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Current strategies to treat pediatric acute lymphoblastic leukemia rely on risk stratification algorithms using categorical data. We
investigated whether using continuous variables assigned different weights would improve risk stratification. We developed and
validated a multivariable Cox model for relapse-free survival (RFS) using information from 21199 patients. We constructed risk
groups by identifying cutoffs of the COG Prognostic Index (PICOG) that maximized discrimination of the predictive model. Patients
with higher PICOG have higher predicted relapse risk. The PICOG reliably discriminates patients with low vs. high relapse risk. For
those with moderate relapse risk using current COG risk classification, the PICOG identifies subgroups with varying 5-year RFS.
Among current COG standard-risk average patients, PICOG identifies low and intermediate risk groups with 96% and 90% RFS,
respectively. Similarly, amongst current COG high-risk patients, PICOG identifies four groups ranging from 96% to 66% RFS, providing
additional discrimination for future treatment stratification. When coupled with traditional algorithms, the novel PICOG can more
accurately risk stratify patients, identifying groups with better outcomes who may benefit from less intensive therapy, and those
who have high relapse risk needing innovative approaches for cure.

Leukemia (2024) 38:720–728; https://doi.org/10.1038/s41375-024-02166-1

INTRODUCTION
Outcomes among children with acute lymphoblastic leukemia
(ALL) have steadily improved, and event-free and overall survival
(OS) now exceed 85% and 90% [1]. Therapy for ALL is determined
using established risk factors, balancing treatment intensity with
prognosis to minimize overtreating patients with favorable risk,
and undertreating patients with higher risk.

Informed risk group (RG) stratification is crucial for optimal
therapy [2]. Contemporary risk stratification algorithms typically
use threshold-defined dichotomous categories of clinically relevant
risk factors including presenting white blood cell count (e.g., < vs.
≥50 × 109/L; WBC) and minimal residual disease (e.g., < vs. ≥0.01%;
MRD). The Children’s Oncology Group (COG) B-ALL algorithm
includes National Cancer Institute (NCI) RG, clinical variables
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(extramedullary disease status and steroid pretreatment), sentinel
favorable and unfavorable risk genetics (FRG and URG, respec-
tively), flow cytometric MRD of peripheral blood on induction day 8
(D8 MRD), and marrow on induction day 29 (D29 MRD) and at end
of consolidation (EOC) [3].
Assigning differing weights to individual risk factors or using

continuous numerical rather than categorical values may more
accurately predict relapse risk. The UKALL group used MRD as a
continuous variable to develop a prognostic model that
generated a continuous score (prognostic indexUKALL, PIUKALL)
predicting patient-level relapse risk [4, 5]. This model incorpo-
rated favorable and unfavorable genetics, and both presenting
WBC and D29 MRD as continuous variables. An increase in the
PIUKALL score was strongly associated with relapse risk in a
validation cohort of three European pediatric ALL trials (com-
bined n= 2313) [5].
We conducted an external validation of the PIUKALL in >20000

COG trial participants and subsequently assessed the value of D8
MRD added to this model given our prior work showing the
prognostic value of D8 MRD in certain patient subsets [6]. In

contrast to the UK group, COG conducts different B- and T-ALL
trials [7]. Thus, we focused on B-ALL and developed a novel risk
score, PICOG, and compared patient outcomes between current
and PICOG-derived RGs.

METHODS
Study population
The cohort included 13,875 NCI standard-risk (SR) and 7324 NCI high-risk (HR)
non-infant B-ALL patients enrolled on four COG trials from 2004-2019; two for
SR and two for HR patients: AALL0331 (SR; n= 5099) [8], AALL0232 (HR;
n= 2900) [9], AALL0932 (SR; n= 8776) [10], and AALL1131 (HR; n= 4424)
[3, 11]. Patients and/or their caregiver(s) provided informed consent for these
trials in accordance with the NIH central IRB and the Declaration of Helsinki.
Randomizations differed for each trial. In all trials except AALL0232, primary
analyses indicated no statistical differences in disease-free survival (DFS) rates
between experimental treatment and standard of care arms [3, 8–11]. Down
syndrome and Philadelphia chromosome-positive (Ph+) patients were
excluded. Patients with T-ALL will be considered separately in future work.
The CONSORT diagram shows the breakdown of study participants in each
group and the final analysis population (Fig. 1).

Fig. 1 CONSORT diagram for testing (AALL0331/0232) and training (AALL0932/1131) therapeutic trials. B-ALL, B-Cell Acute Lymphoblastic
Leukemia; BCR/ABL1, Philadelphia chromosome-positive ALL by BCR-ABL1 oncoprotein; MRD, minimal residual disease; Day 29, end-of-
induction minimal residual disease; Day 8, induction day 8 minimal residual disease; CNS, central nervous system involvement; Bone marrow
M1, <5% lymphoblasts (remission) Bone marrow M2, 5–25% lymphoblasts; Bone marrow M3, >25% lymphoblasts. Of note, day 8 PB MRD
testing was not routinely measured for earlier trials (AALL0331/0232) until partway through accrual.
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Variable selection methods
Choice of predictor variables is a crucial step when building a clinical
prediction model. Investigators typically must reduce a larger set of
candidates to a final set of predictor variables used for final model
estimation. The methods of predictor selection can be classified into two
categories: (1) reduction before modeling and (2) reduction while
modeling [12]. Method (1) implies that the predictors are selected based
on domain expertise prior to studying the relationship between the
outcome and candidate predictors in the data to be used for model
building. This method of predictor selection is generally preferred, as it
best preserves the statistical properties of later model estimation and
hypothesis testing [13]. Method (2) implies that knowledge of the
relationship between the outcome and candidate variables in the data is
used to select predictors. Examples of method (2) include univariable
screening and stepwise selection (forward, backward, and combined).
Though occasionally justifiable, the disadvantages of stepwise selection
are well documented and include unstable selection; misleading bias in
regression coefficients, standard errors, and p-values; and poorer predic-
tions relative to a full model [12, 13]. Univariable screening inherits the
same disadvantages as forward stepwise selection but tends to have
poorer performance due to neglect of marginally “insignificant” variables
[12]. Therefore, in this work, predictor variables (described in detail below)
were selected for inclusion in the model a priori based on clinical expertise.

Potential predictive variables
Known prognostically important genetic variables including ETV6::RUNX1
fusions, double trisomies of chromosome 4, 10 (DT), intrachromosomal
amplification of chromosome 21 (iAMP21), and KMT2A-rearrangements
were determined by fluorescence in situ hybridization. Hypodiploid ALL
was defined as modal chromosome number <44 or DNA index <0.81.
These genetic variables determined the FRG and URG groups (detailed in
Supplementary Methods). D8 and D29 MRD were measured by flow
cytometry, as described [6]. CNS status was treated as a categorical
variable: CNS1 (no blasts), CNS2 (CSF WBC < 5/µL with blasts), or CNS3 (CSF
WBC ≥ 5/µL with blasts) (Supplementary Methods).
Transformations for WBC (log(WBC); WBClog), D8 MRD, and D29 MRD

were consistent with Enshaei et al. [5] due to reasonable performance in
the PIUKALL model and clinical knowledge regarding their distributions.
Transformed MRD is displayed as τ(MRD), corresponding roughly to the
negative log transformation [5]. The maximum τ(MRD) was 13.82,
corresponding to MRD < 1.0 × 10−5. Candidate predictor variables are
shown in Supplementary Table 1.

External validation of PIUKALL
Steps for external validation followed published guidelines [14]. These
steps and the level of information required for each step’s execution are
defined in Supplementary Table 2 and are referred to as Step(1)-Step(6).
Note Step(5) and Step(6) are not included due to unavailable information.
If in Step(1) the overall calibration slope is found to be less than one, the
model is technically considered not to be optimal for the external
validation data, though further steps should still be examined as the model
may still have practical utility.
We applied the published PIUKALL equation to the COG data [5]:

PIUKALL ¼ ½�0:218 � τ D29MRDð Þ � 0:440 � CYTO GR

þ 1:066 � CYTO HRþ 0:138 � WBClog�

According to Step(1), the overall calibration slope for the PIUKALL was
calculated. The calibration slope is the estimated log-hazard ratio from a
univariable Cox model with the PIUKALL as the predictor. A calibration slope
less than 1 in external validation data is indicative of poorer discrimination
in the validation data than in the development data, a common
occurrence among predictive models reflecting decreased generalizability
of the original model and heterogeneity of patient prognosis in derivation
vs. validation populations [14]. A formal test for the null hypothesis that
the overall calibration slope equaled one was conducted.
For Step(2), the primary metric used to compare model discrimination

was the concordance index (C-index), defined as the proportion of
randomly selected pairs of patients that the model orders concordantly
(for a pair to be concordant, the patient with the higher model-predicted
probability of relapse has the shorter observed time to relapse) [15]. A
C-index >0.7 indicates acceptable discriminative capability of a model,
while a value of 0.5 indicates that prediction is equivalent to random
chance [13]. In Step(3), ideally, the original published coefficients would be

equal to those obtained if the model were refit in the external validation
data. We examined the coefficients for the PIUKALL model re-derived in the
full COG analysis population compared to the published coefficients to
examine possible true difference in predictor effects between UKALL and
COG data. We conducted a hypothesis test for equality of published vs.
externally derived model coefficients as detailed in Supplementary Table 2.
Kaplan-Meier curves within PIUKALL-defined RGs were reported to satisfy
Step(4).

Added value of D8 MRD
D8 MRD is of particular interest to COG, as its collection is unique and
standard within the collective. Therefore, to assess incremental added
predictive value of D8 MRD to the UKALL model, we fit a multivariable Cox
proportional hazards model including τ(D29 MRD), FRG, URG, WBClog and
compared this to the model with τ(D8 MRD) included.

Development of PICOG
The development of a new prognostic index for relapse risk, the PICOG,
utilized pre-specified covariates based on domain expertise and
existing literature from UKALL and COG data [6]. The AALL0932/
AALL1131 cohort comprised training data, while AALL0331/AALL0232
patients were used as testing data for temporal (external) validation
(Fig. 1). For model development on the training data, τ(D29 MRD), FRG,
URG, WBClog, τ(D8 MRD), age at diagnosis (Age), and CNS status were
included from an initial class of potential covariates (Supplementary
Table 1) due to existing evidence of prognostic relevance and current
risk stratification algorithms.
Graphical methods assessed the assumptions of the functional relation-

ships between relapse risk and covariates [13]. The proportional hazards
assumption was examined using scaled Schoenfeld residual plots by
covariate. Plots of the delta-beta residuals helped to visually identify
participants with strong influence on hazard ratio estimation. We pre-
specified a comprehensive set of potential interactions among the
continuous variables (Supplementary Table 1) and assessed them for
possible model inclusion as a group. PICOG was defined as the linear
predictor from the model. Calibration slopes and C-indices were obtained
for PICOG overall and within sex and race/ethnicity groups to diagnose
potential lack of model fit.
Validation and calibration were assessed using the rms package in R [16].

The final model was internally validated using bootstrapping with B= 1000
resamples with optimism-corrected estimates calculated [15]. Calibration
was examined using smoothed calibration plots [13]. Cox model
performance was compared to machine learning (ML) alternatives to
assess whether relaxed assumptions improved predictive ability. Random
forest [17], support vector machine [18], and boosted Cox models were fit
to the same predictor variables included in the Cox model (Supplementary
Table 3) [19]. The benchmarking study included a 5×5-fold nested cross-
validation routine adapted from Fouodo et al. [18].
To compare possible risk stratification approaches, patients were

classified according to the current risk classification algorithms used in
COG AALL1731 (SR; NCT03914625) and AALL1732 (HR; NCT03959085) trials
(Supplementary Table 4, 5). Using the training dataset, cutpoints were
calculated dividing the continuous PICOG into four risk-based categories
optimizing the model’s discriminative ability [20]. The censored nature of
the data was accounted for by maximizing the Concordance Probability
Estimate (CPE), a variation of the C-index [20]. Further details of how
cutpoints were calculated are included in the Supplementary Methods.
Point estimates of 5-year relapse-free survival (RFS) within risk subgroups
were obtained using Kaplan-Meier estimation. RFS was defined as time
from end of induction (EOI) to relapse or death in remission, or censored at
second malignant neoplasm (SMN) or date of last contact for those who
remained event-free. Estimates for DFS and OS were also obtained. DFS
was defined as time from EOI to relapse, death in remission, or SMN, or
censored at last contact. OS was defined as the time from EOI to death or
censored at last contact. All analyses were conducted using R Statistical
Software® version 4.2.1 (code available from corresponding author upon
request) [21].

RESULTS
Study population
Overall, the distributions of clinical characteristics were similar
between the training and testing data in both the generating
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analysis population (Table 1) and between the training and testing
data in the post-induction relapse-free survival cohort used for
model development and numeric validation (Supplementary
Table 6). Among genetic groups, 9629 participants (45.4%) were
FRG (52.1% ETV6::RUNX1 fusions and 48.2% DT) and 1256
participants (5.9%) were URG (29.0% KTM2A-rearranged, 28.0%
hypodiploid, and 43.4% iAMP21). Ph-like ALL (Supplementary
Methods) was present in 996 of 4836 patients tested. D8 MRD and
D29 MRD data were available for 76.4% and 84.4% of patients,
respectively. Figure 2 shows the distribution of continuous
prognostic factors for the combined population.

External validation of PIUKALL
The calibration slope for the original PIUKALL applied to COG data
using the published coefficients was 0.79, which was significantly
different from one (p < 0.001). The original PIUKALL retained
discrimination ability, with a C-index of C= 0.725. When the
coefficients for the PIUKALL model were recalculated using external
COG data, FRG and WBC have larger hazard ratio estimates and D29
MRD and URG have smaller estimates, indicating possible differing
predictor variable effect weighting between the two populations
[derived PIUKALL=−0.136*τ(D29 MRD)-0.913*FRG+ 0.692*URG+
0.166*WBClog], and the risk directions for all factors were consistent
between the original and derived PIUKALL. For example, FRG is
associated with lower relapse risk in both cohorts. These coefficients
(log-hazard ratios) associated with the derived PIUKALL yield the
following hazard ratios: 0.87 for τ(D29 MRD), 0.40 for FRG, 1.99 for
URG, and 1.18 for WBClog. The test for equality of published vs.
externally derived model coefficients showed evidence of difference
in the coefficients (p < 0.001), indicating that model fit could be
improved. Kaplan-Meier curves within PIUKALL-defined RGs are
shown in Supplementary Fig. 1 and exhibit good separation
between curves (log-rank p < 0.001).

Added value of D8 MRD
τ(D8 MRD) was a statistically significant addition to the model,
with a modest hazard ratio estimate in the testing data of 0.96 (1
DF Wald p < 0.001) (Supplementary Table 7). The effect size
corresponds to an estimated 4% relapse risk reduction for a one-
unit increase in τ(D8 MRD) (decrease in D8 MRD), holding D29
MRD, WBClog, FRG, and URG constant.

Development of PICOG
We next developed a model using COG predictors best known for
relapse risk using the training dataset (n= 11,102). Tested as a group,
the set of potential statistical interactions did not significantly
improve model fit (Supplementary Table 1) and were excluded.
Table 2 reports the estimated coefficients and hazard ratios from the
model containing transformed D8 and D29 MRD, FRG, URG, WBClog,
CNS status, and Age. Except for CNS3 (n= 90 in training data,
Supplementary Table 6) vs. CNS1, each predictor was strongly
associated with relapse risk. Increases in transformed D8 and D29
MRD (i.e., decreases in MRD) were each associated with a decreased
relapse risk. Table 2 can also be visualized as an equation as follows:

PICOG ¼ ½�0:102 � τ D29MRDð Þ � 0:040 � τ D8MRDð Þ� 0:741 � FRG
þ 0:644 � URGþ 0:156 � WBClog þ 0:386 � IðCNS2Þ
þ 0:364 � IðCNS3Þ þ 0:061 � Age�

where indicator I(CNS Status) is one if the patient falls into that CNS
category, and zero otherwise. This equation can be used to calculate
an individual patient’s PICOG risk score. Supplementary Fig. 2
provides a visual comparison of the shapes of the distributions of
PIUKALL and PICOG. Figure 3 portrays the prognostic index by genetic
RG, with higher genetic risk associated with higher PICOG.

Table 1. Patient characteristics of the analysis population
(n= 21199)a.

Testing
(n= 7999)

Training
(n= 13,200)

Total
(n= 21,199)

Age in years,
median (range)

4.83 (1.0,
30.8)

4.83 (1.0, 30.8) 4.83 (1.0, 30.8)

Sex (%)

Female 3666 (45.8) 5994 (45.4) 9660 (45.6)

Male 4333 (54.1) 7206 (54.6) 11539 (54.4)

NCI Risk (%)

SR 5153 (64.4) 8959 (67.9) 14112 (66.6)

HR 2841 (35.5) 4241 (32.1) 7082 (33.4)

WBC x 1000/µl,
median (range)

9.00 (0.06,
1306.0)

8.60 (0.1,
6200.0)

8.70 (0.06,
6200.0)

CNS (%)

CNS1 7058 (88.2) 11580 (87.7) 18638 (87.9)

CNS2 816 (10.2) 1396 (10.6) 2212 (10.4)

CNS3 115 (1.4) 159 (1.2) 274 (1.3)

Race (self-declared) (%)

Asian 355 (4.4) 607 (4.6) 962 (4.5)

Black 512 (6.4) 732 (5.6) 1244 (5.9)

White 6016 (75.2) 9630 (73.0) 15646 (73.8)

Other 78 (1.0) 292 (2.2) 370 (1.8)

Ethnicity (self-declared) (%)

Hispanic 1730 (21.6) 3344 (25.3) 5074 (23.9)

Non-Hispanic 5932 (74.2) 9201 (69.7) 15133 (71.4)

Unknown 337 (4.2) 655 (5.0) 992 (4.7)

Cytogenetics (%)

ETV6::RUNX1 1961 (24.5) 3372 (25.6) 5333 (25.2)

Double Trisomy 1807 (22.6) 3038 (23.0) 4845 (22.9)

iAMP21 165 (2.1) 380 (2.9) 545 (2.6)

Hypodiploidy 134 (1.7) 218 (1.7) 352 (1.7)

Ph-likeb 239 757 996

KMT2Ar 147 (1.8) 217 (1.6) 364 (1.7)

PB MRD Day 8 (%)

<0.01% 829 (10.4) 2716 (20.6) 3545 (16.7)

0.01-<0.1% 1104 (13.8) 3136 (23.8) 4240 (20.0)

0.1 to <1.0% 1338 (16.7) 3424 (25.9) 4762 (22.5)

>/= 1.0% 1116 (14.0) 2527 (19.1) 3643 (17.2)

Unknown 3612 (45.2) 1397 (10.6) 5009 (23.6)

BM MRD Day 29 (%)

<0.01% 6078 (76.0) 9937 (75.3) 16015 (75.6)

0.01-<0.1% 824 (10.3) 1322 (10.0) 2146 (10.1)

0.1 to <1.0% 581 (7.3) 876 (6.6) 1457 (6.9)

>/= 1.0% 325 (4.1) 546 (4.1) 871 (4.1)

Unknown 191 (2.4) 519 (3.9) 710 (3.4)

Event type (%)

None 6740 (84.3) 11,678 (88.5) 18,418 (86.9)

Induction Death 72 (0.9) 102 (0.8) 174 (0.8)

Induction Failure 35 (0.4) 71 (0.5) 106 (0.5)

Relapse 928 (11.6) 1068 (8.1) 1996 (9.4)

Remission Death 154 (1.9) 220 (1.7) 374 (1.8)

Second
Malignant
Neoplasm

70 (0.9) 61 (0.5) 131 (0.6)

aPh+ and Down Syndrome patients excluded; Abbreviations: MRD,
minimal residual disease; Race “Other” includes: Native Hawaiian/other
Pacific Islander, American Indian or Alaska Native, and Multiple Races.
bPh-Like testing was not conducted uniformly on all patients, therefore
percentages are omitted as they may not indicate a representative
proportion.
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Diagnostic plots indicate no concerning evidence of non-
proportional hazards (Supplementary Fig. 3A) or influential points
(Supplementary Fig. 3B). Internal validation indicated very little
data-driven overfitting in the modeling process (Supplementary
Table 8). Temporal external validation of the new model in the
AALL0232/AALL0331 testing data (n= 4100) yielded an overall
calibration slope of 0.94, not significantly different from 1 (p= 0.13),
indicating overall good calibration in the testing dataset. The model
held discrimination as well, with a C-index in the testing data of
0.738. Calibration curves are displayed in Supplementary Fig. 4. In
testing data stratified by protocol, we observed a slight under-
estimation of risk among the few NCI HR patients (AALL0232) with
very poor observed risk, likely due to the lack of sufficient data to
obtain reliable predictions. Among NCI SR patients (AALL0331),
there was an overestimation of risk across the range of the data,
with the poorest model estimates again in ranges with fewer
observations. The final Cox model was compared to ML alternatives
using the same prognostic variables (Supplementary Table 3).
Despite enhanced flexibility in the ML models, the discriminative
ability of the Cox model was comparable to all ML alternatives.

Comparison of risk stratification for PICOG vs. COG current
clinical
The cutpoints maximizing the CPE for PICOG were −1.377, −0.589,
and 0.093, resulting in classification of patients’ relapse risk into:

38.6% of patients as “low” (RFS 96.8%); 33.1% “standard” (92.6%);
16.8% “intermediate” (84.9%); and 11.5% “high” (66.9%). Figure 4A
shows excellent separation and sensible RFS estimates among
Kaplan-Meier curves within PICOG-defined RGs. Supplementary
Fig. 5 displays the Kaplan-Meier curves within PICOG-defined RGs
stratified by testing and training datasets, showing well-separated
curves within each dataset. These stratified Kaplan-Meier curves
are overlaid for comparison in Supplementary Fig. 6. Figure 4B
demonstrates the practical implications of splitting patients’
prognostic values by RG, with each patient’s PICOG value falling
into one of the four risk categories depending on prognostic
features. The distribution of the PICOG is similar when stratified by
testing and training datasets (Supplementary Fig. 7).
Ninety-seven percent of patients had sufficient data to be

retrospectively classified according to current COG AALL1731/
AALL1732 definitions. Shown in Supplementary Table 9, the resulting
classification gives 24.5% SR-Favorable (5-year RFS 96.7%), 20.5% SR-
Average (93.3%), 12.5% SR-High (82.7%), 3.0% HR-Favorable (96.3%),
29.6% HR (81.8%), and 1.1% Very HR (VHR; 53.6%). Table 3 compares
the classification of patients according to both the PICOG and the
COG current clinical standard. As seen in the SR-Fav and VHR rows,
the two risk classification strategies generally agree when risk is very
high or very low. However, for other current COG risk classifications
(SR-Avg, SR-High, HR) that collectively include 63% of patients, there
is a broader spectrum of PICOG RG assignment.

Table 2. Summaries of the PICOG model derived on the training study population.

Variable Type Coefficient HR (95% CI) P-value

τ(D29 ΜRD) Continuous −0.102 0.90 (0.89–0.92) <0.001

τ(D8 ΜRD) Continuous −0.040 0.96 (0.94–0.98) <0.001

FRG Binary −0.741 0.48 (0.41–0.56) <0.001

URG Binary 0.644 1.91 (1.59–2.29) <0.001

WBClog Continuous 0.156 1.17 (1.12–1.22) <0.001

CNS Status Categorical

(Ref= CNS1) CNS2 0.386 1.47 (1.24–1.74) <0.001

CNS3 0.364 1.44 (0.88–2.37) 0.151

Age Dx Continuous 0.061 1.06 (1.05–1.07) <0.001

Transformed D29 MRD Transformed D8 MRD

Age at Diagnosis Transformed WBC

0 5 10 0 5 10
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Fig. 2 Density plots of the distribution of continuous prognostic variables for the full analysis population (n= 21199). White blood cell
count (WBC) was log-transformed. End-of-induction (D29) minimal residual disease (MRD) and induction day 8 (D8) MRD were transformed
according to UKALL [4, 5].
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Table 4 displays 5-year RFS estimates within each of the
subgroups discussed above. Within the COG SR-Avg group, PICOG
identified a “low risk” subgroup with an outstanding 96.0% RFS
estimate, similar to the outcomes for patients traditionally
classified as SR-Fav. In the COG HR group, we observed a broad
range of RFS estimates, from a group with an RFS of 95.5% to a
group with an RFS similar to that expected with VHR (66.0% RFS).
Similar trends are seen for DFS and OS, as well as when the results
are stratified by testing and training datasets (Supplementary
Tables 10–19).

DISCUSSION
Prognostic models are used in oncology to aid clinical decision
making by adjusting treatment intensity to individual patient
relapse risk [22]. A prognostic model must satisfy many quality
control guidelines to be useful in clinical practice, including
appropriate model validation [12, 13, 15]. Ideally, this includes

both strong resampling-based internal validation (“training”) and
external validation in independent populations (“testing”) [12, 15].
We have developed and rigorously validated a new model to

determine a prognostic index (PICOG) using COG B-ALL trials. PICOG
is easily calculated on a large scale and can be hosted online on a
web-application for use by patients and practitioners, lending
itself well to the described clinical applications (see https://natalie-
delrocco.shinyapps.io/COG_PI_Calculator/). This work extends that
of Enshaei et al., whose prognostic index, the PIUKALL, was
prognostic in the COG data and emphasized the strength of
D29 MRD, WBC, and favorable and unfavorable cytogenetics as
predictors of outcome in pediatric ALL [5].
These independent analyses were both conducted with large,

uniformly annotated clinical trial datasets, giving strong evidence
of reliable estimation of the effect of these prognostic factors on
relapse risk. This work provided an independent external
validation of the PIUKALL, and also demonstrated the contributions
of Age, CNS status, and D8 MRD in prognostic modeling for

BA

Fig. 4 Summaries of the concordance probability estimator (CPE)-defined risk groups of the PICOG. A Kaplan-Meier Curves for Relapse-Free
Survival probability within each PICOG-defined risk group for the combined RFS cohorts (n= 15202) and corresponding risk table. B Density
plots of the distribution of the PICOG with CPE-defined risk groups indicated by text (Low, Standard, Intermediate, and High) and color for the
combined relapse-free survival (RFS) cohort (n= 15202). Risk group defining cutpoints of the PICOG that maximize the CPE are marked by
dashed vertical lines.
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Fig. 3 Boxplots of the distribution of the COG ALL Prognostic Index (PICOG) risk score by genetic risk group. The central “box” is made up
of the 25th percentile, median (50th percentile), and 75th percentile. Lines on either side extend to the minimum and maximum (excluding
outliers). Outliers are marked on the plot by points that are higher than the maximum denoted by the upper line.
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relapse risk. Despite correlation with D29 MRD and a modest
effect, D8 MRD still contributes independently to the model, likely
due to ability to indicate excellent expected outcomes when D8
MRD is negative. We additionally note that model estimation
showing similar hazard ratios for patients with CNS2 and CNS3 is
not unique to this study, and refer the interested reader to Winick
et al. for discussion [23]. However, present interpretations
regarding CNS2 vs. CNS3 must be made with caution as the
confidence interval associated with the estimated hazard ratio for
CNS3 patients (vs. CNS1) is wide given the relatively small number
of these patients.
Difference in performance of PIUKALL in COG patient populations

may be attributed to several factors including different geographic
case-mix [14], different MRD detection methods, and differing
definitions of genetic factors [24]. Differences in cytogenetic
classification between the COG and UKALL groups include the
definition of hyperdiploidy. While the UKALL group defines this
favorable cytogenetic subgroup as those with high hyperdiploid
(i.e., between 51 and 67 chromosomes), the COG defines this
group as those with trisomy of chromosomes 4 and 10. Of note,
subsequent UKALL analyses are likely to further refine their
definition of this group as an indicator of good risk genetics [24].
Additionally, the use of hypodiploidy as an inclusion criterion for
HR cytogenetic classification differs between the COG and UKALL
groups. The COG considers all individuals with hypodiploidy (<43
chromosomes) as HR. UKALL considers two subsets of hypodi-
ploidy as HR: “near haploidy” (<30 chromosomes) and “low
hypodiploidy” (between 30 and 39 chromosomes). Thus, the
difference reduces to the small subset of individuals between 40
and 42 chromosomes. TCF3-HLF positivity also contributes to
UKALL’s HR definition. TCF3-HLF is indeed a very high-risk factor
but is exceedingly rare and not routinely assessed in genetic
testing algorithms.

We show that PICOG can identify heterogeneity in outcome
among the categorically defined RGs used in the current COG risk
classification, suggesting that using continuous information may
enhance traditional RG designation. This refinement of current
RGs could offer further options for therapeutic interventions for
certain subsets of patients. As outcomes continue to improve, the
burden of treatment-related toxicity becomes an increasingly
important consideration [25, 26]. For those with outstanding
prognosis, a less intense chemotherapy regimen may help prevent
the life-long complications of therapy, including cardiac disease,
secondary cancers, decreased employment, and infertility [27]. For
example, SR-Avg individuals who are PICOG low risk could be
considered for treatment de-intensification. In contrast, for those
within the COG HR group with predicted outcome similar to the
COG VHR group (e.g., PICOG “high-risk”), innovative therapies could
be considered to improve RFS.
Ideally, a fully independent external validation of PICOG should

be conducted with close attention to validation in minority
demographic populations. Though Supplementary Fig. 8 shows
good calibration and discrimination within each race/ethnicity
subgroup and both sexes, a true external validation in minority
populations is optimal for determining predictive performance.
Prospective clinical trials could evaluate the PICOG’s efficacy as a
clinical decision aid [28].
In addition to assessing the clinical performance of the PICOG,

future research could assess further refinement with critical new
prognostic factors. Modern clinical prediction models must be
prepared to dynamically incorporate new discoveries and updated
information [23]. For example, high-throughput sequencing (HTS)
for MRD is more sensitive and easily standardized than standard
flow cytometry and is a focus of current investigation in childhood
ALL [29]. Updated models of ALL will also need to adapt to the
growing importance of new genetic markers [30], or to improve

Table 4. 5-year relapse-free survival probability estimates (SE) for subgroups by COG retrospective and COG Prognostic Index risk classifications in
the combined training/testing data.

COG PI Classification

COG Risk Classification Low Standard Intermediate High

SR Fav 0.970 (0.003) 0.927 (0.015) -- --

SR Avg 0.960 (0.008) 0.937 (0.005) 0.904 (0.018) --

SR High 0.924 (0.052)a 0.899 (0.012) 0.831 (0.013) 0.732 (0.022)

HR Fav 0.982 (0.009) 0.964 (0.014) -- --

HR 0.955 (0.014) 0.903 (0.010) 0.850 (0.010) 0.660 (0.015)

VHR -- -- -- 0.534 (0.044)

Empty cells indicate insufficient sample size for reliable estimation (<25 patients).
Patients in SR-Fav/Avg are missing MRD8, as such they are not represented in this table.
aLarge standard error reflects small sample size (n= 28) and hence broader uncertainty about the RFS estimate.

Table 3. Sample sizes (%) for subgroups by COG risk and COG Prognostic Index classification in the combined training/testing data.

COG PI Classification

COG Risk Classification Low (5 Yr. RFS= 96.83%) Standard (92.55%) Intermediate (84.94%) High (66.87%) Total

SR Fav 4746 (93.48%) 331 (6.52%) 0 (0.00%) 0 (0.00%) 5077

SR-Avg 632 (16.73%) 2863 (75.80%) 282 (7.47%) 0 (0.00%) 3777

SR High 28 (1.31%) 669 (31.33%) 989 (46.32%) 449 (21.03%) 2135

HR Fav 219 (55.44%) 176 (44.56%) 0 (0.00%) 0 (0.00%) 395

HR 243 (6.62%) 990 (26.96%) 1287 (35.05%) 1152 (31.37%) 3672

VHR 0 (0.00%) 0 (0.00%) 0 (0.00%) 145 (100.00%) 145

Total 5868 5029 2558 1746 15,201
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the use of information from traditional ones [24]. A model-derived
risk score, such as the PICOG, more readily allows the timely
incorporation of such new information (such as HTS MRD and
novel genetic subtypes) than do traditional risk stratification
algorithms. Traditional risk stratification algorithms combining
specific categories of many variables to construct RGs require
extensive clinical knowledge regarding relationships between a
new marker and other risk stratification variables to determine the
appropriate algorithmic use for the new marker. Often, when a
new prognostic marker is introduced, the first studies show only
an association with outcome, with additional clinical knowledge
following over the course of time. In contrast, when data becomes
available on the new marker, established statistical methods
parallel to those described in this paper can be applied to
incorporate the new information into the model. Although model
updating is nontrivial, the technology is available and could
further strengthen the ability of the PICOG to discriminate
outcomes in groups of patients previously categorized together,
presenting additional future opportunities to ask targeted
questions.
This study has several strengths in addition to the size and data

consistency of the study cohorts. The availability of D8 MRD, not
routinely assessed by other groups, allowed incorporation of early
disease response. Extensive prior studies of clinical and genomic
variables as outcome predictors enabled this study to have
predictor pre-specification instead of model-based selection,
enhancing the applicability in external populations. Data-driven
selection of PICOG cutpoints to define RGs objectively optimizes
outcome-based RG assignment. Several limitations also merit
note. Certain patient subgroups (T-ALL, Down syndrome, Ph+)
were not used to derive PICOG. The performance of PICOG (or any
PI) is unclear in small patient groups with limited data (e.g., Non-
Hispanic/Other race or Ph-like). Future studies should assess
calibration in such patient subgroups. Finally, because PICOG relies
on D29 MRD, only available at end-induction, it cannot be used to
modify the first weeks of induction therapy.
In conclusion, contemporary ALL therapy relies on risk

stratification but does not use all relevant rich and readily
available data. The PICOG showed a wide range of relapse risk
within currently used RGs and thus may be useful as a clinical
decision aid for future trials. Analogous efforts may have
significant clinical value in other cancers.
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