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Extramedullary multiple myeloma (EMM) is an aggressive form of multiple myeloma (MM). This study represents the most
comprehensive next-generation sequencing analysis of EMM tumors (N= 14) to date, uncovering key molecular features and
describing the tumor microenvironment. We observed the co-occurrence of 1q21 gain/amplification and MAPK pathway mutations
in 79% of EMM samples, suggesting that these are crucial mutational events in EMM development. We also demonstrated that
patients with mutated KRAS and 1q21 gain/amplification at the time of diagnosis have a significantly higher risk of EMM
development (HR= 2.4, p= 0.011) using data from a large CoMMpass dataset. We identified downregulation of CXCR4 and
enhanced cell proliferation, along with reduced expression of therapeutic targets (CD38, SLAMF7, GPRC5D, FCRH5), potentially
explaining diminished efficacy of immunotherapy. Conversely, we identified significantly upregulated EZH2 and CD70 as potential
future therapeutic options. For the first time, we report on the tumor microenvironment of EMM, revealing CD8+ T cells and NK
cells as predominant immune effector cells using single-cell sequencing. Finally, this is the first longitudinal study in EMM revealing
the molecular changes from the time of diagnosis to EMM relapse.

Leukemia; https://doi.org/10.1038/s41375-024-02206-w

INTRODUCTION
Extramedullary multiple myeloma (EMM) is an aggressive form of
multiple myeloma (MM), the second most common blood cancer,
which is characterized by the clonal proliferation of plasma cells
(PCs) within bone marrow (BM) [1]. In EMM, malignant PCs
become independent of the BM microenvironment and infiltrate
other tissues and organs, creating soft tissue tumors [2]. Therefore,
EMM is associated with treatment resistance and short survival [3,
4]. In clinical setting, it is important to distinguish EMM from the
less aggressive form, paraskeletal (bone-related) MM, which
manifests as the presence of soft tissue lesions adjacent to the
bone [1, 5]. The incidence of EMM is reported to be 1.7–4.5% at
diagnosis (primary EMM) and up to 43% at relapse (secondary
EMM) [1, 6, 7]. Recent clinical trials in heavily pretreated MM
patients who are “triple class exposed” (previous proteasome
inhibitor [PI], immunomodulatory drug [IMiD], and anti-CD38
monoclonal antibody [mAb]) reported a much higher incidence of
EMM than in the past [8, 9]. This observation is probably

associated with longer survival of MM patients due to novel
treatment options, as well as improved availability of modern
imaging techniques, such as PET/CT. Thus, EMM is becoming a
clinically relevant issue and one of the “hot topics” in the MM
community alongside with circulating tumor PCs, which may be
responsible for EMM spread and possess great prognostic value
[10–12]. The molecular mechanisms mediating EMM develop-
ment, as well as the composition of the tumor microenvironment,
are still poorly understood but crucial for the efficacy of novel
immunotherapy.
No detailed genomic or transcriptomic profiling has been

carried out for EMM. In addition to a limited number of samples,
studies focusing on chromosomal aberrations are usually biased
by a preselected set of FISH targets [13, 14], and small somatic
mutations are analyzed mostly with targeted panels, excluding the
vast majority of human genes [15, 16]. Similarly, almost no
transcriptomic data obtained directly from EMM tumor cells exist
[17, 18].
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In this study, we performed the most comprehensive investiga-
tion of EMM cells to date, combining data obtained by FISH, whole
exome sequencing (WES), bulk RNA sequencing (RNA-seq), single-
cell RNA sequencing (scRNA-seq), and flow cytometry in 14
patients with EMM. Importantly, we obtained genomic and
transcriptomic data from eight paired samples of BM aberrant
PCs from the time of diagnosis and compare them with EMM cells
from the time of relapse which, to the best of our knowledge,
represents the first longitudinal study in EMM.

METHODS
Patients and data collection
All samples were collected between 2014 and 2022 at the Department of
Hematooncology, University Hospital Ostrava: 14 EMM samples from
biopsies of soft tissue tumors and 14 BM samples from newly diagnosed
MM (NDMM), 8 of them paired samples stored at the biobank from the
time of diagnosis and 6 unpaired, and 14 unpaired BM samples from
relapsed/refractory MM (RRMM) patients without evidence of EMM. All
samples were used for RNA sequencing (n= 42). EMM and paired NDMM
samples were also used for WES (n= 22), and some EMM samples were
processed for single-cell sequencing (n= 5) (Fig. 1). All EMM samples were
processed fresh immediately (max. 1 h) after surgery. Patients were treated
in a real-world setting according to institutional guidelines. Biopsy of the
soft tissue tumor was performed when clinically indicated to confirm the
EMM diagnosis. The clinical characteristics of the EMM patients and
treatment summaries are provided in Supplementary Table 1 and 2. The
clinical characteristics of the RRMM and unpaired NDMM patients are
described in Supplementary Table 3. The study was conducted in
accordance with the principles of the Declaration of Helsinki and was
approved by institutional ethics committee under number 511/2022. All
patients provided written informed consent.

Fluorescence in situ hybridization
For EMM tumor samples, a 2 × 5 × 5mm slice of fresh tumor was touched
several times at one spot against a methanol-cleaned uncoated slide,
which was then fixed in 70% ethanol and air-dried. FISH analysis was

performed using the following probes: MetaSystems XL RB1/DLEU/LAMP,
XL IGH plus, XL P53, XL 1p32/1q21, XL 5p15/9q22/15q22 Hyperdiploidy, XL
t(11;14), XL t(4;14), and XL t(14;16). A total of 100 cells were evaluated. FISH
analysis of probe hybridization was performed with a 100× objective
fluorescence microscope (Olympus BX41) with single and double emission
filters. The protocol for samples from NDMM and RRMM samples is
described in the Supplementary Methods.

Fluorescence-activated cell sorting
EMM samples were collected in tubes containing normal saline and
mechanically disintegrated immediately after surgery. BM aspirates from
NDMM and RRMM patients were collected in tubes containing EDTA and
processed within 24 h. Filtered cell suspensions from EMM and BM samples
were subjected to erythrocyte lysis in NH4Cl-based lysing solution. Cells
were stained with multiple fluorescence-labeled mAbs: CD38-FITC/CD45-
PB/CD56-PE/CD19-PC7/CD138-APC. Cells were sorted using a BD FACSAria
III (BD Biosciences) equipped with 405, 488, 561, and 633 nm excitation
lasers. Pathological PCs were gated according to their immunophenotype
and sorted into RPMI media containing 10% fetal bovine serum. Purity
exceeded 95%.

DNA/RNA isolation and quality assessment
Sorted aberrant PCs were subjected to DNA and RNA isolation using the
AllPrep DNA/RNA Micro Kit (Qiagen, Germantown, MD) following the
manufacturer’s protocol. The concentration of isolated DNA and RNA was
determined on a Qubit 2.0 fluorometer (Life Technologies, ThermoFisher
Scientific, Waltham, MA, USA). RNA quality was assessed on an Agilent
2200 Tapestation (Agilent Technologies, Santa Clara, CA, USA) using High
Sensitivity RNA ScreenTape.

RNA sequencing
The total RNA (5 ng) from 42 samples was used for library preparation
using SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian
(Takara Bio, San Jose, CA, USA). Briefly, RNA was converted to cDNA,
followed by the addition of Illumina adaptors and barcodes by five cycles
of PCR. Next, libraries were submitted to depletion of ribosomal cDNA
using ZapR v2 enzyme and R-probes v2. Finally, libraries were amplified by
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14 cycles of PCR. Libraries were pooled in equimolar ratios and the
final library pool sequenced using the Illumina platform (Illumina Inc.,
San Diego, USA) at Macrogen Europe (the Netherlands). Sequencing
resulted in an average number of 16.4 (63%), 8.0 (31%) and 1.5 (6%)
million readsmapped to exonic, intronic and intergenic regions,
respectively. The RNA-seq data analysis is described in detail in the
Supplementary Methods.

Whole exome sequencing
Genomic DNA from 22 samples was used for WES. For each patient,
T-lymphocytes were sequenced as the normal reference. DNA (72–200 ng)
from 11 patients was used for library preparation using the Twist
Comprehensive (Core+ RefSeq) Human Exome kit (Twist Biosciences,
USA) following the manufacturer’s protocol with enzymatic fragmentation

performed by Macrogen Europe (the Netherlands). Samples from three
patients in the above-mentioned cohort underwent library preparation
using SureSelect Human All Exon V6 (Agilent Technologies, USA), but the
data were analyzed in the same way as all samples (i.e., using BED files
from Twist Comprehensive [Core+RefSeq] Human Exome kit). Sequencing
was performed on an Illumina platform aiming at 200× raw coverage
(150 bp pair-end reads) by Macrogen Europe (the Netherlands). Sequen-
cing resulted in an average target coverage of 94× (range 57–133×) for
tumor samples and 67× (range 50–82×) for normal samples. The WES data
analysis is described in detail in the Supplementary Methods.

Single-cell analyses of EMM tumors
Single-cell RNAseq was performed using cell suspensions from five EMM
tumors (5000–10,000 cells per sample) that were subjected to Chromium
Next GEM Single Cell 3′ RNA reagent kit v3.1 (cat. num. 1000128, single
indexing) (10x Genomics, USA) following manufacturer’s protocol.
Sequencing was performed by Macrogen Europe (the Netherlands) on
an Illumina sequencer. Sequencing resulted in an estimated average of
6054 cells, 34888 mean reads per cell, and 3575 median genes per cell per
patient. The scRNA data analysis and flow cytometry analysis is described
in detail in the Supplementary Methods.

Survival analysis
Survival analysis of Multiple Myeloma Research Foundation CoMMpass
study (NCT01454297) (“CoMMpass”, N= 699, IA20) is described in detail in
the Supplementary methods. We used p= 0.05 as a threshold for
significance in all analyses. We performed all computations and visualiza-
tion using R(v4.0.3) and survival(v3.2.11), survminer(v0.4.9), lubrida-
te(v1.7.10), readxl(v1.3.1), and tidyverse(v1.3.1) packages.

RESULTS
Clinical characteristics of EMM relapse
A total 14 of RRMM patients (10 men and 4 women) underwent
biopsy of the soft tissue tumor, which confirmed the diagnosis of
EMM (Fig. 2). Median age at the time of EMM relapse was 59 years,
median time from diagnosis was 22.2 months, and median overall
survival from the time of EMM relapse was only 3.6 months (Fig. 1).
Median number of previous lines of therapy was 3 (range 1–6),
and the majority of patients received a combination of PI, IMiDs,
corticosteroids, and alkylators. Six of the 14 patients had
daratumumab before EMM relapse (Supplementary Table 2).
Patients with EMM relapse presented with a significant drop in
serum electrophoresis defined M-protein levels compared to non-
EMM relapse (median 5.8 g/L vs. 14.4 g/L; p= 0.011) at the time of
relapse, but there was no difference in free light chain levels. BM
PC infiltration was significantly lower in patients with EMM relapse
assessed by cytology (2.8% vs. 14.4%; p= 0.023) or flow cytometry
(0.5% vs. 8.3%; p= 0.05; Supplementary Fig. 1). This minimal BM
infiltration of malignant PCs translated into normal blood counts
in practically all patients experiencing EMM relapse (median white
blood cell count 5.1 × 109 /L; median absolute neutrophil count
2.4 × 109/L; median level of hemoglobin 12.0 g/dL; median
platelet count 168 × 109/L).

1q21 gain/amp is the most frequent chromosomal
aberration in EMM
Out of 14 EMM samples, we detected (by FISH and/or WES) 1q21
gain or amplification (≥4 copies) spanning the CKS1B gene in 12/
14 samples (86%; 5 gains and 7 amplifications) (Fig. 3A). Del(13q)
including RB1 and del(17p) including TP53 were detected in 8
(57%) and 6 (43%) cases, respectively. Surprisingly, high-risk t(4;14)
was present in only 2 patients (14%). We verified this finding with
RNA-seq data revealing elevated FGFR3 expression and/or
presence of FGFR3—IGH fusion transcripts. Detailed copy number
analysis utilizing WES data further uncovered amplifications of
several oncogenes, deletions of tumor suppressor genes (TSGs)
[19] and deletion of CD38 in 4 out of 14 EMM samples,
(Supplementary Fig. 2).

Fig. 2 18F-FDG-PET/CT scans presenting extramedullary (EM)
involvement in patients with multiple myeloma. The left column
represents whole body maximum intensity projections (MIPs), the
medial and right columns fused hybrid multi-planar reconstructions
(MPRs) in the coronal and sagittal plane. A 59-year-old male with
multiple metabolically active EM foci (EMM13) had a histologically
evaluated lesion in the right cubital fossa (green arrow, SUVmax
17.4). B 75-year-old female with active foci in the skeleton and
lymph nodes (EMM14) had a histologically evaluated extramedullary
lesion growing near the wall of the right maxillary sinus (green
arrow, SUVmax 5.1). C 62-year-old female with multiple active foci
with liver involvement (EMM08) (green arrow, SUVmax 44.4).
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Members of MAPK pathway are mutated in virtually all EMM
samples
Next, we identified at least one mutated gene in the MAPK
signaling pathway in almost all EMM samples (13/14, 93%; Fig. 3B),
with KRAS as the most frequently mutated gene in our cohort (10/
14, 71%; Fig. 3B, Supplementary Fig. 3). Mutations in NF1 and NRAS
were identified in 2 (14%) samples, and BRAF and HRAS were
mutated in 1 (7%) sample. Mutations in the MAPK pathway were
always clonal with the cancer cell fraction bearing them >0.8
(Supplementary Table 4), suggesting their emergence prior to

extramedullary tumor formation. We also discovered that 57% of
EMM samples had mutations in genes associated with genome
integrity, with TP53 being the most frequently mutated TSG (5/14;
36%). The last group of genes frequently mutated in EMM were
those belonging to the receptor tyrosine kinase (RTK) signaling
pathway upstream of the MAPK pathway [20]. Further, we used
RNA-seq data to demonstrate that at least 80% of the above-
mentioned mutations were transcribed into mRNA and are
presumably translated into final protein products (Supplementary
Table 4). Notably, all EMM samples with mutated TP53 transcribed
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the mutated allele, with variant allele frequency (VAF) ≥ 0.9 as a
sign of biallelic inactivation (Supplementary Fig. 2). All mutations
in K/N/HRAS had VAF of at least 0.3 in the RNA-seq data. Of note,
melphalan signature was detected only in 3/9 (33%) of patients
that underwent ASCT (Supplementary Fig. 4).

Combination of 1q21 gain/amp and mutated KRAS in NDMM
patients predicts higher risk of EMM development
Due to the high frequency of 1q21 gain/amp and KRAS mutations
in EMM, we hypothesized that NDMM patients carrying the
combination of these two abnormalities are at higher risk of EMM
development. We observed this combination already at the time
of MM diagnosis in 3/8 (38%) paired NDMM samples (Fig. 3).
Therefore, we used data collected in the CoMMpass study
(N= 699; MM patients with all required data available) that
supported our hypothesis as only the combination of 1q21 gain/
amp with KRAS mutations (7.6% of patients), but not any of them
alone (29.8% and 17.7% with only 1q21 gain/amp or KRAS
respectively), resulted in a significantly higher risk of soft tissue
plasmacytoma development in univariate analysis (HR= 2.7;
p= 0.002) and multivariate Cox analysis (HR= 2.4; p= 0.011) with
ISS, LDH level, del(13q), and del(17p) (Supplementary Table 5). In
addition, we observed virtually identical results using the Fine-
Gray model for survival analysis with competing risks (soft tissue
plasmacytoma development vs. death, HR= 2.4; p= 0.011). No
interaction was detected between KRAS mutations or 1q21 gain/
amp with del(13q) or del(17p).

Transcriptomic profiling of EMM cells suggests higher
proliferation and decreased homing to BM
To further explore the biological features of EMM, we used RNA-
sequencing to compare 14 EMM samples with 14 NDMM samples

from which 8 samples were paired. In total, we identified
799 significantly deregulated protein coding genes (absolute
log2 fold change > 1, Benjamini–Hochberg adjusted p-value <
0.05) among which 290 were downregulated and 509 upregu-
lated (Fig. 4A). Pathway enrichment analysis revealed marked
upregulation of pathways connected to cell proliferation and
downregulation of pathways connected to immune response in
comparison with NDMM (Fig. 4B) as well as in unrelated RRMM
samples (Supplementary Fig. 5). Among the most significantly
upregulated genes, we identified common biomarkers in human
cancers: STC2, CACNA1C, and GAGE2A [21–23]. The most down-
regulated genes were FCGR2B, which was previously connected to
PC persistence in BM and higher susceptibility to apoptosis [24],
LYZ, and ITPRIP. In addition, we observed decreased expression of
deubiquitinase gene OTUD1, which we recently found associated
with worse prognosis in MM patients [25]. Importantly, we
detected lower expression of CXCR4, which encodes a key
molecule for PCs homing to the BM [2], and integrin gene ITGA6,
the downregulation of which was recently connected to progres-
sion from MM to plasma cell leukemia [26]. Similarly, expression of
CKS1B was increased probably due to presence of 1q21 gains.
Notably, expression of interleukin 6 (IL6), a potent growth factor
for PCs [18], was upregulated, suggesting autocrine regulation of
EMM tumor growth. Furthermore, we observed higher production
of light chains (IGL) compared to heavy chains in almost all
samples (Fig. 4C). Congruent with our previous research, we
detected significantly higher expression of important epigenetic
mediators in EMM compared to MM: a histone methyltransferase
(EZH2) and two out of three human DNA methyltransferases
(DNMT1 and DNMT3B) [27]. Furthermore, we detected 33 down-
regulated and 62 upregulated lncRNAs. Among these, we
identified upregulation of several lncRNAs previously connected
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to tumor progression, including EPIC1 [28], CASC9 [29], and ZFPM2-
AS1 [30].

Therapeutically relevant targets are downregulated in
EMM cells
As the efficacy of anti-myeloma therapy, including novel
immunotherapy, is suboptimal in EMM [8, 27, 31–33], we focused
on the expression of immunotherapeutic targets, which could
predict treatment efficacy. To compare the expression of key
molecular targets for MM treatment, we used the same RNA-seq
data as in the previous experiments (Fig. 4). We also performed
differential expression analysis using only paired samples (N= 8)
to better capture the longitudinal changes. In addition, we
included 14 unrelated RRMM samples for comparison with
advanced MM disease without EMM. We observed significantly
decreased expression of important molecular targets that are
currently in use for MM treatment (CD38, SLAMF7, and GPRC5D)
and a strong trend of lower expression for FCRH5 (Fig. 5). Notably,
no deregulation was observed for BCMA. Intriguingly, our data
show high expression of EZH2 and CD70, which are promising
targets in other malignancies [34–36]. In addition, we observed
decreased expression of MHC-I molecules HLA-B and HLA-C in
EMM cells, a phenomenon previously associated with a worse
response to immunotherapy in other types of cancer [37].
However, this might not be clinically relevant as these genes
remained between the top expressed genes (Supplementary
Fig. 6).

CD8+ T and NK cells are predominant immune effector cells in
the EMM tumor microenvironment
To better understand the biology and composition of EMM
tumors, we used, for the first time, scRNA-seq to sequence soft
tissue tumors in five EMM patients. We achieved a median of 3916
cells per sample. The majority of cells were identified as aberrant
PCs (median 90.5%) and the rest were mainly CD8+ T cells, NK
cells, monocytes, and CD4+ T cells (median 7%, 1.8%, 0.5%, and
0.2%, respectively; Fig. 6). Importantly, we observed CD8+ T and
NK cells as the most abundant immune cells with comparable
proportions in flow cytometry (Supplementary Fig. 7). In addition,
we observed high heterogeneity of EMM cells (Fig. 6), which could
be further demonstrated on typical PC molecules; for example, the
EMM cells of one patient virtually lost expression of CD38 and
tumor cells from another patient had very low CD138 expression.
Importantly, these data are congruent with bulk RNA-seq and flow
cytometry data (Supplementary Fig. 8).

DISCUSSION
The molecular mechanisms mediating EMM development and
resistance are still poorly understood. In contrast to MM, virtually
no NGS data describe EMM tumors. The need for such data has
become even more evident as the incidence of EMM has
dramatically increased along with the prolonged survival of MM
patients. Indeed, recent clinical trials report EMM in approximately
40% of RRMM patients [8, 9]. In this study, we present the largest
and most comprehensive NGS study of EMM tumor cells to date,
describing the key molecular characteristics of EMM, including the
expression levels of important therapeutic targets (Fig. 7). We also
provide the first insights into the composition of the EMM tumor
microenvironment using scRNA-seq data.
Over a decade ago, Billecke et al. reported t(4;14), del(13q), and

del(17p) as the most frequent cytogenetic abnormalities, found in
37%, 35%, and 32% of 19 EMM patients, respectively [13].
However, the inclusion of 1q21 in the FISH panel revealed an even
higher frequency of this abnormality (13/18, 72%) [14]. Never-
theless, only around 15% of NDMM patients with 1q21 gain/amp
progress to EMM [38, 39]. Importantly, analysis using genetic
mutation panels identified RAS/BRAF mutations in 73% (8/11) [15]

and MAPK pathway mutations in 100% of EMM samples (6/6) [16].
In our study, we detected by FISH and/or WES 1q21 gain/amp in
12/14 EMM samples and identified at least one mutated gene in
the MAPK signaling pathway in almost all EMM samples (13/14,
93%), with KRAS as the most frequently mutated gene (10/
14, 71%).
Based on our and previously published data we hypothesize

that EMM development is mostly driven by the interplay between
1q21 gain/amp and mutations in the MAPK pathway, as we
detected this combination in 11/14 patients (79%). In particular,
KRAS was mutated at a markedly higher frequency (71%) than
previously reported in NDMM (21.8%) [40] or RRMM (19%) [41].
Furthermore, these mutations could often be detected already at
the time of diagnosis. Therefore, we tested our hypothesis on
patients from a CoMMpass dataset (N= 699) and showed that
patients with mutated KRAS and 1q21 gain/amp have a
significantly higher risk of EMM development (HR= 2.4,
p= 0.011). This may be particularly important in the near future
when such information could easily be available with the
implementation of diagnostic gene panels in routine clinical
practice [42, 43] and may influence the choice of patient-tailored
therapy. Despite the exact molecular mechanisms still remaining
elusive, we speculate that both mutations in KRAS and gain/amp
of 1q21 can synergistically over-activate the MAPK pathway
through constitutively active RAS signaling [44] and over-
expression of CKS1B [45], respectively, resulting in increased cell
proliferation, dissemination, and resistance [46]. In fact, CKS1B was
the only previously suggested myeloma driver on 1q21 [47] that
was significantly upregulated in our analysis.
The effect of any routinely used anti-myeloma drugs on the

increased incidence of EMM development remains unclear. Higher
incidence of secondary EMM in the era of novel drugs is mainly
explained by prolonged survival and improved imaging techni-
ques [1]. No evidence of increased risk of EMM was observed for
lenalidomide-bortezomib combinations [48], nevertheless this
question has been raised dominantly after the introduction of
CD38 targeted therapy. Despite limited numbers we detected
relatively high occurrence of CD38 deletion in 4/14 of EMM
samples in total and in 2/7 of EMM samples pretreated with anti-
CD38 mAbs. Regarding patients who underwent ASCT (N= 9), we
observed relatively low contribution of HD melphalan on overall
mutational burden.
Though genomic changes have the potential to provide insights

into the mutational events presumably leading to EMM develop-
ment, especially when paired NDMM samples are available, they
fail to offer sufficient understanding of the actual phenotype of
EMM cells. Unfortunately, our current knowledge of gene
expression in EMM is limited to a gene expression profiling
experiment involving six patients conducted approximately 20
years ago [17], four single-cell EMM samples obtained from ascites
and pleural effusions [18], and a recent brief communication by
our group focusing primarily on CD38 expression in five paired
EMM samples [27]. Therefore, this study represents the largest
transcriptomic analysis of soft tissue EMM samples to date.
We revealed expression pattern towards higher proliferation

rate of EMM cells, as previously demonstrated by a high
proliferation index determined during histological examination
[49]. The increased proliferation is likely stimulated in an autocrine
manner through the production of IL6, which is not typically
produced by PCs or MM cells [18]. Consistent with a case report
describing tumor cells in a patient with skin-related EMM, we
observed decreased expression of CXCR4, the protein product of
which is responsible for the normal homing of PCs to BM [50].
Intriguingly, based on experiments with mouse models, Roccaro

et al. suggested that higher expression of CXCR4 mediates EMM
development through the acquisition of an epithelial-to-
mesenchymal (ETM) phenotype [51]. As our human samples likely
do not represent the ETM phenotype responsible for disease

T. Jelinek et al.

6

Leukemia



spread, but rather cells from well-established solid-like tumors, we
cannot exclude the possibility of higher CXCR4 production in the
early stages of EMM development.
Previously published data and current results show upregula-

tion of chromatin modifiers EZH2, DNMT1 and DNMT3B in the
EMM samples [27]. This suggests that changes in gene expression

during the EMM stage could be regulated by epigenetic
mechanisms. Importantly, inhibition of EZH2 is currently used in
the treatment for other malignancies, including follicular lym-
phoma; and in MM it can lead to re-expression of CD38 [34, 52].
Immunotherapy is the most promising therapeutic modality for

MM patients. Three naked mAbs are currently FDA approved:
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daratumumab and isatuximab targeting CD38, and elotozumab
targeting SLAMF7 [53–55]. There are also two FDA-approved CAR-
T products, both targeting BCMA: cilta-cel and ide-cel [56, 57].
Finally, there are also two FDA-approved bispecific antibodies
(bsAbs) targeting BCMA (teclistamab and elranatamab) and one
targeting GPRC5D (talquetamab) [8, 33, 58]. Many others are
under clinical development, such as cevostamab targeting FCRH5
[59]. The efficacy of these agents is dependent on the patient´s

immune effector cells, as well as on the expression level of the
targets on the surface of malignant PCs.
Our data revealed decreased expression of CD38, SLAMF7,

GPRC5D, and FCRH5 in EMM cells but no changes in expression for
BCMA. We also observed lower expression of MHC-I genes on
EMM cells (HLA-B, HLA-C), which may be associated with reduced
efficacy of cancer immunotherapies due to decreased recognition
of malignant cells by effector T cells [37, 60]. Many recent studies

Fig. 7 Schematic overview of our key findings on EMM tumors. EMM cells have a higher frequency of 1q21/gain and mutations in the MAPK
pathway, mainly in KRAS. Arrows indicate a higher level of proliferation and free light chains and expression of EZH2 and lower expression of
CXCR4, HLA B and C, and many important therapeutic targets compared to MM. Finally, the EMM tumor microenvironment is mainly
composed of CD8+ and NK cells.
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reported lower efficacy of modern immunotherapy in patients
with EMM relapse for daratumumab, teclistamab, talquetamab,
and others [8, 27, 33]. On the other hand, we observed elevated
CD70 expression in EMM. This could potentially represent a way to
activate the immune system by blocking the CD27-CD70 axis [36].
This concept has already been tested in trials for solid tumors
using CAR-T agents.
For further elucidation of immunotherapy efficacy, it is crucial

to study the tumor microenvironment of EMM, which has not
been described to date. Previously, Ryu et al. reported the
presence of several immune populations from ascites (n= 2) and
pleural effusion (n= 1) samples from patients with EMM [18].
However, these samples do not represent true soft tissue EMM
tumors. Therefore, we provide the first insight into EMM tumors
at single-cell resolution, showing that the majority of the tumor
mass is composed of aberrant PCs, and approximately 10% of
the tumor is then formed by immune cells, mainly CD8+ T cells
and NK cells. These immune cell subsets might be vital for
adequate cell killing by novel immunotherapeutic agents.
Nevertheless, low proportion of immune cells in EMM tumors
prevents detailed characterization of these populations and
represent a limitation in our scRNA data. An example of the
most effective therapy for EMM to date seems to be the
combination of teclistamab and talquetamab targeting two
different antigens [9].
Despite the limited number of EMM samples, our study stands

as the most comprehensive and largest NGS study of EMM to date,
given the difficulty to obtain bioptable EMM samples. Our findings
suggest that the development of EMM from MM cannot be
attributed to a single mutation event, but rather a combination of
several genetic, and possibly epigenetic, changes. Importantly,
these changes are usually not present at diagnosis, but acquired
later during the disease, as demonstrated by our unprecedented
longitudinal data. Furthermore, we describe significant alterations
in the expression profile of EMM cells compared to MM cells in the
BM, including clinically important targets and CXCR4. Additionally,
our study provides the first insights into the EMM tumor
microenvironment.

DATA AVAILABILITY
The datasets generated during the current study are available in the European
Genome-phenome Archive (EGA) repository under the accession numbers:
EGAD50000000051- EGAD50000000053.
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