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Gene regulation in t(6;9) DEK::NUP214 Acute Myeloid Leukemia
resembles that of FLT3-ITD/NPM1 Acute Myeloid Leukemia but
with an altered HOX/MEIS axis
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TO THE EDITOR:
Acute Myeloid Leukemia (AML) represents a heterogeneous
group of hematological malignancies. The t(6;9)(p23;q34) trans-
location, generating the DEK::NUP214 fusion protein is found in
1% of AML. It causes a highly aggressive disease with poor
prognosis in patients with a median age of just 23 [1]. t(6;9) AML
often harbours a FLT3 internal tandem duplication (ITD) muta-
tion as well which contributes to adverse outcomes [1]. Differing
mechanisms underlying disrupted differentiation and prolifera-
tion in AML challenge treatment improvement, as each AML sub-
type forms its own gene regulatory network (GRN) dependent on
the driver mutation, which is distinct from healthy cells [2]. GRNs
highlight which transcription factors (TFs) regulate which genes
at which level, and inform on specific vulnerabilities [2]. Despite
harbouring different driver oncogenes, gene expression patterns
of t(6;9) AML resemble those of NPM1-mutated and NUP98::NSD1
AML [3, 4]. However, it remains unclear how DEK::NUP214
de-regulates gene expression in AML as the GRN has not been
studied [5, 6].
In healthy hematopoietic cells, DEK is a DNA and RNA binding

protein with different functions including modulating chromatin
accessibility and histone acetylation [6]. NUP214 is a part of
the nuclear pore complex, with roles in multiple pathways such
as cell cycle progression and nucleocytoplasmic transport [5].
DEK::NUP214 is thought to disrupt various nuclear processes
leading to the dysregulation of myeloid differentiation [6]. This
includes deregulation of HOX gene clusters, which encode a family
of TFs with crucial roles in normal hematopoietic development and
which are tightly regulated display spatial-temporal expression
patterns and are required for normal haematopoietic differentia-
tion [7]. Aberrant activation of HOX genes has been associated
with leukemogenesis in multiple AML sub-types, including t(6;9)
[3, 4, 7, 8]. Here, we utilise genome-wide chromatin accessibility to
elucidate how the normal haematopoietic progenitor cell GRN is
disrupted by DEK::NUP214. We find that the DEK::NUP214 AML
GRN is related to that of mutant NPM1 AML, but also displays an

elevated leukemic stem cell signature, suggesting overlapping
and unique therapeutic vulnerabilities.
To address the question of how gene expression is de-regulated

in t(6;9) AML, we assessed chromatin accessibility using DNaseI-
seq and gene expression by RNA-seq in CD34-purified AML blasts
from two t(6;9)-positive patients and a t(6;9) cell line, FKH1. One
patient also carried a FLT3 tyrosine kinase domain mutation. The
pattern of DNaseI hypersensitive sites (DHSs) was similar between
the two patients (Fig. 1A, Supplementary Fig. 1A). Unsupervised
clustering of this data together with previously generated DNaseI-
seq data from patients with other genotypes [2, 9], showed that
t(6;9) AML is part of the larger FLT3-ITD, NPM1 and FLT3-ITD/NPM1
AML cluster (Fig. 1A). Chromatin accessibility data for patients with
UBTF-TD, KMT2A-PTD and NUP98-rearranged AML known to
deregulate HOX genes were not available. FKH1 proved to be
an unsuitable model for t(6;9) AML as its DHS pattern showed
little correlation with any primary AML blasts (Fig. 1A), therefore
downstream analysis used only patient cell DNaseI data. AML-
specific gene expression, determined by RNA-seq on the t(6;9)
primary AML samples compared to healthy peripheral blood stem
cells (PBSCs), varied between the patients but showed a significant
overlap of deregulated genes (p= 7.7 × 10−66 upregulated genes,
p= 1.3 × 10−99 downregulated genes; Supplementary Fig. 1B).
Inspection of known FLT3-ITD and NPM1 de-regulated genes
showed similar expression in t(6;9) AML (Supplementary Fig. 1C).
To construct a t(6;9)-specific GRN, we used merged DNaseI and
RNA-seq data from both patients filtered against PBSCs, with pan-
AML promoter-capture Hi-C to confidently assign enhancers to
their cognate genes, as previously described [10]. This analysis
showed that t(6;9) AML shares key regulatory TF nodes with FLT3-
ITD and NPM1 AML such as NFIL3, FOXC1, NFIX, WT1, EGR1 and AP-
1 (FOSL2), which are essential for FLT3-ITD/NPM1 AML main-
tenance [2, 10] and which were also de-regulated in t(6;9) AML
(Fig. 1B, Supplementary Fig. 1C).
To evaluate the regulatory phenotype of t(6;9) as compared

to FLT3-ITD or NPM1 AML, we ranked the DNaseI data by the
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Fig. 1 t(6;9) AML shares chromatin accessibility and gene expression with FLT3-ITD and NPM1-mutated AML. A Heatmap with hierarchical
clustering showing the Pearson correlation of the tag counts at distal DNaseI peaks of t(6;9) patient blasts together with blasts from other
mutational backgrounds and a t(6;9) cell line (FKH1). Mutations present in each sample are indicated to the right with common drivers in
clusters shown on the heatmap. B t(6;9) AML-specific GRN, based on merged t(6;9)-specific DNase1 and RNA-seq data vs PBSCs. The colour of
the node indicates the gene expression in FPKM, the edge colour shows how many sites with the source node motif regulate the target gene
with the arrow providing directionality between source and target. Nodes outlined in blue and dashed edges are also present in the FLT3-ITD/
NPM1 GRN. C Tag counts of the DNaseI distal peaks were ranked by the fold change between the average of two NPM1-only patients and two
FLT3-ITD-only patients. Density plots show the tag counts across a 2 kb window, with the t(6;9) patients plotted on the same axis. Average
profiles (right) show the average signal of DNaseI in the t(6;9), NPM1 and FLT3-ITD patients across all the 4-fold FLT3-ITD or NPM1 specific sites.
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fold-change of the DHS tag count between NPM1 and FLT3-ITD
patients, and plotted the t(6;9) DNaseI signal alongside (Fig. 1C, left).
These analysis showed that the DHS pattern in t(6;9) AML closely
resembles that of NPM1-mutated AML. Clustering just t(6;9), FLT3-
ITD and NPM1 DHS data (Supplementary Fig. 1D) and plotting the
average signal across NPM1 or FLT3-ITD specific DHSs (Fig. 1C,

right), showed that t(6;9) patient chromatin was accessible at the
NPM1- but not the FLT3-ITD-AML specific sites. To identify TFs
mediating this pattern, we employed digital footprinting followed
by de novo motif discovery. TF binding motifs enriched in both sets
of t(6;9) specific footprints as compared to those of healthy PBSCs
(Supplementary Fig. 1E) included occupied EGR, NF1 and AP-1
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motifs, confirming that these core nodes of the GRN are involved in
regulating t(6;9)-specific AML gene expression. Footprints were also
enriched with RUNX, ETS and C/EBP motifs which are bound
by these global haematopoietic regulators. Together these data
show that the GRN driven by DEK::NUP214 is similar to FLT3-ITD and
closest to that of NPM1-driven AML, but does not completely
overlap.
NPM1-mutated AML is associated with a more favourable

prognosis than t(6;9) AML. We therefore evaluated the differences
in gene regulation underpinning this phenotype. Whilst t(6;9) and
NPM1 AML gene expression patterns (Fig. 2A, left) and the
enrichment of footprinted TF motifs such as for AP-1 and HOX
(Fig. 2A, right) were overall similar, differences were evident. To
investigate these, we this time ranked the DHS tag counts by the
fold change between NPM1 and t(6;9) (Fig. 2B) demonstrating that
NPM1-specific DHSs were enriched with HOX and MEIS motifs. In
contrast, HIF1A and STAT motifs were enriched in t(6;9) specific
sites (Fig. 2B) which suggests increased signalling activity in t(6;9)
patients and could drive leukemic stem cell (LSC) growth [11]. This
notion was supported by a higher LSC17 score, a gene signature
indicating the stemness and associated prognosis of an AML
(Fig. 2B, right) in t(6;9) patients. Although NPM1 patients typically
lack CD34 cell surface marker expression, the same trend was seen
when excluding CD34 from the calculation (Supplementary
Fig. 2A). The poorer prognosis of t(6;9) AML patients may
therefore be due to higher LSC numbers or growth but further
investigation would be needed to test this hypothesis.
The HOX binding motifs in the NPM1-specific DHSs could be

bound by any of several HOX factors. The HOXA and HOXB
clusters, together with MEIS1 are upregulated in NPM1 AML which
contributes to the differentiation block [8]. HOX genes have also
been reported as upregulated in t(6;9) AML as compared to other
subtypes such as t(8;21) [4]. MLL-Menin modulates upregulation of
HOX genes in NPM1-mutated and SET::NUP214 AML [5, 12], whilst
other NUP fusion proteins cause upregulation of HOX genes [3]
through co-operation of NUP proteins with XPO1 (CRM1) [13]
enriched at HOX promoters [14]. In line with these findings, the
HOX loci of t(6;9) patients display accessible chromatin (Fig. 2C).
However, accessibility at the HOX loci of t(6;9) patients differed
when compared to that of patients carrying the FLT3-ITD without
the NPM1 mutation (with additional mutations in BCOR, DNMT3A,
TET2, TP53 and Tri(13)), and patients carrying NPM1 mutation but
not the FLT3-ITD. Patients with t(6;9) AML displayed less accessible
chromatin at several HOX DHSs, including at the HOXA7, HOXA9
and HOXB2 promoters and at distal cis-regulatory elements
(Fig. 2C). Moreover, mRNA expression of HOXA7, HOXA9, HOXA11
(in both patient samples but not FKH1 cells) and HOXB2 genes
were significantly lower in t(6;9) AML compared to FLT3-ITD and
NPM1 AML (Fig. 2C, Supplementary Table 1), although still
upregulated and more accessible than in, for example, t(8;21)
AML. Of the AMLs studied and with the exception of HOXB9, HOX
gene expression patterns in t(6;9) AML most closely resembled
NUP98::NSD1 [2, 9, 15].

HOX genes contribute to maintaining an immature phenotype
of NPM1 AML [8], but compared to DHS patterns from healthy
stage-specific datasets, NPM1, FLT3-ITD and t(6;9) AML showed
similar maturity (Supplementary Fig. 2B). Therefore, specific HOX
expression patterns are due to the driver mutation, rather than the
cell stage of the differentiation block. Genes with HOX and/or
MEIS sites at associated DHSs included CD34, which displays
higher gene and cell surface expression in t(6;9) AML compared to
NPM1 AML (Supplementary Fig. 2C, D). However, the majority of
differentially expressed genes with HOX/MEIS motifs, including
lymphoid genes, MEIS1 and AP-1 family member genes, were
expressed at least 2-fold higher in NPM1 patients (Supplementary
Fig. 2C, Supplementary Table 1) suggesting reduced reliance on
HOX factors in t(6;9) AML. Taken together, these data indicate
differential regulation of the HOX/MEIS genes in t(6;9) AML as
compared to NPM1 AML, with downstream HOX/MEIS binding
sites also differentially regulated.
In conclusion, our study sheds light on the unique molecular

characteristics of t(6;9) AML. It reveals that t(6;9) AML exhibits a
GRN comparable to that of the NPM1 and FLT3-ITD AML subtypes
but shows altered HOX expression and diminished downstream
regulation by HOX-related pathways. However, t(6;9) AML exhibits
a stronger LSC signature. These findings emphasize the need for
tailored therapeutic approaches based on the broader gene
regulatory program to target this highly aggressive AML sub-type.
We have recently shown that targeting essential components in
FLT3-ITD/NPM1 AML GRN, such as AP-1, FOXC1 or NFIX interferes
with AML maintenance [2, 10]. We also have shown that LSC
growth can be specifically inhibited [11]. Our data here indicate
that similar strategies could be considered for t(6;9) AML.
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