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ACUTE LYMPHOBLASTIC LEUKEMIA

Fusion transcripts are present in early progenitor cells in
KMT2A-rearranged B-ALL
Ricky Tirtakusuma1, Paul Milne 2, Helen J. Blair1, Yuzhe Shi3, Simon Bomken 1 and Olaf Heidenreich 1,4✉

© The Author(s) 2024

Leukemia (2024) 38:883–886; https://doi.org/10.1038/s41375-024-02164-3

TO THE EDITOR:
While childhood B cell acute lymphoblastic leukemia (ALL) has an
excellent prognosis at diagnosis, outcomes for relapsing patients
have been disappointingly low. This grim picture has recently
improved with the advent of bispecific T cell engagers (BiTEs) and
chimeric antigen receptor (CAR) T cells targeting CD19 with, for
instance, CART cells achieving complete remission in over 80% of
patients with B-ALL. Nevertheless, 30–50% of the patients still
experience relapse within one year [1] with three quarters of
relapses showing loss of CD19 surface expression [2]. In particular
KMT2A-rearrangements, which independently predict poor out-
come [3], are prone to treatment failures resulting from lineage-
switched CD19-negative relapse [4]. Recently, we demonstrated
that lineage switch can originate either in the ALL blast population
or from an immature progenitor population and that KMT2A-
rearranged infant ALL is characterized by an early lymphocyte
precursor (ELP) signature that was not detectable in the lineage-
switched myeloid relapse [5, 6]. These results complement similar
findings from mouse models of t(4;11) ALL [7, 8] and TCF3::ZNF384
BCP-ALL also pointing towards an early progenitor with lymphoid
potential pre-VDJ recombination [9, 10]. These combined findings
raise the question about the nature of the cell of origin of this type
of B-ALL. Here we demonstrate the presence of KMT2A-
rearrangements in progenitor cells harboring both lymphoid and
myeloid potential and their capacity to initiate leukemia,
potentially acting as the cellular origin of CD19-negative relapse.
We examined seven infants with ALL and KMT2A-rearrange-

ments at diagnosis: five with KMT2A::AFF1 and two with
KMT2A::MLLT3 fusions (Fig. 1A, B). The following hematopoietic
stem and progenitor cell populations were isolated: HSCs
(CD34+CD38−CD45RA−CD90+), multipotent progenitor cells
(MPPs, CD34+CD38−CD45RA−CD90−), lymphoid-primed multi-
potent progenitor cells (LMPPs, CD34+CD38−CD45RA+), com-
mon myeloid progenitor cells (CMPs), granulocyte monocyte
progenitor cells (GMPs), mature monocytes, and T cells. We
evaluated the presence of fusion genes in these purified
populations by PCR. In three cases, the KMT2A::AFF1 fusion gene
was found in LMPPs. In two cases, KMT2A::AFF1-positive cells were

also present either in the MPP or HSC fraction. In two
KMT2A::MLLT3 samples we detected only fusion gene-positive
CMP-like and blast populations (Fig. 1B). Notably, the two
KMT2A::AFF1-positive patients MA4_2 and MA4_3, had undetect-
able levels of the fusion gene in the HSC-MPP-LMPP subsets and
did not undergo relapse (Fig. 1A, B). However, a larger cohort is
required to follow up if there was any correlation between fusion
gene positivity in early progenitor populations and incidence of
relapse. Moreover, it is important to note that a negative PCR
result does not formally exclude the presence the corresponding
fusion gene at levels below the detection limits of the assay.
In concordance with the translocation occurring in early

progenitor populations, we identified the KMT2A::AFF1 fusion
gene also in CD34–CD19–CD3–HLA-DR+ monocytes/dendritic
cells in 4 of 5 cases, providing further evidence of an early
KMT2A-r progenitor with bilineage, i.e., lymphoid and myeloid,
potential (Fig. 1B). To exclude the possibility of sorting impurities,
these results were confirmed by single-cell PCR of sample MA4_1.
Monocytes were sorted into 96-well plates, followed by whole-
genome amplification and PCR amplification of KMT2A::AFF1. The
causative translocation was identified in 2 of 22 monocytes
analyzed (Fig. 1C, D). These results imply an early KMT2A::AFF1
progenitor-like cell with both lymphoid and myeloid potential that
might serve as a source for lineage switch.
Indeed, patient MA4_1’s disease relapsed four years after

diagnosis with an AML harboring the same KMT2A::AFF1 break-
point [5, 6]. We performed bulk whole-exome sequencing and
identified, in addition to the shared KMT2A::AFF1 fusion gene,
mutations that were exclusively present at diagnosis (MAGED1) or
at relapse (NCOA2). Assessment of each of these mutations in
sorted cell populations detected KMT2A::AFF1 in the MPP
populations of both presentation and relapse (Fig. 1E). Mutated
MAGED1 was present in all diagnostic progenitor populations
except HSCs and CMP-like cells. In contrast, mutated NCOA2 was
found in LMPP and GMP-like populations, but not in more
immature cell populations (Fig. 1E). These findings identify a
KMT2A::AFF1-positive cell as the cell of origin for both diagnostic
ALL and relapse AML and show that secondary mutations were
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Case Gender WCC (x10^9/l) Age at diagnosisRelapse Interval to relapse Transplant Outcome Breakpoint location
MA4_1 M 253 7 mo Yes 48 mo Matched unrelated BMT in CR2 Alive KMT2Ai9-AFF1i4
MA4_2 F 334 5 mo No - Matched unrelated BMT in CR1 for high risk iALL Alive KMT2Ai11-AFF1i5
MA4_3 F 333 3 mo No - Matched unrelated BMT in CR1 for high risk iALL Alive KMT2Ai11-AFF1i3
MA4_4 M 95 1 mo Yes 17 mo No Dead KMT2Ai11-AFF1i4
MA4_5 F 130 4 mo Yes NA No Dead KMT2Ai12-AFF1i3
MA4_6 M NA 3 mo Yes 5 mo No Dead KMT2Ae10-AFF1i3
MA9_1 F 147 2 mo Yes 2.5 mo Unrelated donor HSCT in CR2 at 7 months post diagnosisDead KMT2Ai9-MLLT3i4
MA9_2 M 718 7 mo Yes 6 mo No Dead KMT2Ae11-MLLT3e5
MA9_3 F 123 5 mo Yes 22 mo Matched unrelated BMT at 23 months post diagnosis Dead KMT2Ai9-101nt upstream MLLT3 UTR
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Fig. 1 Identification of KMT2A-rearrangement in different hematopoietic subsets. A Clinical information patient cohort. B Summary of
KMT2A::AFF1 and KMT2A::MLLT3 presence in different subsets of hematopoietic population. Representative patients MA4_2, MA4_4, and
MA9_2 breakpoint sequences were shown by Sanger sequencing. C Single-cell sorting of patient MA4_1 for monocyte (HLA-DR
+CD14+CD11c+) populations. The two KMT2A::AFF1-positive cells, cells 11 and 18, are highlighted in red throughout the sorting strategy
(lower panel). D Amplification of the KMT2A::AFF1 fusion in MA4_1 in cells 11, 18, and bulk sample shows the expected 299 bp band.
E Summary KMT2A::AFF1, MAGED1, and NCOA2 mutation assessment on sorted populations MA4_1 diagnosis and relapse. MAGED1 is mutated
gene only found at diagnosis. NCOA2 is mutated gene only found at relapse.
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Fig. 2 CD19− CD34+ population can reconstitute CD19+ and CD19− blasts. PCR identification of A KMT2A::AFF1 and B KMT2A::MLLT3 fusions
within sorted human CD19–CD34+ and CD19+ on PDX MA4_1 and MA9_3, respectively. 293T cells provided a fusion gene negative control.
C qRT-PCR analysis of KMT2A::AFF1 expression in CD34+CD19- and CD19+ cells from PDX MA4_6. D Flow cytometric analysis of bone marrow-
derived hematopoietic precursors from normal human bone marrow control, and across four generations of NSG mouse xenografts. The
CD34+CD38-CD45RA-CD90+ HSC population is expanded and maintained across four generations. E Proportion
CD34+CD38−CD45RA−CD90+ HSC gate of CD19− CD34+ cells patient MA4_1 across sequential transplantation. F Sorting of CD34+CD19−
and CD19+ populations from patient MA4_1, left panel. Both populations were transplanted into NSG and evaluated following the
engraftment, right panel.
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acquired at later stages. These data are also supported by our
previous observation that immunoglobulin rearrangements were
detected only at diagnosis but not at relapse of patient MA4_1 [6].
Therefore, these data suggest that the cell of origin had not
initiated VDJ rearrangement, suggesting an MPP-like or even more
immature phenotype.
To further characterize and functionally investigate the KMT2A-

rearranged precursor cells, we generated patient-derived xeno-
graft (PDX) models by transplanting the unsorted diagnostic
samples into NOD-scid/IL2Rγ–/– (NSG) mice. Initially we selected
two KMT2A::AFF1 (MA4_1 and MA4_6) samples and one
KMT2A::MLLT3 (MA9_3) sample. Following engraftment, haemato-
poietic cells were collected and analyzed by flow cytometry. We
observed a CD19+ blast population and, in addition, a more
immature CD34+CD19– population. These populations were
sorted, and the fusion gene expression was assessed by qPCR.
Fusion gene transcripts were observed in CD34+CD19– cells in all
three samples (Fig. 2A–C), albeit ~2-fold lower compared to the
CD19+ compartment (Fig. 2C). Notably, serial transplantation
across 4 generations of mice maintained this human HSC
compartment confirming its self-renewal potential (Fig. 2D, E).
Finally, we isolated CD19+ and CD34+CD19− populations and
transplanted them into NSG mice. We observed that the
CD34+CD19− population could reconstitute the disease by
having both CD19+ and CD19– subsets (Fig. 2F), consistent with
previous studies [8, 9].
This study confirms recent findings that the cell of origin in

B-ALL is located at an early progenitor stage preceding the ELP
stage and may be of pre-leukemic nature [5, 7, 11]. CD19-negative
populations contain KMT2A::AFF1 or KMT2A::MLLT3 fusion genes
and can progress towards malignancy, raising the question of the
nature of factors co-operating with KMT2A-rearrangements to
produce full transformation. Our data support the need to involve
other targets, such as dual CD19/CD22, to prevent relapse caused
by CD19-negative cells. The involvement of CD22 is of potential
interest because its expression starts at the LMPP stage [11].
Alternatively, we propose targeting the KMT2A fusion gene, which
is present in both CD19+ and CD19– populations at the transcript
level or via fusion peptides presented by major histocompatibility
complex and recognized by T cells [12–15]. These studies support
the feasibility of discovering other fusion gene–reactive T cells,
including reactivity for KMT2A-rearrangements.
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