IA14 (www.themmrf.org). DFM/DFCI 2009 sequencing data can be requested through Nikhil_munshi@dfci.harvard.edu.

REFERENCES

1. Rustad EH, Yellapantula V, Leongamornlert D, Bolli N, Ledergor G, Nadeu F, et al. Timing the initiation of multiple myeloma. Nat Commun. 2020;11:1917.
2. Maura F, Petljak M, Lionetti M, Cifola I, Liang W, Pinatel E, et al. Biological and prognostic impact of APOBEC-induced mutations in the spectrum of plasma cell dyscrasias and multiple myeloma cell lines. Leukemia. 2018;32:1044-8.
3. Bolli N, Biancon G, Moarii M, Gimondi S, Li Y, de Philippis C, et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia. 2018;32:2604-16.
4. Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies FE, et al. Identification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood. 2018;132:587-97.
5. D'Agostino M, Cairns DA, Lahuerta JJ, Wester R, Bertsch U, Waage A, et al. Second revision of the international staging system (R2-ISS) for overall survival in multiple myeloma: a European Myeloma Network (EMN) report within the HARMONY project. J Clin Oncol. 2022;40:3406-18.
6. Kuehl WM, Bergsagel PL. Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer. 2002;2:175-87.
7. Samur MK, Aktas Samur A, Fulciniti M, Szalat R, Han T, Shammas M, et al. Genome-wide somatic alterations in multiple myeloma reveal a superior outcome group. J Clin Oncol. 2020;38:3107-18.
8. Jarvis MC, Ebrahimi D, Temiz NA, Harris RS. Mutation signatures including APOBEC in cancer cell lines. JNCI Cancer Spectr. 2018;2:pky002.
9. Roberts SA, Lawrence MS, Klimczak L, Grimm SA, Fargo D, Stojanov P, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45:970-6.
10. Kuiper R, Broyl A, de Knegt Y, van Vliet MH, van Beers EH, van der Holt B, et al. A gene expression signature for high-risk multiple myeloma. Leukemia. 2012;26:2406-13.
11. Shaughnessy JD Jr., Zhan F, Burington BE, Huang Y, Colla S, Hanamura I, et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood. 2007;109:2276-84.
12. Burns MB, Leonard B, Harris RS. APOBEC3B: pathological consequences of an innate immune DNA mutator. Biomed J. 2015;38:102-10.
13. Cervantes-Gracia K, Gramalla-Schmitz A, Weischedel J, Chahwan R. APOBECs orchestrate genomic and epigenomic editing across health and disease. Trends Genet. 2021;37:1028-43.
14. Giuliani N, Ferretti M, Bolzoni M, Storti P, Lazzaretti M, Dalla Palma B, et al. Increased osteocyte death in multiple myeloma patients: role in myelomainduced osteoclast formation. Leukemia. 2012;26:1391-401.

ACKNOWLEDGEMENTS

We thank the MMRF for kindly providing access to the data from the CoMMpass study. This work was supported by the BC Cancer Foundation and the Park, Armstrong, McKeen, Hungerford, Carruthers and DeLasalle families as well as through the International Myeloma Society (IMS) and a Paula and Rodger Riney Foundation Translational Research Grant and the LLSC. SG was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation - project 446251518), the Michael Smith Foundation for Health Research (MSFHR) and the Lotte \& John Hecht Memorial Foundation (project RT-2020-0578). AP was supported by Myeloma Canada Dr. Belch MEET Grant, 4-year UBC doctoral fellowship (\#6569) and an Echoridge Educational Foundation Scholarship (VGH \& UBC Hospital Foundation). Cancer studies in the Harris lab are supported by NCI P01 CA234228 and a Recruitment of Established Investigators Award from the Cancer Prevention and Research Institute of Texas (CPRIT RR220053). R.S.H. is an investigator of the Howard Hughes Medical Institute and the Ewing Halsell President's Council Distinguished Chair. ML received support through LLSC and CIHR grants (MOP111132). FB was supported by Weyerhaeuser Grad Schol (MBB) scholarship from Simon Fraser University.

AUTHOR CONTRIBUTIONS

This study was designed by FK, AR, SG, AP, and supervised by FK, AR, KS, and ML. Data analysis was carried out by SG, AP, and MJ. NM, MS, and HA provided (IFM/DFCI 2009) patient RNA sequencing and clinical data. The manuscript was written by FK, SG, and AP, and revised by FK, AR, KS, FB, ML, RH, NM, and MS. All authors approved the manuscript.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41375-024-02210-0.

Correspondence and requests for materials should be addressed to
Florian Kuchenbauer.
Reprints and permission information is available at http://www.nature.com/ reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/.
© The Author(s) 2024

[^0]: ${ }^{1}$ Department of Microbiology and Immunology, University of British Columbia, 2125 East Mall, Vancouver, BC, Canada. ${ }^{2}$ Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada. ${ }^{3}$ Department of Medicine, University of British Columbia, Vancouver, BC, Canada. ${ }^{4}$ Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, NC, USA. ${ }^{5}$ Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada. ${ }^{6}$ Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA. ${ }^{7}$ Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA. ${ }^{8}$ IUCT-Oncopole Toulouse, Toulouse, France. ${ }^{9}$ Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. ${ }^{10}$ Leukemia/Bone Marrow Transplant Program of British Columbia, Vancouver General Hospital, BC Cancer, Vancouver, BC, Canada. ${ }^{11}$ These authors contributed equally: Sarah Grasedieck, Afsaneh Panahi. ${ }^{13}$ These authors jointly supervised this work: Arefeh Rouhi, Florian Kuchenbauer. ${ }^{\infty}$ email: fkuchenbauer@bccrc.ca

