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The use of Hypomethylating agents combined with Venetoclax (VH) for the treatment of Acute Myeloid Leukemia (AML) has greatly
improved outcomes in recent years. However not all patients benefit from the VH regimen and a way to rationally select between
VH and Conventional Chemotherapy (CC) for individual AML patients is needed. Here, we developed a proteomic-based triaging
strategy using Reverse-phase Protein Arrays (RPPA) to optimize therapy selection. We evaluated the expression of 411 proteins in
810 newly diagnosed adult AML patients, identifying 109 prognostic proteins, that divided into five patient expression profiles,
which are useful for optimizing therapy selection. Furthermore, using machine learning algorithms, we determined a set of 14
proteins, among those 109, that were able to accurately recommend therapy, making it feasible for clinical application. Next, we
identified a group of patients who did not benefit from either VH or CC and proposed target-based approaches to improve
outcomes. Finally, we calculated that the clinical use of our proteomic strategy would have led to a change in therapy for 30% of
patients, resulting in a 43% improvement in OS, resulting in around 2600 more cures from AML per year in the United States.

Leukemia; https://doi.org/10.1038/s41375-024-02208-8

INTRODUCTION
Acute Myeloid Leukemia (AML) is characterized by the uncon-
trolled clonal expansion of hematopoietic precursors. Although
the majority of patients achieve remission, most ultimately
relapse. Despite recent innovation in therapy [1], AML remains a
fatal diagnosis for the majority, especially the elderly population
[2, 3]. The identification of recurrent chromosomal abnormalities
and common somatic mutations has improved the understanding
of leukemogenesis, leading to revision in both diagnostic and
prognostic categorization of AML [4–7]. However, most of these
mutations lack therapies that can directly target them [8].
Since the 1970s, anthracycline combined with cytosine arabino-

side (AraC), hereafter referred to as conventional chemotherapy
(CC), has been the standard of care in AML induction therapy [9].
Despite being the backbone of AML treatment, it has been
challenged with more target-based therapies [10, 11]. Increasing
evidence has demonstrated that some patients with newly
diagnosed AML benefit from the combination of venetoclax
(VEN) and hypomethylating agents (HMA), such as Azacytidine or
Decitabine, hereafter referred to as VH [12, 13]. Moreover,
achieving long-term remission is still challenging in AML [14],
and the VH combination has proven advantageous for use in

patients with relapse [15]. However, it has been reported that
specific groups of patients may not benefit from VH [16].
Moreover, despite the improved molecular classification of AML
and the resulting improvement in prognostication for outcome,
these schemas do not predict which of the available regimens
individual patients will respond best to, especially older patients
[17, 18]. Most patients are selected for CC or VH treatments based
on clinical characteristics such as age, performance status, or
occasionally cytogenetics and/or individual mutations, rather than
on characteristics of the underlying pathophysiology of the
leukemic blasts that cause differential responses to different
therapeutic options [19]. Therefore, incorrect therapy triaging
reduces the effectiveness and cure fraction achieved.
The ability to recognize which patients are more likely to

respond to one regimen versus another is crucial for maximizing
outcomes with existing therapies. Previous studies from our group
using reverse-phase protein array (RPPA)-based proteomics have
demonstrated that leukemia (AML, ALL, CML, and CLL) is
characterized by a limited number of recurrent proteomic
signatures, which are prognostic for outcome [20–28]. RPPA is a
high-throughput microarray that can quantitatively measure the
levels of hundreds of proteins in more than 1000 samples in a
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single array, using very little biological material [29, 30]. We
investigated whether this technique could be leveraged to
identify proteomic signatures associated with a superior response
to CC vs. VH therapies in AML.
In the present study, we identified specific protein profiles

associated with an improved response to CC or VH therapy using
machine learning algorithms to develop a Protein Classifier based
on the expression of a limited set of proteins that could be utilized
clinically to recommend either VH, CC, or neither. Revised triaging
based on these calculated predictions was estimated to increase
the 5-year cure rate by 43%. Furthermore, we identified potentially
targetable signaling hubs for a group of patients who did not
benefit from either VH or CC.

MATERIALS AND METHODS
Study design, ethics statement, and patient population
The use of AML samples in the present study was approved by the MD
Anderson Cancer Center (MDACC) Investigational Review Board (IRB),
according to previously approved protocols (LAB01-473, Lab05-0654).
Informed consent was obtained for sample use in compliance with the
Declaration of Helsinki. PB and BM samples were collected from 810 adult
patients (>17 years old) with newly diagnosed AML admitted to the
MDACC between April 2012 and June 2020. Patients were included in the
analysis if they received VH combination therapy (N= 85) or Conventional
Chemotherapy (CC) (N= 369), predominantly anthracycline and cytosine
arabinoside. Patients who were not treated at the MDACC (N= 115), or did
not receive VH nor CC (N= 241) were excluded.

Sample collection and processing
Immediately after harvesting, the samples were cooled to 4° C and
processed within two hours. Fresh samples were layered on a Ficoll
gradient, washed with PBS, and then counted. When T and B cells
represented more than 5% of the post-Ficoll cells, CD3 and CD19 positive
cells were removed by Magnetic Activated Cell Sorting (MACS) using the
Miltenyi AutoMACS Magnetic Cell Sorter. Sample concentrations were
normalized to 1 × 104 cells/mL, and whole-cell lysates were prepared as
previously described [31].

Reverse-phase protein arrays (RPPA)
RPPA was performed in the MDACC RPPA Core Facility as described
previously [20, 21, 23, 31, 32]. Briefly, whole-cell lysates were subjected to
five serial 2× dilutions (1:1, 1:2, 1:4, 1:8, and 1:16) and printed onto
nitrocellulose-coated glass slides. To determine protein expression levels,
slides were probed with 411 validated primary antibodies (322 total and 89
post-translational modified (PTM)), together with secondary antibodies
conjugated to an infrared molecule. The primary antibodies used were
validated, as previously described [33]. Stained slides were quantitated
with Microvigene (Version 3.4, Vigene Tech), and expression was normal-
ized to normal bone marrow (NBM)-derived CD34+ cells. More specifically,
the mean expression of NBM was normalized to zero and the values of
each AML sample are expressed in Log2-fold-change (LFC) values
compared to NBM. The antibodies used are listed in Supplementary
Table S1.

Computational analysis
Data analysis was performed using R v4.3.2 (“Eye Holes”) and Python3. To
identify the proteins that significantly affected patient prognosis, the
expression level of a single protein was split into quantiles: median split,
tertiles, quartiles, quintiles, and sextiles, resulting in the formation of five
groups. Overall survival (OS) was compared between quantiles in each
case. This was repeated for each of the 411 proteins, resulting in the
generation of a p-value table (Supplementary Table S2). Prognostic
proteins were defined using two significance cutoffs: p < 0.05 and
p < 0.01. Next, patients underwent unbiased hierarchical clustering
according to their protein expression using the progeny clustering
algorithm [34]. The protein set that showed clusters with clearly distinct
protein expression profiles and most significant cluster separation in
Kaplan–Meier (KM) plots for OS and complete remission duration (CRD),
was chosen for further analysis and named protein selector set (PS). Three
protein selector sets (PS1, PS2, and PS3) were developed to cover different
population subsets. In order to create a stricter contrast between VH and

CC for outcome analyses, patients who received HMA+ VEN and AraC
were removed from the VH group after the generation of PS1, leaving a
total of 79. Similarly, the CC population was filtered for AraC-treated
patients only, reducing the number of patients in this group to 340. The list
of selected proteins for the PS1, PS2, and PS3, along with their respective
p-values generated from the initial assessment can be found in
Supplementary Table S3. Protein networks were made with Cytoscape
v3.10.1 (ref. [35]), the StringApp [36], and the R package Rcy3(ref. [37]).
Pathway enrichment analysis was performed using the Enrichr webtool. To
assess the significancy of each biological process, a combination of
adjusted p-values and odds-ratio, entitled ‘combined score’ was used.
Ontologies were filtered using an adjusted p-value cutoff <0.01, and the
combination of lowest adjusted p-value and highest odds-ratio (i.e.,
highest combined score) were considered the most significant. Further
details of the methodology can be found elsewhere [38–40].
For Machine learning analysis, datasets were separated into develop-

mental (dev) and test sets using an 80/20 split. Dev sets were further
separated into training and validation sets using a 75/25 split. Model
weights were initialized using replicable random states. Random forest
machine learning algorithms were used in Python3 from the sklearn.en-
semble package (scikit-learn) with specific importation of the RandomFor-
estClassifier function. Hyperparameter tuning involved the application of
two individually assembled Python functions: holdout_grid_search and
random_forest_grid_search. Grid search was performed to optimize hyper-
parameters, including the number of trees in the random forest and their
maximum depth. 150 hyperparameter search-spaces were evaluated
based on the unique n_estimators, max_depth, and min_samples_leaf
hyperparameter combinations. Shapley Additive Explanations (SHAP)
values were calculated to explain the model predictions by quantifying
the additive importance of each feature. SHAP functions were imported
from the shap library. For each of the 3 protein classifier models, all
available proteins served as inputs into the aforementioned random forest
algorithm, and the output was a SHAP-based hierarchy of the most
predictive proteins. Few proteins (defined as 6 or less proteins) were tested
from the top 6 proteins in each model to train the final version of each
random forest model. The combination of proteins that generated the
highest C-index for each model were isolated and reported. C-index
calculation was used to evaluate model accuracy, using the formula:
((#concordant pairs+ 0.5*#ties)/(#permissible pairs)).

Statistical analysis
LogRank tests with p-values adjusted by the Benjamini–Hochberg (BH)
method were used to compare outcomes. Pearson’s correlation coefficient
was used to measure the linear the correlation between proteins. Fisher’s
exact test, Wilcoxon or Kruskal–Wallis tests were used to compare
measured variables. Univariate (UV) and multivariate (MV) models were
build using Cox proportional-hazards (CoxPH). Wilcoxon tests adjusted by
the False Discovery Rate (FDR), with the cutoff p < 0.05, and mean Log2-
fold change values, with a threshold of 0.5, were used for differential
expression analysis. Statistical significance was defined as a p-value < 0.05,
and significance symbols were determined as ****p < 0.0001, ***p < 0.001,
**p < 0.01, *p < 0.05, and ns not significant.

RESULTS
Protein selector sets (PS) identify patient groups with distinct
clinical outcomes
We developed an algorithm to identify the most therapeutically
discriminating proteins and generated Protein Selector Sets (see
“Materials and Methods” section). The first one, entitled PS1, was
comprised of 55 proteins, which identified three clusters (C1, C2,
and C3) with unique expression signatures. Protein levels across
the clusters are shown in Fig. 1A. Although the protein signature
of each cluster was the same in both patients with VH and CC,
their overall survival (OS) varied greatly between treatments. As
shown in Fig. 1B, patients in C1 (red) treated with VH (solid line)
had diametrically different and superior responses compared to
those treated with CC (dashed line), with a Median OS (MS) of
68.5 months (mo.) in the VH group versus (vs.) MS of 19.4 mo. in
the CC population. The opposite was true for C3 (yellow), where
CC patients had a MS of 16.8 mo. and the VH population displayed
a very poor MS of 8.7 mo. However, PS1 did not identify an
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optimal therapy for patients in cluster C2 (light blue). Therefore, to
identify the preferred therapy for PS1-C2 patients (N= 182), we
generated PS2, using the same strategy described previously. As
shown in Fig. 1C, PS2 separated the population into two clusters
with distinct expression profiles. In Fig. 1E, cluster PS2-C1 (blue

color) treated with CC (dashed line) had a markedly better OS
(>120mo.), compared to C1-VH (solid blue), which has a MS of
12.7 mo. The same was true for cluster PS2-C2 (purple color),
where CC (dashed line) had a MS 12.2 mo., and VH (solid line) had
a MS of 6.4 mo. Moreover, as shown in Fig. 1B, the best PS1-C3
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curve (dashed yellow, CC-treated) has an OS comparable to the
worst PS1-C1 group (dashed red, CC-treated). Therefore, we
generated a PS3 for PS1-C3 patients (N= 146) in an attempt to
identify a group with better OS. Within PS3, two clusters with
contrasting protein expression levels were defined, and separated
by treatment (Fig. 1D). As shown in Fig. 1F, patients in cluster PS3-
C1 (green color) had a very good prognosis when treated with CC
(dashed line), with MS > 120mo., and a very poor outcome when
treated with VH (solid line), having a MS of 10.4 mo. In contrast, OS
of patients in PS3-C2 (orange color) were similarly poor for both
therapies.
The combination of the PS sets led to the generation of five

clusters separated by the expression levels of 109 proteins as
shown in Fig. 2A. C1 derived from PS1, C2 and C3 from PS2
(former PS2-C1 and PS2-C2), and C4 and C5 from PS3 (former PS3-
C1 and PS3-C2). In Fig. 2B, the OS was better for C1 patients (red)
treated with VH (solid) compared to CC (dashed) (MS= 68.5 mo.
vs. 19.4 mo.). In contrast, both C2-CC (dashed blue) and C4-CC
(dashed green) displayed MS > 120mo., outperforming both C2-
VH (solid blue), with a MS of 12.7 mo., and C4-VH (solid green),
which has a MS of 10.4 mo. Moreover, although C3-CC (purple
dashed) do better than C3-VH (purple solid) (MS of 12.2 mo. vs.
6.4 mo.), their OS are worse than the C2-CC and C4-CC
populations. Finally, our PS system could not determine which
treatment patients in cluster C5 (orange) should receive.
Considering their poor outcomes in both VH (MS= 2.9 mo.) and
CC (MS= 8.6 mo), it seems that this population might benefit from
another treatment regimen (e.g., target-based therapies). Analysis
of CRD for all PS sets showed a similar outcome pattern
(Supplementary Fig. S1). Comparison of VH vs. CC for each cluster
separately is shown in Supplementary Fig. S2.
To better assess the biological meaning of the PS analyses, we

evaluated the correlation of the expression levels of the 109
prognostic proteins between each other. In Fig. 2C, the top most
correlated proteins, defined as having a correlation coefficient >
0.60, are shown. Among the biological processes related to those
proteins, the most common were ribosomal and transcriptional
activity (10 proteins), histone modifiers (8 proteins), cell cycle and
DNA damage response (7 proteins), cell metabolism (6 proteins).
For an expanded view of these protein relationships, the complete
correlation plot, together with protein networks of the PS proteins
divided by functional group are shown in Supplementary Fig. S3.
The correlation coefficients for all proteins, along with p-values of
each comparison are shown in Supplementary Table S4. The
stratification of all 109 proteins by biological process with their
respective Protein Selector Set is shown in Supplementary
Table S5.

Clusters associations with demographic, clinical, and
molecular features
We examined how the clusters differed considering demographic
(age, gender, race), clinical (AML group and laboratory para-
meters), and molecular features (cytogenetics and mutation
profiles), as shown in Table 1. There were significant differences
in age distribution, as well as the frequency of many clinical
variables (primary vs. secondary AML, white blood cell count,

percentage of blasts and platelets number), cytogenetics (by risk
group, simple vs. complex karyotype, or for specific events, such as
−5/5q-, −7/7q- and inv16), and for several individual mutations
(ASXL1, CEBPA, DNMT3A, EZH2, FLT3 [individually for ITD and
D835, and in combination], NPM1, and TP53). An expanded table
with all variables assessed is shown in Supplementary Table S6.
Since many of these features with unbalanced distributions

among the clusters are known to be prognostic, we wondered
whether the cluster prognostic impact was just a reflection of
these imbalances or if the clusters were independently
predictive. Here, we generated KM plots to verify whether
cluster membership is prognostic for OS and CRD when the
population is filtered for specific variables (e.g., males only,
secondary AML only, etc.). KM plots with p-values are shown in
Supplementary Figs. S4 and S5. The prognostic impact of the
five clusters was sustained for almost all the variables, including
gender, all three age groups, all races, both primary and
secondary AML, and major cytogenetic groupings (whether
divided into three prognostic groups or for complex karyotypes).
Since most individual cytogenetic and mutation events occur at
a low frequency when the five clusters are subdivided by
treatment modality (ten groups in total), the small sample sizes
often preclude reaching statistical thresholds. However, similar
trends (C1, C2, and C4, better than C3 and C5) were maintained
for the majority, with exceptions noted for FLT3, IDH1, IDH2,
JAK2, MLL, PTPN11, and TP53 mutations.
Next, we measured the prognostic value of the clusters and

other variables using univariate (UV) and multivariate (MV) Cox
proportional-hazards models (CoxPH) for both OS and CRD. In
both analyses, clusters were condensed into three groups to avoid
a large number of levels in a single variable, which might
negatively influence the CoxPH models. Therefore, clusters with
good prognosis (C1-VH, C2-CC, and C4-CC) were joined and
renamed Group1; the ones with intermediate OS and CRD (C1-CC,
C2-VH, C3-CC) were compacted into Group2; and finally, the
remaining clusters, with poor prognosis, (C3-VH, C4-VH, C5-VH and
C5-CC) were merged into Group3. As demonstrated in Table 2, all
cluster groups were predictive of survival and remission in both
the UV and MV models, reinforcing their prognostic value.
Moreover, a few demographic (age, white race, and Asian race),
clinical (secondary AML, blasts, Hbg, and serum B2M), cytogenetic
(complex karyotype, −5/5q-, −7/7q-, t(8;21), Inv16, and Del12),
and mutational (ASLX1, CEBPA, FLT3 [individually for ITD and
D835, and in combination], IDH2, JAK2, MLL, NPM1, PTPN11, and
TP53 mutations) features were also prognostic in the UV model for
OS. However, only clusters, secondary AML, complex karyotype,
Inv16, and IDH2 and PTPN11 mutations remained significant in
the MV analysis. Regarding CRD, in the UV analysis clusters
remained highly significant along with other characteristics (age,
black race, AML group, complex karyotype, −5/5q-, Inv16, and
FLT3, RUNX1, and TP53 mutations), with only clusters, black race,
and complex karyotype, which remained significant in the MV
model. Taken together, these findings corroborate the indepen-
dent prognostic value of the PS protein signatures. An expanded
table containing all variables evaluates in the UV model for both
OS and CRD is shown in Supplementary Table S7.

Fig. 1 Protein expression and clinical outcomes of patients clustered with PS1. A Heatmap depicting the protein expression of PS1 patients
(N= 419). B Kaplan–Meier plots of Overall Survival PS1 patients (N= 419) separated by cluster and treatment modality (VH= solid line,
CC= dashed line; PS1-C1= red, PS1-C2= light blue, PS1-C3= yellow). C Heatmap depicting the protein expression of PS2 patients (N= 182)
and D PS3 patients (N= 146). E Kaplan–Meier plots of Overall Survival from PS2 patients (N= 182) and F PS3 patients (N= 146) separated by
cluster and treatment modality (VH= solid line, CC= dashed line; PS2-C1= blue, PS2-C2= purple, PS3-C1= orange, PS3-C2= green).
Annotations above the heatmaps, starting closest to the heatmap, show the clusters, VH vs. CC treatment modality (second from bottom), and
then other annotations for several previously recognized prognostic features including AML group, cytogenetic risk, and presence of complex
karyotype and mutations. Colors for the annotations have the value shown in the legends along the right side. Protein expression ranging
from above normal (red) to normal (yellow-green-aqua) to below normal (dark blue) as shown in the color legend.
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Fig. 2 Integrated analysis of protein expression and clinical outcomes of patients clustered with PS1, PS2, and PS3. A Heatmap depicting
the protein expression of all patients (N= 419). Annotations above the heatmap, starting closest to the heatmap, show the cluster
membership and treatment modality, and then other previously recognized prognostic features (AML group, cytogenetic risk, and presence of
complex karyotype and mutations). Legends are as described in Fig. 1. B Kaplan–Meier plots of Overall Survival and C Top correlations
between all the PS proteins (N= 45). Squares represent the correlation between each protein are colored according to the degree of the linear
correlation, which varies between (−1, 1) and follows a ‘blue’ (−1), ‘white’ (0), and ‘red’ (1) gradient, as shown in the color legend. Significant
correlations are highlighted according to the following: ***p < 0.001, **p < 0.01, *p < 0.05, and blank= not significant.
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Development of a protein classifier (PC) for treatment
recommendation
Although the PS system can efficiently separate patients who
should receive VH from those who would do better with CC, it is
not feasible to measure more than 100 different proteins in the
clinical setting. The number of proteins required to be assessed is
excessive and poses a major cost-benefit challenge for the
application of the method. Instead, the identification of a few
proteins that can be measured using a Clinical Laboratory
Improvement Amendments (CLIA)-certified test to accurately
assign an individual patient to a specific protein expression
profile is practical. Therefore, we designed a classification
algorithm using the random forest machine learning technique
entitled Protein Classifier (PC). The system can identify the most
predictive proteins for treatment recommendation, based on
previously developed cluster memberships and protein expression
data. In other words, we recommended VH treatment for patients
belonging to cluster C1 (N= 91); CC therapy for patients in
clusters C2, C3, and C4 (N= 267); and neither VH nor CC for the C5
patient population (N= 61). The system was developed with the
goal of defining clusters using three different models sequen-
tially:(1) Define C1 patients (N= 91); (2) Distinguish C2 and C4
groups (N= 154) from the C3 and C5 populations (N= 174); and
(3) Separate C3 (N= 113) from C5 (N= 61) patients. In Fig. 3A, the
top predictive proteins are visualized together with their
respective SHAP values. The first step of the PC system identified
the six most predictive proteins for C1: SPI1, ASH2L,
EIF4EBP1.pS65, EZH2, NFE2L2 and SOX2 (C-index: 0.951). Thus,
according to our previous OS and CRD analyses, patients with this
protein signature should receive VH therapy. In the second step of
the PC system, TGM2, NOTCH1.cle, DUSP4, and RAD51 were the
best proteins to differentiate C2+ C4 from C3+ C5 (C-index:
0.903). Of note, distinguishing C3 from C2 and C4 is necessary,
because although both patient groups should receive CC, the OS
and CRD for C3 is much lower, so this patient group may benefit

from additional therapy (e.g., CC and stem cell transplant in first
remission), whereas C2 and C4 seem to do well with CC alone.
Finally, SMAD2.pS245_250_255, MAPK14.pT180_Y182,
EIF4E.pS209, and NDUFB4 were identified as the best proteins to
segregate C3 and C5, defining the last step of our system (C-
index:0.923). The expression of all proteins in the PC system by
cluster is shown in Fig. 3B. Importantly, the C-index, a measure of
individual patient discriminatory power, of all models in our PC
system is above 0.90, demonstrating that it robustly predicts
optimal therapy choice (a C-index higher than 0.7 is considered
predictive, while a measure of 1 would indicate perfection).
Moreover, by considering all three models working together, we
predicted that 87.3% of patients would receive the correct
therapy, and only a small fraction of 5.5% would be misassigned.
The proportion of patients in the C5 group who could be assigned
to either CC or VH, instead of being defined as ‘undetermined’,
was 7.1%. Overall sensitivity, specificity, and accuracy were 84.2%,
79.6%, and 82.8%, respectively. The predictive calculations for the
PC model are presented in Supplementary Table S8. Therefore, the
development of a kit that determines the expression of the
aforementioned 14 proteins would be useful and financially
feasible for triaging patients and guiding the recommendation for
VH or CC.

Patients with the worst outcomes have a unique and
targetable protein signature
Since our PS system was unable to recommend either VH or CC for
cluster C5 patients, we decided to determine the most associated
signaling pathways within this population. We identified 24
proteins among the 411 in our database which in combination
form a unique expression profile in C5 patients, compared to all
the other clusters. In Fig. 4A, the Log2-fold-change (LFC) values of
each each cluster against all the others is shown for each differ-
entially expressed (DE) protein of cluster C5. Proteins from ZAP70
until VIM have lower LFC values and, thus, were considered down-

Table 1. Significant demographic, clinical, and molecular characteristics.

Variable Overall Patient cluster

N= 419a C1, N= 91a C2, N= 69a C3, N= 113a C4, N= 85a C5, N= 61a p-valueb

Age (years) 58.1 (15.0) 61.1 (13.5) 60.7 (16.4) 58.3 (13.7) 53.8 (15.8) 56.5 (15.3) 0.004

White Blood Cell count (K/uL) 22.7 (41.9) 3.8 (7.0) 25.3 (34.8) 18.4 (40.4) 44.1 (57.2) 26.7 (43.8) <0.001

Blasts (%) 32.0 (31.1) 10.4 (20.0) 26.7 (28.7) 26.8 (25.7) 58.7 (28.2) 41.5 (31.1) <0.001

Platelets (K/uL) 69.5 (99.2) 69.9 (118.5) 101.6 (153.0) 66.8 (69.8) 40.9 (40.3) 77.4 (86.4) <0.001

Secondary AML 46% 53% 51% 54% 27% 43% 0.001

Unfavorable Cytogenetics 37% 33% 38% 35% 24% 63% <0.001

Complex Karyotype 28% 24% 26% 29% 16% 47% 0.003

−5/5q- 14% 10% 12% 12% 7.6% 32% 0.001

−7/7q- 15% 18% 12% 12% 2.5% 36% <0.001

Inv16 5.4% 1.3% 14% 1.9% 10% 1.7% <0.001

ASLX1 Mutation 18% 28% 27% 18% 10% 5.7% 0.010

CEBPA Mutation 13% 12% 3.8% 11% 26% 6.1% 0.003

DNMT3 Mutation 25% 19% 41% 19% 30% 18% 0.016

EZH2 Mutation 4.1% 6.0% 0% 7.0% 0% 7.1% 0.034

FLT3 Mutation 22% 5.2% 23% 19% 43% 19% <0.001

FLT3 D835 Mutation 5.8% 0% 7.1% 2.1% 17% 3.7% <0.001

FLT3 ITD Mutation 18% 5.2% 18% 16% 30% 19% 0.001

NPM1 Mutation 19% 5.5% 27% 13% 38% 15% <0.001

TP53 Mutation 18% 19% 18% 15% 9.2% 36% 0.005
aMean (SD), %;
bKruskal–Wallis rank sum test; Fisher’s Exact Test for Count Data with simulated p-value (based on 10000 replicates).
Bold values indicate statistical significance p < 0.05.
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regulated in C5, whereas the proteins from HSPB1.pS82 to
RB1.pS807_811 were classified as up-regulated since their LFC
values are higher in C5 compared to the others. A table with FDR-
adjusted p-values and LFC values comparing each cluster against
all the others is shown in Supplementary Table S9. To better
visualize connections of the C5 DE proteins with each other, we
generated a protein network, annotating the mean expression
values of each one compared to normal bone marrow (node fill
color), and whether the protein is up- or down-regulated (node
border). Importantly, although a few proteins are up-regulated
compared to the other clusters, their mean expression is below
the levels of normal bone marrow (e.g., CHEK1, BIRC5, CCNB1). A
table with all the DE proteins and their directionality (up- or down-
regulated), stratified by cluster is in Supplementary Table S10.
Volcano plots highlighting the directionality of DE proteins for
every cluster are shown in Supplementary Fig. S6.
To gain insights about the biological meaning of our data, we

performed pathway enrichment analysis of the 24 DE proteins. As
shown in Fig. 4C, processes with the highest combined scores (i.e.,
lowest p-value and highest odds-ratio) were most significantly
correlated to these proteins. Most of those were related to cell cycle
regulation and the DNA damage response (DDR), but specific

pathways were also enriched (e.g., TROP2, IL-24, and CKAP4
signaling). The complete table with all the processes and their
combined scores, along with adjusted p-values and odds ratios can
be found in Supplementary Table S11. Altogether, even though we
were unable to recommend a specific treatment for C5 patients, our
DE analysis revealed potential druggable signaling pathways that
could be useful for developing target-based therapies.

DISCUSSION
Proteomic profiling studies, developed previously by our group
using the RPPA methodology, identified proteomic signatures that
create a novel proteomic-based categorization system that was
prognostic in leukemia [20–24]. In this study, we applied a similar
proteomic-based strategy to a large cohort of AML patients and
identified unique and recurrent protein signatures that could be
useful for recommending either HMA+ VEN or Conventional
Chemotherapy treatments. We identified five protein signatures:
one (22% of cases) that should optimally receive VH, three (63%) in
which CC is superior, and the last one (15% of cases) for which
neither VH nor CC was preferable (especially after removing
favorable cytogenetics patients that are known to do well with
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CC). However, for this group, the PS system and differential
expression (DE) analysis identified major signaling hubs connected
to the protein profile of those patients, providing insights for
possible target-based therapies in the remaining 15% (61/419) of
patients. A therapy triaging system, optimized by the evaluation of
protein expression, would have reassigned 30% of cases (125/419),
with great impact on the five-year survival and remission rates.
Considering the adequate treatment for cluster C1 as VH and the
best treatment for clusters C2, C3, and C4 as CC, if the patients were
triaged by the PS system, the overall five-year survival rate would be
predicted to increase from 30% (126 patients) to 43% (181 patients),
a 43% increase in survival. The proportion in remission at the five-
year timepoint jumps from 52 to 63%, an increase of 21%.
Considering the US annual incidence of 20,000 newly diagnosed
AML cases, our proteomic triaging system using proteomics-
optimized therapy selection could result in 2600 more cures using
existing therapies (full calculations are in Supplementary Table S12).
Of note, centralized proteomic assessment as part of a clinical trial
or for routine testing is feasible, since protein levels, including
phosphorylation, have been shown by us to remain stable for up to
72 h if the samples are refrigerated, even if they are shipped across
long distances [41].
Furthermore, most demographic, clinical, and molecular char-

acteristics were not exclusively associated with a single protein
signature, although some showed biased distribution among the
five clusters. However, cluster membership by treatment was an
independent prognostic factor for OS, and to a lesser extent, for

CRD, in both univariate and univariate models. Therefore,
proteomic analysis provides new prognostic information regard-
ing responses that are not available for known prognostic factors.
Since most of the assessed molecular and cytogenetic features
were equally common in all protein signatures, it seems that
several distinct associations of independent molecular events may
lead to a similar proteomic signature, and a similar corresponding
pathophysiology, which is being captured by our PS system.
Interestingly, the PS system was also able to identify recurrent

biological processes relevant to patient prognosis. Since the three
selector sets (PS1, PS2 and PS3) were sequentially derived from
patient subsets of a larger population, it is not surprising that most
proteins (N= 100) were unique to a single selector set, while only
three (ARID1A, EIF2AK2 and HSF1.pS326) were common to PS1
and PS2, and just six showed overlap between PS2 and PS3
(H3K27Me3, WEE1.pS642, EIF4G1, SP1, ADM and LMNB1). How-
ever, while the proteins in each selector set tended to be unique,
the cellular functions involved were recurrent in all of them.
Among the 15 functionally related groups of proteins defined by
us, 10 showed substantial convergence between the PS sets:
histone modifiers, cell cycle and DDR, ribosomal and transcrip-
tional activity, cell metabolism, proliferative pathways, cell
adhesion and cytoskeleton regulation, apoptosis, signaling reg-
ulation, heatshock proteins, and cell differentiation (see Supple-
mentary Table S4). Importantly, considering the distinct
expression pattern of all five protein signatures, it seems that
each cluster has its own biases regarding those functional groups.
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This suggests that these biological processes are not only are
related to prognosis but also might represent a therapeutic
opportunity worth exploring to improve patient response.
Finally, our PS system identified a particular patient population

for whom neither VH nor CC was recommended as the main
therapy. By exploring the protein expression profiles of those
patients, we identified a small number of differentially expressed
proteins that were up- or down-regulated in comparison to the
other clusters. We also correlated those proteins with ontologies
related to cell cycle and DDR and other more specific pathways.
Furthermore, two proteins caught our attention: RPS6.pS240_244,
which is up-regulated in C5 and has higher expression levels
compared to normal bone marrow (NBM), and FZR1, which is
down-regulated has low expression compared to NBM. RPS6
composes part of the 40 S unit of the ribosome and is a
downstream target of several proliferative pathways, such as
PI3K/AKT/mTORC1 and MAPK/ERK axis, both of which converge to
activate S6K, responsible for the phosphorylation of RPS6 at S240/
S244(refs. [42, 43]). Phospho-RSP6 increases translation of specific
mRNAs, ultimately inducing cell growth, and its overexpression
has been observed in many cancer types, including AML [43–45].
In contrast, loss of FZR1, a cell cycle and DDR regulator, increases
the sensitivity to genotoxic agents in B-cell acute leukemia and
also contributes to the selection therapy-resistant subclones [46].
Interestingly, phosphorylation of FZR1 by ERK facilitates melano-
magenesis, and loss of FZR1 cooperates with AKT to transform
primary melanocytes [47]. Therefore, high RPS6.pS240_244 and
low FZR1 might actually be directly correlated to PI3K/AKT/
mTORC1 and/or MAPK/ERK activation in C5 patients, and
inhibition of those pathways with FDA-approved drugs (e.g.,
sirolimus, capivasertib, sorafenib) could potentially improve
outcomes.
In summary, we developed a proteomic-based triaging system

to recommend either VH or CC for patients with AML. We predict
that by applying our proteomic approach both overall survival and
complete remission duration of AML patients will experience a
significant increase, resulting in 2 600 more cures per year in the
USA using existing therapies. Moreover, we identified potential
therapeutic targets to improve the therapy of patients who would
not be predicted to benefit from either VH or CC treatment
regimens.

DATA AVAILABILITY
Patient datasets and code scripts are freely available at https://github.com/
escmagalhaes/23-LEU-1445 and will be transferred to http://www.leukemiaatlas.org
upon publication.
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